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ABSTRACT
At present, there exists many term-weighting schemes each
based on different underlying models of retrieval. Learn-
ing approaches are increasingly being applied to the term-
weighting problem, further increasing the number of useful
term-weighting approaches available. Many of these term-
weighting schemes have certain features and properties in
common. As such, it is beneficial to formally model these
common features and properties.

In this paper, we introduce a term-weighting scheme that
has been developed incrementally using an evolutionary learn-
ing approach. We analyse one such term-weighting function
produced from the evolutionary approach by decomposing it
into inductive query and document growth functions. Con-
sequently, we show that it is consistent with a number of
axioms previously postulated for term-weighting schemes.
Interestingly, we show that a further constraint can be de-
rived from the resultant scheme.

Finally, we empirically validate our analysis, and the newly
developed constraint, by showing that the newly developed
nonparametric term-weighting scheme can outperform BM25
and the pivoted document length normalisation scheme over
many different query types and collections. We conclude
that the scheme produced from the learning approach adds
further evidence to the validity of the axioms.

1. INTRODUCTION
Term-weighting is crucial to the problem of document

ranking within most information retrieval (IR) systems. Many
approaches to term-weighting have been developed over the
years ranging from empirical models to purely theoretical
models. Learning approaches to term-weighting (or indeed
ranking) can be classed as purely empirical. Typically, they
forgo developing an underlying theoretical model for IR and
aim to improve the document ranking (using some objective
function on training data) adopting a bag of words retrieval
model [3, 4, 5]. Other models of retrieval adopt an exist-
ing similarity framework [19, 20] into which documents and
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queries can be transformed. For example, while the vec-
tor space model [19] is an intuitive and useful model for
mapping documents and queries into an existing similarity
framework, there is no theoretical basis for viewing docu-
ment and queries as vectors. However, due to its simplicity
and the high level of performance it achieves, it remains a
popular model for IR. Conversely, many purely theoretical
models [22] have been developed that often only reach the
performance of their empirically based counterparts after
some refinement. It is often difficult to ascertain if the term-
weighting functions derived from the best performing models
(be they empirical or theoretical) contain similar character-
istics in terms of ranking.

Some recent research [12] has tried to bridge this gap by
attempting to develop criteria for good term-weighting func-
tions. An axiomatic approach to IR [13] has been devel-
oped which outlines a number of axioms to which all term-
weighting functions should adhere. This approach and the
constraints (axioms) in particular, are useful in attempting
to theoretically motivate term-weighting functions that are
developed from purely automated empirical (learning) mod-
els. They are also useful in determining if a proposed theo-
retical model’s interpretation of relevance is indeed valid.

Evolutionary learning techniques, and in particular ge-
netic programming (GP), are becoming popular due to the
freedom they offer in the definition of the problem and rep-
resentation of possible solutions. The basis behind many
of these approaches is that useful features and properties
within a population of solutions survive and propagate. The
GP produces a symbolic representation of the solution, which
is useful when a general solution is required. These represen-
tations are also useful for further analysis. There have been
a number of attempts using GP to evolve term-weighting
schemes in a bag of words retrieval framework [16, 11, 23,
8]. We see the aforementioned axiomatic approach as a use-
ful tool in theoretically motivating the often useful output of
these learning techniques. More specifically, we believe that
the best functions produced from these learning techniques
should adhere to the existing axioms. The axioms serve as
a useful guide regarding the optimality of the solutions pro-
duced.

This paper presents an analysis of a learned term-weighting
scheme using the existing axiomatic framework for IR. The
term-weighting scheme herein has been developed incremen-
tally using an evolutionary learning process in a bag of words
retrieval framework similar to previous research [10]. We de-
compose the term-weighting scheme into an inductive query
and document growth function using an axiomatic frame-



work and show that it satisfies a number of previously de-
veloped constraints [13] in a standard document collection
setting. Furthermore, we present a new normalisation con-
straint which is satisfied by our learned term-weighting func-
tion and which is not satisfied by the standard benchmark
schemes used herein. Finally, we present results which show
that our new learned nonparametric weighting scheme does
indeed outperform manually tuned benchmark schemes over
multiple collections for various types of query.

