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Abstract
This paper examines the behavioral phenomena that
occur with the tuning of the binomial-3 problem.
Our analysis identifies a distinct set of phenomena
that may be generalizable to other problems. These
phenomena also bring into question whether GA
theory has any bearing on GP theory.

1 INTRODUCTION

A common assumption in genetic programming theory is that
phenomena that occur under genetic algorithms (GA) have
roughly analogous counterparts in genetic programming (GP).
After all, genetic programming is a derivative from genetic
algorithms. Many of their procedural steps are similar—in-
deed, GP is more alike GA than is different. Where the two
differ lies in what is seemingly a secondary issue: that GP (of-
ten) uses a tree representation to structure information rather
than, say, a linear representation. Given the various imple-
mentations of GP and GA, this “difference” is even less clear,
since some GP systems use a linear representation and some
GA systems use a tree-like representation. Consequently, given
this degree of similarity between GA and GP, the assumption
of analogous phenomena is understandable.

Is the assumption correct? We would claim perhaps, under
some circumstances. If we took the position, however, that
phenomena that occur under GP have no counterpart in GA,
we would need to re-examine just what phenomena does oc-
cur under GP. If the phenomena were found to be substan-
tially different, it would beg the issue of whether theory in GA
has any bearing on GP theory.

This paper re-examines phenomena that occur under GP as a
problem is tuned for difficulty.  (For this paper, we define
phenomena as behavioral occurances, patterns, that are observed
in the output from a GP system.) Although the output we
obtain is strictly static (i.e., non-time varying and represents
but a single snapshot of performance for a particular trial), by
tuning and observing the output, we can infer something about
GP’s internal dynamics. (The process we use is akin to finding
an unknown transfer function to a black box.)

For this paper then, we examine in detail the behavioral phe-
nomena that occurs with the tuning of a single problem. Our
investigation represents a longitudinal study with the purpose
of understanding GP dynamics. This is in contrast to exam-

ining the behavioral phenomenon that occurs under multiple
problems. Multiple problems represent a latitudinal approach
to understanding gross characteristics of GP. For example, lati-
tudinal studies, like [Luke and Spector 1998], have been used
to discuss efficacy of methods (e.g., crossover v. mutation).
Longitudinal studies complement latitudinal ones. This pa-
per represents one of the few longitudinal studies in our field.
(For another, see [Langdon, 1998]).

The paper is organized in the following manner. Section 2
provides a description of the experiment as well as the bino-
mial-3 problem. Section 3 presents the results collected from
our experiments. Section 4 discusses the several different phe-
nomena apparent in GP. Section 5 concludes the paper.

2 EXPERIMENT DESCRIPTION

2.1 BINOMIAL-3 PROBLEM DESCRIPTION

The binomial-3 problem is an instance taken from symbolic
regression and involves solving for the function f (x) = (1 + x)3

= 1 + 3x + 3x2 + x3. The term binomial refers to the sequence of
coefficients in this polynomial; the “3” refers to the order of
this polynomial.

We define the binomial-3 problem as follows. Fitness cases are
50 equidistant points generated from the equation f(x) = (1 +
x)3 over the interval [-1, 0). Raw fitness score is the sum of
absolute error. A hit is defined as being within 0.01 in ordi-
nate of a fitness case for a total of 50 hits. The stop criterion is
when an individual in a population first scores 50 hits. Ad-
justed fitness is the reciprocal of the quantity one plus raw
fitness score.

A function set is a subset of {+, –, ×, ÷}, which corresponds to
arithmetic operators of addition, subtraction, multiplication
and protected division. We define protected division as the
operator that returns one if the denominator is exactly zero.
Typical function sets include {+, –, ×, ÷}, which we presume
for this paper. Other sets may include other permutations such
as {+, ×} or {–, ×}.

A terminal set is a subset of {X, R}, where X is the symbolic
variable and R is a set of ephemeral random constants (ERCs).
We presume that the ephemeral random constants are uni-
formly distributed over a specified interval of the form [-a

R
,

a
R
], where a

R
 is a real number that specifies the range for ERCs.

We require that each ERC is generated but once at population
initialization and is not changed in value during the course



of a GP run. Typical terminal sets include either {X} (a bino-
mial-3 problem without ERCs) or {X, R} (a binomial-3 prob-
lem with ERCs).Tuning is achieved by varying the value asso-
ciated with a

R
.

