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Abstract—There is a large variety of products sold online and
the websites are in several languages. Hence, it is desirable to
train a model that can predict sentiments in different domains
simultaneously. Previous authors have used deep learning to
extract features from multiple domains. Here, each word is
represented by a vector that is determined using co-occurrence
data. Such a model requires that all sentences have the same
length resulting in low accuracy. To overcome this challenge,
we model the features in each sentence using a variable length
tree called a Genetic Program. The polarity of clauses can be
represented using mathematical operators such as ’+’ or ’-’ at
internal nodes in the tree. The proposed model is evaluated on
Amazon product reviews for different products and in different
languages. We are able to outperform the accuracy of baseline
multi-domain models in the range of 5–20%.

Index Terms—Genetic Programming, Sentiment Analysis

I. INTRODUCTION

In recent years, sentiment analysis has become increasingly
popular for processing social media data on online communi-
ties, blogs, wikis, microblogging platforms, and other online
collaborative media [1]. Sentiment analysis is a branch of
affective computing research that aims to mine opinions from
text (but sometimes also images [2] and videos [3]). Most of
the literature is on English language but recently an increasing
number of works are tackling the multilinguality issue [4],
especially in booming online languages such as Chinese [5]
and Spanish [6]. Besides traditional domains like marketing
and financial forecasting, sentiment analysis applications also
include many other areas like monitoring and detecting driver
impairment, testing user experience for video games, cyber-
issue detection, and helping medical professionals assess the
wellbeing of patients, etc.

Sentiment analysis techniques can be broadly categorized
into symbolic and sub-symbolic approaches: the former uses
lexicons [7] to encode the polarity associated with words and
multiword expressions; the latter consist of supervised [8],
semi-supervised [9] and unsupervised [10] machine learning
techniques that perform sentiment classification based on word
co-occurrence frequencies. Among these, the most popular
are algorithms based on deep neural networks [11], belief
networks [12], randomized networks [13], generative adver-
sarial networks [14], and capsule networks [15]. There are
also some hybrid frameworks that leverage both symbolic and
sub-symbolic approaches [16], [17].

While most works approach it as a simple categorization
problem, sentiment analysis is actually a complex research
problem that requires tackling many NLP tasks [18], including
subjectivity detection [19], aspect extraction [20], aspect target
sequence modeling [21], word polarity disambiguation [22],
time expression recognition [23], intensity measure [24], and
commonsense reasoning [25].

One of the main issues of sentiment analysis is that different
words are used to express different sentiments in different
domains, e.g., the word ‘fast’ is used to describe good elec-
tronics however it carries no polarity in book reviews [26],
[27]. Previous authors have tried to overcome challenges such
as out of vocabulary words using neural machine translation.
This method aims to maximize the conditional probability
of a parallel sentence pair (sen, sfr), where sen belongs to
the source language such as English and sfr belongs to the
target language such as French [27]. Such methods overlook
the potential of using monolingual data that is available
in abundance in a particular language. A few authors have
looked at monolingual training however they only focus on
decoding the results instead of improving the training of such
models [28].

Domain adaptation is where a model adapts to new products
or languages that were not seen during training but the task re-
mains the same. Recently, genetic programming (GP) was used
to extract domain independent features from images [29], [30].
GP aims to solve tasks by the natural evolution of computer
programs via mutation and crossovers [31]. Inspired by their
work, we use GP for domain adaptation of sentiment across
products and languages. To our knowledge, this is the first
time GP has been applied to multi-domain sentiment analysis.
Hence, we refer to the our model as Genetic Opinion Adap-
tation Learning (GOAL).

Most classifiers require that all sentences have an equal
number of features. A GP is able to model sentences of
variable lengths. Another limitation is that sentences from
different languages differ in the order of nouns and adjectives.
The task of GP is to order the phrases in correct grammatical
order using mathematical operators. Here, each leaf node in
the GP tree is the word vector representation for a single
word or a phrase in the sentence. The remaining internal
and root nodes are mathematical operators. Solving the GP
tree will provide the class label of the sentence. Pre-trained
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word vectors capture linguistic patterns. For example, the
following two operations are equivalent: (a) king – man (b)
queen – woman. Hence, the operators such as ‘+’ and ‘-’ are
meaningful in the word vector space.