The rest of the paper is organised as follows: Section
2 presents current term-weighting approaches and reviews
some relevant research in the area. Section 3 outlines our
learning framework and introduces term-weighting schemes
produced from this approach. In section 4, this learned
term-weighting scheme is decomposed into an inductive doc-
ument and query growth function. Furthermore, we show
that the learned term-weighting scheme adheres to all of
the existing constraints and we also introduce a new nor-
malisation constraint to which the term-weighting scheme
adheres. Our experimental setup is described in section 5,
while our results are presented in section 6. Finally, our
conclusions are outlined in section 7.

2. BACKGROUND
In this section, we briefly outline current term-weighting

approaches and summarise some background material rele-
vant to this research.

2.1 Term-Weighting

2.1.1 BM25

The BM25 weighting scheme, developed by Robertson et
al. [17], is a weighting scheme based on the probabilistic
model. The score of a document D in relation to a given
query Q can be calculated as follows:

BM25(D, Q) =
�

t∈Q∩D

(
tfD

t · w1

tfD
t + k1 · ((1 − b) + b · dl

dlavg
)
· tfQ

t )

(1)

where tfD
t is the frequency of a term t in D and tfQ

t is the
frequency of the term in the query Q. dl and dlavg are the
length and average length of the documents respectively. k1

is the term-frequency influence parameter which is set to
1.2 by default. The query term weighting used here (tfQ

t ) is
slightly different to the original weighting method proposed
[17] but has been used successfully in many studies. b is
the document normalisation influence parameter and has
a default value of 0.75. w1 is the idf weight identified as
follows:

w1 = log(
N − dft + 0.5

dft + 0.5
) (2)

where N is the number of documents in the collection and
dft is the number of documents in which term t appears.

2.1.2 Pivoted Normalisation Method
Another matching function is the pivoted document length

normalisation scheme [21]. The score of a document in this
scheme is calculated as follows:

Piv(D, Q) =
�

t∈q∩d

(
1 + log(1 + log(tfD

t ))

(1 − s) + s · dl
dlavg

· w2 · tfQ
t ) (3)

where s is the normalisation parameter referred to as the
slope and has a default value of 0.2. w2 is the idf function as
found in the pivoted normalisation scheme and is identified
as follows:

w2 = log(
N + 1

dft

) (4)

We can see that both BM25 and the pivoted document
length normalisation scheme consist of a term-discrimination
part (idf) and a type of normalised term-frequency.

2.2 Exploration of Term-Weighting Space
A constraint based approach to IR has previously been de-

veloped [12]. This work identifies a number of constraints to
which all good weighting schemes should adhere. It is shown
that when a scheme violates one of the proposed constrains
it typically indicates non-optimality of the scheme. This
work has been extended in a formal axiomatic framework
[13]. However, the search for new functions still involves
manually constructing weighting functions that adhere to
these constraints. This approach is described in detail in
the next section (2.3).

An exhaustive search of a limited space of term-weighting
functions has previously been conducted [24] using a set
of non-primitive (non-atomic) properties and features that
comprise many previously existing retrieval functions. They
conclude that the search space of similarity measures has a
complex landscape making a simple hill-climbing algorithm
ineffectual. Using non-primitive features of existing term-
weighting schemes in any search (be it exhaustive or not) for
term-weighting will bias (or limit) the search toward known
forms (and shapes) of term-weighting functions.

A family of probabilistic term-weighting schemes has been
developed analytically in an incremental three-stage approach
[1]. Starting with developing measures for determining the
information content of a term, a complete weighting ap-
proach is determined by adding two more methods of nor-
malisation. The first method is a non-linear term-frequency
measure which implicitly promotes documents containing
more distinct query terms, while the second method explic-
itly uses the document length to penalise longer documents.
This three-stage approach has been adopted by some [10] to
learn these weighting functions and test them against stan-
dard benchmarks at each stage. This approach constrains
the shape of the entire term-weighting function in some way
by forcing all three aspects to be present. However, these
assumptions seem reasonable and have the advantage of re-
ducing the vast search space while not limiting the shape of,
nor the features used within, the constituent functions.

Some research has separated the learning of these weight-
ing approaches into two stages (local and global). A dis-
cretisation based learning approach has been used to learn
the shape of the local (within-document) weighting function
[18]. Similarly, the global (term-discrimination) weighting
function is learned by placing terms into bins based on their
features and weighting the bins separately.