2.2 BINOMIAL-3 PROBLEM BACKGROUND

The binomial-3 problem shares many properties that are com-
mon to other problems in GP. It requires symbol manipula-
tion. It also allows for nocs (i.e. non-coding segments, also
known as introns or unexpressed code).  The problem affords
GP to choose from multiple approaches to solve for the same
problem.  For example, equivalent solutions include (1 + x)3,
(1 + x)(1 + 2x + x2), (x – -1)3 and (x + 1) ÷ (1 ÷ (1 + (x ÷ 0.5)
+ (x ÷ (1 ÷ x))). In addition to these equivalent approaches,
there exists a number of approximate approaches (e.g. rational
polynomials that fit all 50 points, but not necessarily anywhere
else). Furthermore, there are several ways to generate numeri-
cal coefficients. For example, the coefficient 2 can be gener-
ated by using an ERC that (approximately) equals this value.
It can be generated with the value 0.5 and taking the recipro-
cal of that value. It can also be generated through distribu-
tion, e.g., (x + x). We surmise that the total number of ways to
solve the binomial-3 problem to be on the order of a few thou-
sand (i.e., see [Daida, et al. 1999]).

The choice of coefficients, form, and order of the target func-
tion f(x) for the binomial-3 problem was purposeful and de-
liberate. The use of f(x) = (1 + x)3 has allowed for an extended
mathematical treatment [Daida, Bertram et al. 1999].

The binomial-3 problem does not share an antecedent with a
related test problem in GA research, but its domain has an
extended history in GP. One of the earliest, intuitive applica-
tions of GP has involved data modeling under the moniker of
symbolic regression. See [Koza 1992] and also [Banzhaf et al.
1998].

In spite of these works, we recognize that from a purely prac-
tical standpoint, there exist modifications to standard GP that
may be better suited for data modeling. This seems to have
been particularly true in the generation of parameter constants,
which standard GP does awkwardly with ERCs. Recent de-
velopments in GP indicate methods that appear to generate
constants with greater efficacy than as with using ERCs (e.g.,
[Angeline 1996; Raidl 1998]).

Our interest in using the binomial-3 problem has been to il-
lustrate behavioral phenomena that may be reflective of the
class of problems subsumed under data modeling. ERCs can
also be used to address building block issues, as well as fitness
landscapes. See [Daida, Polito et al., 1999; Daida, Bertram et
al. 1999].

For examples of other tunably difficult problems, please see
[Soule et al. 1996; Punch et al. 1996 ].

2.3 EXPERIMENT PROCEDURE

We used a patched version of lilgp [Zongker and Punch 1995]
to generate our data as discussed in[Daida, Bertram, et al.
1999].

The GP parameters were similar to those mentioned in Chap-
ter 7 [Koza 1992]: population size = 500; crossover rate = 0.9;
replication rate = 0.1; population initialization with ramped
half-and-half; initialization depth of 2-6 levels; and fitness-
proportionate selection. Other parameter values were maxi-
mum generations = 200 and maximum tree depth = 26.

We ran two sets of experiments; the first involved varying the
tuning parameter a

R
, which indicates the range of R in the

form of [-a
R
, a

R
]. We used 15 such values of a

R
, where a

R
 =

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 10, 100,
1000. Fifteen data sets were collected in all. Each data set con-
sisted of 600 trials for a total of 9,000 runs for the first set.
(Note: results for a

R
 = 0.1, 1, 2, 3, 10, 100, 1000 were re-

ported in [Daida, Polito et al., 1999, 2000].)

The second set of experiments included optimized sets of R.
In these experiments, we narrowed the number of ERCs to
one or two specified values. In particular, we ran experiments
for R = {-1}, {1}, {0}, {-1, 1}. For R = {-1, 1}, we set the prob-
ability for choosing either -1and 1 as equally likely. In this set
of experiments, too, we also ran one control with no ERCs.
Five data sets were collected in all. Each data set also consisted
of 600 trials for a total of 3,000 runs.

Taken with the other experiments, there were 12,000 runs
total. All trials were run on Sun Ultra workstations.