In contrast to traditional GP where the input features are
words, in our model the input features are extracted from
sentences using deep learning [32]. The hidden neurons in
the first layer of a deep model, will learn n-gram features or
kernels from different languages. Hence, one kernel may learn
features in French and another will learn features in German.
The contrastive divergence (CD) approach will sample features
with high frequency into the upper layers, resulting in the
formation of complex phrases. The word vectors are syntac-
tically and semantically connected. Hence, the mathematical
operations such ‘+’ and ‘-’ can be translated into ‘positive’
and ‘negative’ sentiment in word vector space. Each feature
input into a GP classifier can be interpreted as a phrase of
two or three words in vector space. The corresponding tree
structure will be a good approximation of the underlying
grammar. Furthermore, in [33] the authors proposed multi-
task GP that can simultaneously perform sentiment detection,
identify names, disambiguate meanings of words and also
extract relations in a single model.

The remainder of the paper is organized as follows: Sec-
tion II illustrates related work; Section III describes CDBN;
Section IV introduces the proposed GOAL; next, Section V
validates the proposed method on two benchmark datasets;
finally, Section VI proposes concluding remarks.

II. RELATED WORK

Traditional models such as long short-term memory (LSTM)
truncate all sentences to the same length leading to loss of
information [34], [35]. Instead GP can evolve a population
of variable-length trees. Each tree can model sentences of
a specific length. The optimal tree will be able to model
sentences of different lengths using sub-trees. Similarly, the
order of phrases can be easily changed in a GP classifier
by simply changing a branch in the tree. The optimal tree
will then be able to model sentences of different languages
by assigning suitable weights to different branches using
mathematical operations.

Previously, [36] showed that GP can be used for text
classification. In their model, the leaf nodes were features
such as term frequency, max frequency term, information gain
weights for term etc. that do not generalize well to new
domains and languages. In this paper, instead, we consider
a semi-supervised convolutional deep belief network (CDBN)
to extract features from text. Deep learning is a type of semi-
supervised learning. Here the pre-training is unsupervised
Gibbs sampling and it is followed by supervised gradient de-
scent. The low-dimensional features learned are used to train a
GP classifier. We are also motivated by the work done in [29].
They showed that a model could adapt across images from
different domains using genetic operators [30]. Similarly, in
our paper we consider one-dimensional convolutional features
instead of two dimensional image features and the deep model

is simultaneously trained with product reviews in different
domains and languages.

Another model for multi-lingual sentiment analysis lever-
ages on machine translation [37]–[39] via parameter sharing
between two LSTMs. However, machine translation results in
loss of sentiment because it uses the lemma form of all words.
Our proposed model does not perform any translation and ev-
ery variant of a word has a distinct word vector representation.
Our approach to classify sentences into different intensities of
sentiment consists of two steps: (a) Learning features using
CDBN trained on data from multiple source domains; (b)
Constructing a GP algorithm based on the features learned
using CDBN.

Figure 1(a) illustrates the state space of a GP for a book
review. The convolutional features learned at different hid-
den neurons may belong to different languages. The word
vector representation of positive bi-grams such as ‘beautiful
drawings’ and the French translation ‘beaux dessins’ will be
similar. In this way, the neural network uses word vectors to
distinguish polarities and the GP is able to perform domain
adaptation across different domains and languages. In addition,
the mathematical functions linking words can capture the
context between words far apart in a sentence. Validation of the
proposed method is performed on three real-world benchmarks
taken from Amazon.com.

III. CONVOLUTIONAL DEEP BELIEF NETWORK

In this section, we begin with a description of the un-
supervised restricted Boltzmann machine (RBM) model. A
hierarchy of RBM’s where the hidden layer of one RBM serves
as the visible layer of the next RBM results in a CDBN.