A genetic programming (GP) approach to developing en-
tire ranking functions has previously been adopted [23, 16,
11, 8]. Entire ranking functions are learned using a set of
primitive features of the terms in the documents and col-
lection. These functions are shown to outperform standard
benchmarks in some cases. This approach has the advantage
of creating new ranking functions using a stochastic global



search technique and does not restrict itself to local search
alone. The ability to search this more complex landscape
(as was identified in [24]) with its irregular topology lends
itself well to this problem domain. However, little in-depth
analysis of the solutions produced from such approaches has
been conducted and in particular it has not been shown if
these learned term-weighting schemes adhere to the existing
axioms for IR.

The evolutionary approaches adopted in previous works
[23, 16, 11, 8] are useful as they make few assumptions as to
the possible makeup of good term-weighting schemes. For
example, if indeed idf (equations 2 and 4) is the optimal type
of basic weighting for terms, a GP approach should be able
to find this. The use of primitive functions and terminals
allow the process to combine useful terminals and search a
large function space for correct function forms.

2.3 Inductive Framework and Axioms
We will briefly introduce the constraints previously devel-

oped [13] using the inductive framework. The idea of the
inductive framework is to define a base case that describes
the score (weight) assigned to a document containing a single
term matching (or not matching) a query containing a single
term. All other cases can be dealt with inductively, using
a document growth function (which describes the change in
the document score when a single term is added to the doc-
ument) and a query growth function (which describes the
change in the document score when a single term is added
to the query). This is an elegant approach to formalising
characteristics of a term-weighting function.

This description of term-weighting components is used
to formally describe three axioms (or constraints) that are
seen as self-evident (intuitive) in a term-weighting context.
The first constraint (constraint 1) states that adding a new
query term to the document should always increase the score
of a document. This captures the basic behaviour of the
term-frequency aspect. The second constraint (constraint
2) states that adding a non-query term to a document must
always decrease the score of that document. This constraint
ensures that some sort of normalisation is present and de-
tails its basic operating principle. The third constraint (con-
straint 3) states that adding successive query terms to a
document will increase the score of the document less with
each successive addition. Essentially, the term-frequency in-
fluence must be sublinear.

These constraints are used to check the validity of term-
weighting schemes before evaluation. Furthermore, term-
weighting schemes which adhere to these constraints are
shown empirically to outperform weighting schemes that
fail to adhere to one or more of the constraints [13]. The
constraints are also useful in defining valid bounds on tun-
ing parameters that appear in many existing term-weighting
schemes. It should be noted that simply adhering to these
constraints does not guarantee a high performance weight-
ing scheme. Rather it is the violation of one of the constraint
that indicates the performance is non-optimal (i.e. breaks
some rule of the proposed model of relevance).

3. LEARNING FRAMEWORK
As previously indicated, an evolutionary learning approach

(GP) [9, 10] has been used to develop the term-weighting
scheme presented in this section. In this paradigm, solutions
are created at random using a set of predefined features of

the terms, documents and queries in a document collection.
A ‘survival of the fittest’ approach is then used to deter-
mine what solutions will be used in the next generation.
The population for this next generation is developed using
the features from the fittest solutions in the previous genera-
tion. The objective function of this approach is to maximise
the mean average precision (MAP) on a set of training data.

3.1 Incremental Learning
We adopt an incremental approach [1] to develop an entire

weighting function. The search space is separated into three
parts. Firstly, schemes are learned which aim to correctly
measure the information content of a term (i.e. some type
of term-discrimination measure). When a suitable measure
has been determined (i.e. one that maximises MAP), the
term-frequency aspect of the scheme is learned while the
term-discrimination measure remains fixed. Once a suitable
term-frequency scheme is found (again one that maximises
MAP), it remains fixed in the weighting scheme while a nor-
malisation scheme is learned. Once this process is complete
an entire weighting scheme is produced.

Although the shape of the possible function is constrained
by the manner in which we combine the three aspects of a
term-weighting function, we do not enforce the form (shape)
of the constituent function. The entire scoring function pro-
duced from this learning approach, which scores a document
(D) in relation to a query (Q), can be described as follows:

LRF (D, Q) =
�

t∈Q∩D

(ntf(tfD
t , dl) · w3 · tfQ

t ) (5)

where w3 is the initial weight of a term and ntf is the
normalised term-frequency. tfD

t and tfQ
t are the actual

term-frequencies of term t in the document D and query
Q respectively, while dl is the document length. It can be
seen that both BM25 and the pivoted normalisation scheme
fit this model of retrieval. However, rather than analytically
developing schemes for each aspect of the function, we learn
weighting schemes whose objective function is to maximise
the MAP of a set of queries and document. Learning ap-
proaches can only generalise functions when the characteris-
tics of the general data are present in the training collection.