3 RESULTS

Figure 1 illustrates how problem difficulty changes over the
range 0 <  a

R
  ≤ 1000. The x-axis denotes the value of the

tuning parameter a
R
. The y-axis denotes the percentage of the

total number of trials (i.e., 600) with a score that fell in either
perfect, the upper decile, or the upper quartile of the total
number of hits (i.e., at least 50, 45, 38 hits or better, respec-
tively). For example, upper-decile coordinates of (100, 5) means
that 5% out of 600 trials scored at least 45 hits for the tuning
parameter a

R
 =100. Note that there is a performance peak at

a
R
 =1 (also referred to as the Unity data set, or simply Unity)

and as a
R
 diverges from Unity, the performance drops rapidly.

Figures 2 and 3 summarize the results from the first set of
experiments (i.e., values of a

R
 that belong to the set {0.1, 0.2,

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 10, 100, 1000}). Fig-
ure 4 summarizes the results from the second set of experi-
ments (i.e., Control and ERC-specific experiments: R = {-1},
{1}, {0}, {-1, 1}). Each plot shows 600 points, with each point
corresponding to a best-of-trial individual. Rows are arranged
by data set.

For the second and third columns in Figures 2, 3 and 4, we
added a small amount of uniform random noise to both (x,
y) coordinates of each point. We did this for visualization
only. The quantities corresponding to node count, depth, and
generation are integer values—because of this, a single dot
could correspond to many data points. The noise was added
to displace points visually away from each other. That tech-
nique was not repeated for the first column, only because
adjusted fitness is a real-valued quantity.

The first column in Figures 2, 3 and 4 shows the effect of
tuning concerning node versus adjusted fitness. When a

R
  pro-



Figure 1 Hit Score v. a
R
. This log-log plot shows the relation-

ship between the tuning parameter a
R 
 and the hit score.

gressed from 0.1 to 1, a horizontal cloud of points  moved to
a vertical cluster, i.e., from lower to higher fitness. When a

R

progressed from 1 to 1000, the cluster of points shifted from
right to left, i.e. , from higher to lower fitness. In Figure 4, the
large solid vertical line indicates those best-of-trial individuals
that had perfect adjusted fitness score.

The second column in Figures 2, 3 and 4 shows the effect of
tuning concerning node count versus the generation in which
a best-of-trial individual was found. Generally, the earlier
an individual was identified in a trial, the smaller that indi-
vidual was and the less computational effort it took to evalu-
ate that individual. Note that for a

R
 ≠ 1 in Figures 2 and 3,

an increased density of points can be found to the right (i.e.,
at higher generation numbers). The exception was at a

R
 =

1,000 which shows none of these patterns. Figure 4 shows
that most of the best-of-trial individuals were discovered in
earlier generations.

The last column in Figures 2, 3, and 4 shows the effect of
ERC range concerning node count versus the depth of the
best-of-trial individuals. The lines indicate the upper and lower
limits for the numbers of nodes that can be present in a tree
for a certain depth. In general, the pattern of clusters appears
to move toward the right (i.e., greater depths), with the excep-
tion of a

R
 = 1000, R={0}, and Control, which appears to have

their best-of-trial individuals uniformly distributed over that
region. Remaining ERC-specific experiments indicate their
best-of-trial individuals are typically less deep.

Figure 5 has three separate plots that correlate the frequency
of trials greater than a given adjusted fitness score. Figure 5a
plots the results for a

R
 ≥ 1, and Figure 5b does the same for

values of a
R
 ≤ 1. Figure 5c plots the results for Control and

ERC-specific results.

Figure 6 shows a histogram of all 26 million ERC values in
Unity (i.e., 30,000 individuals at 500 individuals per popula-
tion snapshot per trial for 600 trials). Each population snap-
shot was taken when a best-of-trial individual was identified.

4 DISCUSSION

The following are seven phenomena that occurred in the course
of adjusting problem difficulty for the binomial-3 problem.

We describe some of the phenomena in terms of content and
context. For this paper, the term content refers to the informa-
tion contained in or pointed to by a node (i.e., a node points
to a particular element in either function or terminal sets).
The term context refers to an ordered and labelled subtree in
which a node is a member.

• Problem difficulty was driven by varying content and not
increased combinatorial search space

• Cumulative measures for adjusted fitness were bounded
by a

R
 = 1 (for the most part)

• Various attractors appeared during tuning (content- and
context-dependent behavior)

• Difficulty influenced the size of individuals, as well as the
generation in which a best-of-trial individual is identified
(for the most part)

• Specific shape trends persisted in spite of tuning: con-
tent- and context-free behavior

• Optimal ERC value was found in tuning, not in ERC
distributions

• Domains of distinct behavior occurred

Difficulty was Driven by Varying Content

Problem difficulty was driven by content and not by changes
in combinatorial search space. This was originally discussed in
[Daida, Polito 1999, 2000], which noted that the combinato-
rial search space for the binomial-3 problem is statistically in-
variant despite changing a

R
. This observation continued to

hold true for the extended range of tuning described in this
paper.