Each sentence is transformed to a word vector representation
of dimension d × L where L is the length of the sentence
and d is the dimension of pre-trained vectors for each word.
The word vector input is used to train an RBM that is a
bipartite graph consisting of two layers of neurons: a visible
and a hidden layer; where the connections among neurons
in the same layer are not allowed. To learn such weights
and maximize the global energy function E, the approximate
maximum likelihood CD approach can be used. This method
employs each training sample to initialize the visible layer.
Next, it uses the Gibbs sampling algorithm to update the
hidden layer and then reconstruct the visible layer consec-
utively, until convergence. As an example, here we use a
logistic regression model to learn the binary hidden and visible
neurons.

The continuous state ĥj of the hidden neuron j, with bias
bj , is a weighted sum over all continuous visible nodes v and
is given by:

ĥj = bj +
∑
i

viwij , (1)

where wij is the connection weight to hidden neuron j from
visible node vi. The binary state hj of the hidden neuron can
be defined by a sigmoid activation function:

hj =
1

1 + e−ĥj

, (2)



Fig. 1: Sub-tree crossover operator in GP for a book review. Negative reviews are in blue. The sub-tree crossover works by
selecting two elite parent solutions/trees (a and b) and randomly selecting an internal node in each of the parent trees (purple
dashed arrows). Crossover results in two new children (c)

Similarly, in the next iteration, the binary state of each visible
node vi is reconstructed.

Lastly, the weights wij are updated as the difference be-
tween the original and reconstructed visible layer labeled as
the vector vrecon, using:

4wij = α(< vihj >data − < vihj >recon), (3)

where α is the learning rate and < vihj > is the expected
frequency with which visible unit i and hidden unit j are active
together when the visible vectors are sampled from the training
set and the hidden units are determined by ( 1).

A hierarchy of RBM layers results in a deep belief network
(DBN). In such a model, the lower layers learn abstract
concepts and the higher layers learn complex features for sen-
tences. To train such a multi-layer system, we must compute
the gradient of the total energy function with respect to the
weights in all the layers.

To extend the DBN to a CDBN, we simply partition the
hidden layer into Z groups. Each of the Z groups is associated
with a nx × ny filter where nx is the width of the kernel
and ny is the height of the kernel. Let us assume that the
input has dimension Lx × Ly. Then the convolution will
result in a hidden layer of Z groups each of dimension
(Lx − nx + 1)× (Ly − ny + 1). These learned kernel weights
are shared among all hidden units in a particular group. The
energy function of layer l is now a sum over the energy of
individual blocks given by:

El = −
Z∑

z=1

(Lx−nx+1),(Ly−ny+1)∑
i,j

(4)

nx,ny∑
r,s

vi+r−1,j+s−1h
z
ijw

l
rs.

For the case of sentences, we consider a one-dimensional
convolution hence we set the height of the kernel ny equal

to the input word vector length d. Figure 2 illustrates the
state diagram for the proposed deep genetic program. The
training data is collectively trained using source language
(English) and target language (French) samples. Frequently
occurring subjectivity clues such as ‘poorly’ and ‘dejantee’
(see Figure 2) are used to select a sub-set (about 20%) of
significant product reviews to pre-train the deep model. In
order to model the underlying parse tree structure of the
sentence, the features are used to train a GP classifier.

IV. DEEP GENETIC PROGRAMMING

In this section, we introduce the GP model for classifying
sentences. Next, we describe our proposed GOAL framework
for evolving the neurons of a CDBN using GP.

A. Genetic Programming for Sentences

GP evolves a population of potential models, each structured
in a tree-like fashion, with mathematical functions linking
input nodes and constants. The probability of a given model
surviving into the next generation depends on its classification
accuracy on the training set. Fitness proportional selection,
combined with these genetic operators such as crossover and
mutation produces a new generation of offspring solutions.