3.2 Learned Term-Weighting Scheme
In this section, we will briefly introduce the term-weighting

scheme developed. For a more indepth account of the process
the interested reader is directed to [9, 10]. The set of func-
tions that can potentially form part of each constituent func-
tion is F = {×,−,+, /, square,√ , log, exp}.

3.2.1 Term-Discrimination
One of the best term-discrimination schemes found on a

training collection of approximately 32,000 documents1 and
outlined in [9] using a set of primitive terminals ({cft, dft,
N, V, C, 10, 0.5, 1}) and functions (F ) is as follows:

w3 =

�
cf3

t · N
df4

t

(6)

where cft is the collection frequency of term t in a collec-
tion of size N . The terminals V and C are the vocabulary

1OHSUMED documents from 1988 and the 63 topics



and size of the collection (in repeated words) respectively.
Many of these schemes were developed and can be found in
[9], all of which achieve a level of performance that surpasses
that of idf on standard test collections.

3.2.2 Term-Frequency Influence
Using this function (w3) as a measure of the information

content of a term, a term-frequency influence scheme can
be developed using a similar approach to that in [10] us-
ing a set of terminals ({tfD

t , 10, 0.5, 1}) and functions (F ).
One of the best learned term-frequency factors ignoring nor-
malisation (i.e. ntf(tfD

t )), learned on approximately 32,000
documents2 using w3 as the measure of information content
is as follows:

ntf(tfD
t ) = 10 +

log(0.5)

tfD
t

+
log(tfD

t )

log(1 + tfD
t )

+
log(tfD

t )

log(1 + tfD
t ) · log(log(10))

(7)

Although, this seems complex, it is trivial to show that
it is sublinear with respect to the term-frequency (tfD

t ) and
will be analysed in a later section. Again, multiple term-
frequency functions were developed. The better schemes
achieved a similar performance on the training set.

3.2.3 Normalisation
A normalised term-frequency similar to the BM25 model

is assumed. As such, a normalisation function can be added
to the chosen term-frequency (7) as follows:

ntf(tfD
t , dl) = 10 +

log(0.5)
tfD

t

n(dl)

+
log(

tfD
t

n(dl)
)

log(1 +
tfD

t

n(dl)
)

+
log(

tfD
t

n(dl)
)

log(1 +
tfD

t

n(dl)
) · log(log(10))

(8)

where n(dl) is some normalisation function. It is worth
noting that this structure does not enforce any of the con-
straints previously outlined in [13].

It has been noted that normalisation schemes developed
to date tend to be collection specific [14] and that tuning
parameters are used to adapt these schemes for use on differ-
ent collections and different topic lengths. In an attempt to
develop collection independant normalisation schemes, we
adopted the following approach: we constructed training
data which consisted of three very similar small collections
(approximately 10,000 documents3 in each). These collec-
tions contained different distributions of document length
although the majority of documents and queries in each
collection were very similar. The objective function of the
learning approach was simply the average MAP over the
three collections (as they had similar numbers of queries
and documents). This allowed the learning approach to
adapt the normalisation schemes to the document length
distribution in different collections. Again, multiple nor-
malisation functions were learned using a set of terminals

2LATIMES documents and 37 medium length topics (301-
350)
3LATIMES documents and the same 29 medium length top-
ics (301-350) on each of the three collections

({dl, dlavg, σ(dl), 10, 0.5, 1}) and functions (F ), one of which
is as follows:

n(dl) =

�
dl

dlavg

(9)

where dl is the length of the document in words, dlavg is
the average length document in words and σ(dl) is the stan-
dard deviation of document length in the collection. This
formula is typical of the solutions produced in terms of struc-
ture and performance.

The entire scheme outlined has been developed in three
stages. It is worth noting that there are no free parame-
ters in this entire weighting scheme. The approach adopted
constrains the form of the possible weighting formulas. How-
ever, the makeup of the constituent parts remains as uncon-
strained as possible as we use primitive functions and ter-
minals in each stage. By adopting this framework, resulting
schemes are not gauranteed to satisfy the constraints (ax-
ioms) [13]. This is outlined in the next section.

4. AXIOMATIC ANALYSIS
In this section, we analyse the learned term-weighting for-

mula using the aforementioned axiomatic framework [13].
We also introduce a new constraint to which our learned
term-weighting forumla adheres.