This type of tuning is particular to GP, inasmuch as the bino-
mial-3 problem does not share an antecedent in GA research.

Cumulative Measures of Adjusted Fitness were Bounded

Note that for the first part of the experiment, that the cumu-
lative adjusted fitness measures for a

R
 < 1 and a

R
 > 1  were

bounded by the curve for a
R
 = 1 (as shown in Figures 5a and

5b). Even curves with small deviations from a
R
 lay completely

within bounds described by the curve for a
R
 = 1. Generally, as

a
R
 diverges from 1, the culmulative distribution curves be-

came more distant from the curve for a
R
 = 1, further support-

ing a
R
 = 1 as the optimal parameter for the binomial-3 prob-

lem in the given tuning range. Note that there was a class of
exceptions (which is described later in this section).

Various Attractors Appeared During Tuning

Intuitively, we would expect the cluster of points to approach
the adjusted fitness score of 1, as GP applies selection pressure
for individuals to correctly solve the binomial-3 problem . (See
Column 1 of Figures 2, 3, and 4.) Surprisingly, other distinct
attractors emerged in our results, which was apparent among
the symmetric ERC ranges. For values of a

R
 that were close to

1, a cluster of points localized around an adjusted score of 0.8
and not 1.0. This localization was also evident in ERC-spe-
cific results. For each of them, a significant density of points
surrounded this apparent attractor. In some experiments, yet
another attractor was apparent at 0.2 for data sets whose val-
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Figure 2.
Best-of-Trial
Results. For
a

R 
= 0.1,

0.2,…, 0.8
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Figure 3. Best-of-Trial Results. For a
R 
= 0.1, 1, 2, 3, 10, 100, 1000
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Figure 4. Best-of-Trial Results. For Control, R
 
= {-1}, {1}, {0}, {-1, 1}
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ues of a
R
 are not proximal to 1 (i.e. a

R
 = 0.1, 0.2, 100, and

1000). This evidence would suggest that such behavior is in-
dicative of content acting negatively on GP performance.

We note that context- and content-dependent behavior was
anticipated in [O’Reilly and Oppacher 1995]. Context- and
content-dependent behavior are somewhat addressed in theory
concerning GAs and epistasis, but not to the degree that
O’Reilly and Oppacher suggested.

Difficulty Influenced Individual Size (for the most part)

Greater computational effort often indicates increased prob-
lem difficulty, which was evident as the size of a solution gen-
erally increased as the difficulty of the binomial-3 problem
increased. This behavior occurred for many results shown in
Figures 2 and 3 (Column 2), with the exception of a

R
 =1000.

In Figure 4, there was some consistency with higher genera-
tions producing larger individuals, but primarily we noted that
the opposite situation occurred. These experiments correspond-
ing to Figure 4 demonstrated convincingly that GP can be
treated as a simple problem with minimal computing time.
For R = {-1}, {+1}, and {-1, 1}, nearly all individuals were pro-
duced in the first several generations at relatively small sizes.
For Control and R={0}, the trends were not as well defined,
and so it can be argued that Control and R={0} increased prob-
lem difficulty when compared to other ERC-specific experi-
ments. However, they decreased problem difficulty when com-
pared to the lot of symmetric ERC ranges.

Specific Shape Trends Persisted in spite of Tuning

In the third column of Figures 2, 3, and 4, we note that GP
consistently produced a pattern that suggests upper and lower
bounds for plots of nodes v. depth. Although the distribution
of points within these bounds changed with respect to tuning,
the bounds themselves did not seem to change much. This
strongly suggests that these bounds were invariant to tuning,
which further implies that there were context- and content-
free mechanisms that limit individual size and shape. What
has been surprising has been the robustness of this shape with
respect to tuning.

Langdon, Soule et al. (1999) argued that simple random drift
accounts for behaviors like these. Their claim has merit, inas-
much as Flajolet and Oldyzko’s work (1982) on binary trees
(in general) appears to apply to their GP data.