Figure 1 describes the crossover operator during GP. The
role of crossover is to take two promising solutions and
combine their information to give rise to a new offspring,
with the goal that the offspring have better performance than
the parents. The sub-tree crossover works by selecting two
elite parent solutions/trees (a and b) and randomly selecting
an internal node in each of the parent trees (purple dashed
arrows). This results in two offspring’s that are created by
interchanging the sub-trees below the identified nodes in the
parent solutions. For example, in Figure 1 (c) the GP will try
to use positive operators such as ‘+’ or ‘*’ for ‘Great Book’
and negative operators such ‘-’ or ‘%’ for ‘Poorly Written’.
This is because the vector representation for each review in the
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Fig. 2: State diagram for the proposed GOAL. The training data is collectively trained using source language (English) and
target language (French) samples. In order to model the underlying parse tree structure of the sentence, the features are used
to train a GP classifier.

test set is used to compute the GP tree, if the value computed
is less than 0.5 then the review is predicted as negative and if
it is greater than 0.5 then the review is positive.

Algorithm 1 describes a simple steady state GP classifier
for sentences. Here, a GP algorithm in the form of a tree
is used for classification where leaf nodes are words in
a sentence and all other nodes are functions such as the
set F = {+,−, ∗, /, sin, cos, exp,<,>, sqrt, cube}. Here /
denotes protected division that returns 1 if the denominator is
0. We first initialize a large population of GP’s randomly. We
start with a root p and np children for the root. Next, for each
child we randomly generate a new sub-tree until the maximum
number of nodes is reached. The next generation is reproduced
through the crossover operation. Here, we selectively rank all
the GP based on training error. Next, two elite parent GP’s are
selected, and we randomly replace a sub-tree in one parent
GP with a sub-tree from the second parent GP resulting in
two new children GP for the next generation. This process of

evolution continues until convergence when the accuracy of
elite GP in each generation does not improve any further. The
elite program in the last generation is used to determine the
class label of test sentences.

A GP classifier for sentences would have leaf nodes equal
to the sentence length. In this paper, however, we train the GP
on concepts and hence fewer nodes are needed. A GP can get
stuck in local optimum solution if the population similarity in
each generation is low (<0.6%). Hence, we keep the maximum
number of nodes to 20, so that the similarity between trees is
high and it can easily converge to the global optimum solution.
Irrespective of the number of input features, each GP tree
will have 20 nodes and discard the remaining features. It is
interesting to note that each feature learned by deep learning is
a phrase of two or more words. The length of phrases increases
with each layer of deep learning. Hence, we see that 20 nodes
are sufficient to represent even long sentences.



Algorithm 1 GP classification

1: Input 1 : Training and test data (xij)n×T for n neurons
and T sentences

2: Input 2 : Corresponding class labels (ny)1×T ∈
{P+, P, 0, N,N+}

3: Output 1 : GP classifier
4: Output 2 : Class labels of Test Sentences
5: % Initialize a population of random GP’s
6: Initialize GP root p and children p.children with length
np

7: repeat
8: p.children[k]← randomly generated subtree
9: until k < np

10: % Crossover Operations to generate new population
11: repeat
12: Select Two Elite GP p1 and p2 based on Accuracy
13: Select subtree1 = p1.children[1 : k1] for any k1
14: Select subtree2 = p2.children[k1 + 1 : np]
15: Merge subtree1 and subtree2 resulting in two new

children
16: l = l + 2
17: until convergence
18: Each test sample is classified using predicted GP
19: Accuracy : % of correctly classified test samples

B. Evolving CDBN using Genetic Programming

We first construct a minimal CDBN with visible layer of
L×d nodes, where L is length of the sentence and d is the word
vector length; there are several hidden convolution layers of k-
gram neurons, then there is a penultimate hidden logistic layer
of nh neurons and the last layer is output neurons each class
ny ∈ {P+, P, 0, N,N+} where ‘P+’ is strongly positive,
‘O’ is neutral and ‘N+’ is strongly negative review.

The nh features expressed at the hidden neurons after
training form the new input data of T samples. Next, we build
a GP classifier over the hidden neurons. Each test sample
is then used to generate an embedding of dimension nh
features from CDBN and then classified by computing the
GP. Figure 2 provides the flowchart of the deep GP classifier.
CDBN assumes that each input word is represented as a d
dimensional vector. Each grey circle, is a single feature in the
vector. In this paper, we used pre-trained word vectors. For two
consecutive training samples s(t) and s(t+ 1) reconstruction
error is used to update the weights.