4.1 Inductive Growth Functions
We now describe the inductive growth functions [13] for

our newly learned weighting approach and indicate which
parts of the function were constrained by our framework.
We will then look at the constraints (axioms) outlined in
the axiomatic framework [13] and compare the newly devel-
oped weighting schemes outlined to see if they satisfy these
constraints.

For the inductive process, we use {q} to describe a term
added to the query and {d} to describe a term added to a
document. The base case simply describes the weight given
to a one-term query matching (or not matching) a one-term
document and is described as follows:

S(Q,D) = f(q, d) = � weight(q) = weight(d) q = d
penalty(q, d) q 6= d

where S(Q, D) scores a document D in relation to a query
Q. The function assigns a score of weight(q) to the docu-
ment when d matches q, otherwise it assigns a penalty score
of penalty(q, d). The learned weighting function outlined in
section 3.2 can be rewritten as follows using notation simi-
lar in style to that in [13] where {x, y} ∈ Z > 0 refer to the
term-frequency and the document length respectively:

S(Q, D) =
�

t∈Q∩D

(ntf(x, y) ·

�
cf3

t · N
df4

t

· tfQ
t )

where ntf(x, y) is as (8) and n(y) = � y

dlavg
(9). We can

write the base case of this function as follows:

weight(q) =

�
cf3

t N

df4
t

· ntf(1, 1)



which accurately describes the weight assigned to a one
term query matching a one term document and was learned
in our framework. The following case describes the weight
given to a query term that does not match a document term:

penalty(q, d) = 0

It should be noted that penalty(q, d) = 0 because of the
way we created our GP framework and not as a result of
the GP process itself. Thus, we constrained our search to
schemes which did not penalise terms explicitly for not oc-
curring. The following query growth function describes the
change in weight assigned to a document as a term is added
to the query:

g() = S(Q,D) + S({q}, D)

This is similar to the pivoted normalisation query growth
function as the weight grows linearly as terms are added
to the query. Again, this query growth function was im-
posed by our framework as it can be seen that we weighted
query terms in a simplistic manner. It has been previously
noted that this is a simplistic form of growth function. How-
ever, there has been no justification for a more complex form
[13]. The following function is the document growth func-
tion which can be written in a somewhat similar manner to
that of the BM25 weighting [13]:

h() =
�

t∈Q∩D−{d}

S(Q, {t}).ntf(tfD
t , dl + 1)

ntf(1, 1)

+ S(Q, {d}).ntf(tfD
d + 1, dl + 1))

ntf(1, 1)

This document growth function has been learned in stages
and was restricted in a certain sense by the properties and
features initally supplied to the learning approach, but as is
identified in the next section, it was not constrained by the
three axiomatic constraints developed in previous research.
This re-writing process helps to examine the difference be-
tween this scheme, the BM25 scheme and the pivoted doc-
ument normalisation scheme. It can also be useful for devel-
oping new schemes in a similar manner to previous research
[13].

4.2 Analysis of growth functions using con-
straints

In this section we show that this scheme satisfies all three
existing constraints [13] for typical test collections. Strictly
speaking the constraints are not satified unconditionally but
the circumstances which would lead the constraints to being
violated are not present on the training or test data used
in this research. As we have no tuning parameters in our
learned functions all constraints are satisfied for the TREC
collections used in this work4.

4It should be noted that the function ntf(x, y) (8) can yield

a negative result when (x/�y/dlavg) < 0.344 (i.e. for some
positive integer values of x and y). Typically, top ranked
documents have multiple occurrences of query terms (i.e.
x > 1). For a term-frequency of one (i.e. x = 1) a negative
score can be only be achieved when the document length (y)
is approximately 8.5 times longer than the average document
length and thus this violation has not affected the collec-

The first constraint (constraint 1) states that adding a
new query term to the document should always increase
the score of a document. In our scheme we can show that
ntf(x + 1, y + 1) > ntf(x, y) ∀x, y > 0. It is trivial to
show that ntf(x + 1, y) > ntf(x, y) ∀x, y > 0 which is if
we simply ignore the length aspect of the document. As our
term-frequency (ntf(x, y)) is normalised using x

n(y)
when x

increases by 1, y will increase by 1. Thus, as long as n(y)
is sublinear (as is the case in our formula) or is linear with
n(0) > 0, this will be satisfied.