If Langdon, Soule et al.’s (1999) assertion proves true, it would
mean that in spite of an expansive search space of combinato-
rial possibilities, there are theoretical limits of just how much
of that space can be explored for any problem using standard
GP. Given the relative positions of upper and lower bound-
aries, their assertion also carries the implication that just a frac-
tion of this space can be searched.

This type of growth is different from that assumed in GA
theory, since it would imply that random drift substantially
limits search to a fraction of the total number of possibly at-
tainable solutions.

Optimal Value Identified in Tuning, not in ERC Distribution

We note that the optimal tuning parameter (a
R
 = 1, and con-

sequently, the best ERC building block) was not apparent in
the ERC distributions (Figure 6, from [Daida, Polito 2000]),

but in the tuning curves for binomial-3 difficulty (Figure 1).
The purpose of visualizing the ERC distributions was to ob-
serve what frequency of ERC values existed among individu-
als at the end of a GP run. The local maximums at ±0.75 ran
counter to initial expectations of greater densities around the
optimal parameter values of ±1.0. It appeared that selection
for those ERC values was not as strong as anticipated; perhaps
other internal factors contributed to the distribution. How-
ever, when we observed how symmetric ERC ranges affected
GP performance, we note the following: clearly, as a

R
 diverged

from 1, the percent of individuals with perfect adjusted fit-
ness scores decreased dramatically. There was no evidence to
suggest any increase in performance for values of a

R
 >1000.

Therefore, a
R
 = 1 was likely the global maximum among sym-

metric ERC ranges, suggesting an optimal value for GP in this
tuning range.

We believe that for other symbolic regression problems, there
could exist other optimal tuning ranges or optimal sets of pa-
rameter values. We do not suggest that for all regression prob-
lems that the particulars of the phenomena that we have iden-
tified here would hold. For example, the ERC range of [-1, 1]
is suitable for the binomial-3 problem; it would probably be a
different range for a different problem. However, we do sug-
gest there is a correlation between optimal parameter values
and the roots of a regression problem, further indicating that
for distinct multiple roots, there may very well be multiple
maximums.

This is an unexpected result with respect to GA theory. GA
theory, particularly those concerned with schema theorems,
infers that selection would sift for best values and that these
best values would be retained via crossover. Consequently, ERC
frequency distribution curves should show the greatest fre-
quency counts for optimal ERC values. Instead they did not.
Rather, the optimal value of 1 showed up in the difficulty curves
as being the easiest a

R
.

Domains of Distinct Behavior Occurred

The symmetric ERC ranges and ERC-specific cases demon-
strated very distinct behaviors, suggesting two different strat-
egies that were being employed to solve for the binomial-3
problem (see also [Daida, et al. 2000]). The ERC-specific ex-
periments yielded smaller individuals at earlier generations,
whereas symmetric ERC ranges typically yielded larger indi-
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viduals at later generations. We also observe separate behav-
iors in Figure 5, as there were potentially different limiting
factors. If we were to transpose the results in Figure 5c on to
both 5a and 5c, we would find that the ERC-specific experi-
ments were clearly not bounded by the culmulative distribu-
tion curve corresponding to a

R
 = 1.

It was possible to further tune the difficulty of the binomial-3
problem by judiciously selecting the components of which GP
could use. The results shown in this paper suggest that just the
content of the terminal sets (which are particular to GP) are
likely of particular significance.

5 CONCLUSION

Is the assumption that GP phenomena is similar to that found
in GA a correct assumption? The phenomena discussed in this
paper suggested that although it is possible that this assump-
tion is correct, there were several significant behaviors that do
not have a clear antecedent in GA theory. For example, there
was evidence that suggests performance characteristics were
largely dependent on context and content. However, there was
equally substantial evidence that related behavioral patterns
to context- and content-free factors. Although we clearly dem-
onstrated how significant alterations in content can dramati-
cally impact GP performance, there were consistent and spe-
cific shape trends that constrained just how much of the search
space was considered. Apparently, at least two mechanisms in
GP exist in tension—a context and content-free mechanism,
as well as a context- and content-dependent mechanism.

We have noted that a practical implication of our work is that
it pays to optimize for the terminal (and function) set. The
gains were substantial, which suggests that optimizing the com-
ponents that GP would use is a crucial preparatory step.

Finally, we suggest that although GA and GP share many simi-
lar processes, the theory behind each may be quite different.
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