The second constraint (constraint 2) states that adding
a non-query term must decrease the score of a document.
It is true that ntf(x, y + 1) < ntf(x, y) for our scheme as
the normalisation scheme identified n(y) increases ∀y > 0.
This will decrease the score of a document. This constraint
enforces some sort of document normalisation approach. As
the first two constraints hold it is obvious that ntf(x+1, y+
1) > ntf(x, y+1) which simply indicates that adding a query
term to a document will achieve a higher score than adding
a non-query term to a document.

The third constraint (constraint 3) states that adding suc-
cessive query terms to a document will increase the score
of the document less with each successive occurrence. Es-
sentially the term-frequency influence must be sublinear.
Thus, (ntf(x + 1, y + 1) − ntf(x, y)) > (ntf(x + 2, y + 2) −
ntf(x + 1, y + 1)) ∀x, y > 0 which again is true for all
x and y in our formula. As the first constraint is satis-
fied the normalisation part of the ntf(x, y) formula can be
ignored. Thus, showing that (ntf(x + 1, 1) − ntf(x, 1)) >
(ntf(x+2, 1)−ntf(x+1, 1)) ∀x > 0 is sufficient and trivial.

4.3 New normalisation constraint
We now propose a new constraint to which the best of

our evolved normalisation schemes adhere. We show that
our evolved formula adheres to this new constraint in most
cases and that neither the BM25 nor the pivoted normalisa-
tion adhere to the constraint. With notation similar to that
used in [13] our new constraint can be formalised as follows,
where T is the set of terms in a corpus and δd(d, D, Q) =
S(Q, D ∪ {d})− S(Q,D) (i.e. the change in score as a term
is added to the document):
Constraint 4: ∀Q,D and d ∈ T , if d /∈ Q, |δd(d, D, Q)|−1 >
|δd(d,D ∪ {d}, Q)|−1.
According to Heaps’ law [15], the appearance of new (un-
seen) terms in a corpus grows in roughly a square-root re-
lationship (sub-linearly) to the document length (in words).
Ultimately, it is the number of unique terms that is the
best measure of how broad the topic of the document is
likely to be. For example, consider a document that has
9 words (dl = 9) and contains 3 unique terms (i.e. vector
length of 3). If this document grows in length to 100 words
(dl = 100), the expected number of unique terms would be
approximately 10. Thus, as the document grows in length,
the topic broadens sub-linearly. Furthermore, it is the num-
ber of occurences (term-frequency) of these unique terms

tions used in this research. This phenomenon can be easily
eliminated by that ensuring that ntf(0, y) = 0 for the term-
frequency function (7) or by re-adjusting the penalty(q, d)
function. One such function that goes through the origin
(ntf(0, y) = 0) and has a similar term-frequency influence
to (7) is x

x+0.45
. Nevertheless, these characteristics were not

present in the training collection. This is not of major con-
sequence for the ranking on the test collections used herein.



that indicates the strength of each different aspect (i.e. di-
mension of the vector) of the topic.

Simply using the vector length for normalisation might
seem an intuitive approach after considering such an argu-
ment. However, using the vector length as the normalisa-
tion factor will lead to a violation of constraint 2. Consider
a non-query term, which has already appeared in the doc-
ument. If this term re-occurs, the weight of the document
will not decrease as the vector length remains unchanged.

Following from this, the above constraint avoids over-
penalising longer documents by ensuring that the normal-
isation aspect (measured in repeated terms) is sublinear.
Therefore, as non-query terms appear in a document they
should be penalised less with successive occurrences. Essen-
tially, the inverse of the score reduction due to non-query
terms being added should be sub-linear. The normalisation
used in term-weighting schemes is inversely related to the
weight to apply and as such is typically the denominator in
such functions.

As previously mentioned, the better learned normalisa-
tion schemes satisfy this constraint for the collections used
within. Due to a possible negative result for certain positive
values in equation 8, the inverse of the weight change due
to adding a non-query term can be exponential in certain
circumstances. However, these cases are not typical and do
not tend to affect the retrieval of documents in the higher
ranks (i.e. 1000) as previously mentioned.

It is worth noting that none of the three existing con-
straints were enforced by the way we created our frame-
work. Instead, they are characteristics of the best schemes
developed using the evolutionary learning approach. This
reinforces the validity of the existing constraints and inter-
estingly can be used to identify new constraints.

4.4 Violations of New Constraint
Interestingly, the new constraint developed (constraint 4)

is violated by both BM25 and the pivoted normalisation
scheme. Basically, ∀x, y > 0 (ntf(x, y + 1)− ntf(x, y))−1 >
(ntf(x, y + 2) − ntf(x, y + 1))−1 must be true for the con-
straint to be satisfied. It can be seen that this is not true
when the following normalisation function is used in both
BM25 and the pivoted normalisation scheme (for any value
of b):

nb = ((1 − b) + b · dl

dlavg

)

as this is linear with respect to dl. This analysis suggests
that when using this function, b needs to be tuned on each
specific collection. If the collection contains some long doc-
uments compared to the average document length, it would
be important to have a low value for b as it would otherwise
unfairly penalise these longer documents. It is also inter-
esting that if the normalisation function (n(dl)) is sublinear
with respect to dl and the term-frequency is normalised us-

ing
tfD

t

n(dl)
(which is used in our framework), then the first

constraint (constraint 1) will always be satisfied.

Table 1: Document Collections
Name Collection #docs dlavg σ(dl)

FR Federal Register (1994) 55,630 387.1 1365.2
LATIMES LA Times 131,896 251.7 251.9
FT Financial Times (1991-1993) 138,668 221.8 196.4
FBIS FBIS 130,471 249.9 554.4
OHSU OHSUMED (1990-1991) 148,162 81.4 64.0

Table 2: Topics

Topic Range Average Topic Length

short med long

301-350 2.4 12.44 43.92
351-400 2.4 10.46 32.96
401-450 2.4 9.02 27.5
301-400 2.4 11.45 38.44
1-63 (OHSU) 2.2 5.11 None

5. EXPERIMENTAL SETUP
Now that we have determined that the learned weighting

function conforms to all the existing constraints, it is worth
empirically validating this analysis. These experiments will
also test the validity of the new normalisation constraint
(constraint 4). In this section, we introduce an experimen-
tal methodology to test all three schemes (BM25, pivoted
normalisation and the learned scheme) on test data.

5.1 Document Collections
We use collections from TREC disks 4 and 5 as test col-

lections. For each set of topics we create a short query set,
consisting of the title field of the topics, a medium length
query set, consisting of the title and description fields, and a
long query set consisting of the title, description and narra-
tive fields. We also use documents 1990 and 1991 from the
OHSUMED collection as a test collection. We created short
queries for the OHSUMED collection by simply removing
terms from the description field. Standard stop-words from
the Brown Corpus5 are removed and remaining words are
stemmed using Porter’s algorithm. No additional words are
removed from the narrative fields as is the case in some ap-
proaches. Tables 1 and 2 shows some characteristics of the
documents and topics used in this research.

5.2 Benchmarks
We tuned the BM25 scheme (1) using two values of k1

(1.2 and 2.0, as they are the most commonly reported in
the literature) and nine values of b (0, 0.125, 0.25, 0.375,
0.5, 0.625, 0.75, 0.825 and 1) for each query type (short,
medium and long). The best performing k1 value on all
collections was the default value of 1.2 which we used for all
our experiments. The best values of b for short, medium and
long queries on our test data were 0.125, 0.375 and 0.625
repectively which we used when dealing with these query
types.

We also manually tuned the pivoted normalisation func-
tion using seven values of s (0, 0.025, 0.05, 0.1, 0.2, 0.3 and
0.4) for each query type. Values greater than 0.4 for s can
typically violate some of the constraints [13]. The best val-
ues of s for short, medium and long queries on our test data
were 0.025, 0.05 and 0.2 repectively.

It has been stated that the idf in the BM25 scheme will
often lead to poor results due to a possible negative weight

5http://www.lextek.com/manuals/onix/stopwords1.html



for certain frequent terms [12, 13]. As we removed standard
stopwords this did not occur for long (verbose) queries. For
the BM25 scheme, our long queries achieve a MAP which
is higher in most cases than those of the medium length
queries.

6. RESULTS
Tables 3, 4 and 5 show the results for short, medium

and long queries on multiple test collections. As our results
show, the learned LRF scheme is comparable to, and often
better than, a tuned BM25 function and a tuned pivoted
normalisation scheme.

Table 3: MAP for short queries

Collection Topics #Topics Piv0.025 BM250.125 LRF

FR 301-400 45 0.2813 0.2897 0.3089
FT 351-400 47 0.2379 0.2438 0.2488
FBIS 351-400 38 0.1989 0.2053 0.2096
FT 401-450 49 0.3174 0.3277 0.3243
LATIMES 401-450 45 0.2408 0.2435 0.2704
OHSU 1-63 63 0.2322 0.2380 0.2558

Table 4: MAP for medium queries

Collection Topics #Topics Piv0.05 BM250.375 LRF

FR 301-400 45 0.3063 0.2944 0.3212
FT 351-400 47 0.2320 0.2330 0.2489
FBIS 351-400 38 0.2118 0.2353 0.2408
FT 401-450 49 0.3550 0.3572 0.3575
LATIMES 401-450 45 0.2394 0.2523 0.2675
OHSU 1-63 63 0.2540 0.2738 0.3005

Table 5: MAP for long queries

Collection Topics #Topics Piv0.2 BM250.625 LRF

FR 301-400 45 0.2913 0.3407 0.3809
FT 351-400 47 0.2713 0.2943 0.3142
FBIS 351-400 38 0.1759 0.2017 0.2400
FT 401-450 49 0.3449 0.3622 0.3790
LATIMES 401-450 45 0.2640 0.2855 0.2829

For all query lengths (without the need for tuning) our
new learned formula compares favourably to the best man-
ually tuned benchmark. On most collections for different
query lengths our new learned formula outperforms the man-
ually tuned benchmark. These results are encouraging par-
ticularly as the new weighting function is nonparametric.
This adds further empirical evidence to support our nor-
malisation constraint (constraint 4).

6.1 Statistical tests
A one-tailed t-test did not report a statistically signifi-

cant increase (p-value < 0.05) over the tuned BM25 on
many of the collections tested. However, due to the con-
sistent increases (albeit small in some cases) especially for
long queries, we pooled the same queries types from different
collections together. To validate this pooling, we performed
a one-way ANOVA on the differences in average precision
between LRF and the tuned BM25 for each query type. It
showed that there is no variance between the differences in
AP across the collections for a specific query type. Thus,
the difference in performance across the different collections
does not vary in any statistical sense (F -value < 1 and p-
value > 0.05).

It can be seen from Table 6 that our new learned formula

Table 6: Significance tests for LRF and ∆MAP

Query Type #Topics Piv ∆MAP BM25 ∆MAP

p-value p-value

Short 287 0.001 0.0196 0.016 0.0130
Medium 287 0.001 0.0243 0.037 0.0132
Long 224 0.001 0.0301 0.035 0.0210

(LRF ) achieves a significantly higher MAP than BM25 for
all query types, although for short and medium queries that
difference is only about 1.3%. However, for long queries we
can see that there is a significant increase in MAP of about
2.1% MAP, compared to a tuned BM25 scheme. It is also
worth noting that if a single BM25 scheme was chosen for
all query types, the LRF function would outperform it by
a greater margin.

6.2 Discussion
It can be seen that the learned scheme achieves a high

MAP on many collections and varying query lengths. It
compares favourably on unseen data against a highly tuned
BM25 scheme. As BM25 and the pivoted normalisation
scheme violate our newly developed constraint (constraint
4), the performance for any one value of b or s will be
sub-optimal for different collections and over different query
lengths. We can see that the optimal settings for BM25
and the pivoted normalisation scheme tends to increase as
the query length increases. This phenomenon has previously
been reported [14, 7]. It is also worth noting that the most
optimal setting also varies for each collection for queries of
the same length [6].

This fourth normalisation constraint (constraint 4) fits
neatly into the axiomatic framework previously developed
and interestingly is a characteristic of the best evolved nor-
malisation functions. Other normalisation functions reported
in the literature [1, 2] adhere to the new normalisation con-
straint. However, many of these functions contain tuning
parameters and need some tuning for different queries and
collections.

7. CONCLUSION
We have analysed a term-weighting scheme that has been

developed using an evolutionary learning technique. This
weighting scheme is decomposed into document and query
growth functions using the axiomatic framework and is shown
to satisfy previously known constraints. This purely empir-
ical learning approach further validates the correctness of
the existing constraints. We develop a new normalisation
constraint to which our learned scheme adheres.

We show that the normalisation influence component of
the standard benchmark schemes requires much tuning on
specific collections and specific query lengths in order to
achieve high performance. Our experiments show that our
newly developed scheme outperforms the manually tuned
benchmarks on most of the collections tested without the
need for tuning. An interesting future direction would be
to constrain the search space using the existing axioms and
then use a learning technique to search this reduced space.
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