To determine the number of hidden layers in the CDBN, we
compute the change in error 4ε on the validation samples.
This is the root mean square error between input training
sample and reconstructed sample at each visible node. If there
is a significant change in the error 4ε, a new hidden layer
is added. The contrastive divergence approach will sample
features with high frequency into the upper layers resulting
in the formation of n-grams at hidden neurons in the first
layer, bigger phrases at hidden neurons in the second hidden
layer and so on.

V. EXPERIMENTS

In this section, the proposed GOAL (available on GitHub1)
was applied to three real world sentiment classification prob-
lems in order to assess its efficacy. All three datasets consist
of review text and rating labels (1-5). A rating of 1 is strongly
negative, 2 is weakly negative, 4 is weakly positive, and 5 is
strongly positive. The reviews with rating label 3 are removed
as they are deemed as ambiguous and hence are indecisive
about a product. In order to have a fair comparison for
each benchmark dataset, we have reported results by previous
authors on the same dataset.

A. Parameter Setting

We used pre-trained word vectors for different languages
(provided by Facebook2). Following previous authors, the
word vector length was empirically set to 300, and unknown
words were randomly initialized to vectors from Gaussian
distributions. In each iteration an individual undergoes either
crossover (with probability 0.8) or mutation (with probability
0.19) or is selected as elite (with probability 0.01) and passed
to the next generation. There is a population of 2000 GP’s
in each generation where the maximum tree size for each
GP is 20 nodes [40]. Training stops when the mean square
error (MSE) of the elite GP in a generation is less than 0.02.
Our best results are obtained with an ensemble of GOAL 10-
fold cross-validations that differ in their random initialization
and mini-batches of 100 samples. Lastly, for the CDBN to
determine the number of hidden layers and the number of
neurons in each layer we consider the validation error on
training data. The training was done using stochastic gradient
descent in an unsupervised manner. We found a model with
four layers and 50 neurons in each layer optimal. The width
of the kernels was progressively increased from 3 to 7 words
in the higher layers.

B. Multi-domain Sentiment Dataset

In this section, we verify the effectiveness of GOAL in clas-
sifying sentences using the multi-domain sentiment analysis
dataset [41]. Following previous authors, we first report the
results on the binary problem of classifying reviews as positive
(4 or 5) and negative (1 or 2). The four domains consist of
‘Books’ (B), ‘DVD’ (D), ‘Electronics’ (E), and ‘Kitchen’ (K)
reviews, where each domain contains 2000 reviews. Hence, as
an illustration training data in the form of 1000 positive and
1000 negative reviews were taken.

1) Unique Source Domain - Binary Labels: We construct
12 cross-domain tasks of sentiment classification on this
dataset. Here, 2000 reviews in one domain are the training
data and 2000 reviews in a different domain are the test data.
Table I shows the comparison for different methods. In all
tasks, the training set is from one unique source (S) domain
and the test set is from another target domain. For example,
when ’Books’ (B) is the target domain then ’Dvd’ (D) is the

1http://github.com/senticnet/genetic-programming-for-domain-adaptation
2http://github.com/facebookresearch/fastText/blob/master/

pretrained-vectors.md
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source domain. We can see that by only using a CDBN we get
a very low accuracy (<60%). Lastly we see that by training a
GP using the features learned by CDBN (GOAL) the accuracy
improves by over 10%.

The proposed GOAL outperforms Transfer Deep Network
(TDN) by over 5% and R3 [28] by over 20%. In TDN [42],
the authors considered two parallel deep auto-encoders to
learn transferable features and classification features. However
they do not use convolutional neural networks, hence they are
unable to capture the context of words. In R3 [28], the authors
proposed three rules that must be satisfied for cross-domain
classification. They considered handcrafted features, instead in
our method we automatically learn cross-domain features.

TABLE I: Accuracy of the 12 English tasks with binary labels.
In all tasks, the training set is from one unique source domain
and the test set is from another domain. For example, when
’Books’ (B) is the target domain then ’Dvd’ (D) is the source
(S) domain.

Target S TDN R3 CDBN GOAL

Books
D 86.5 70.0 52.2 89.5
E 83.3 62.0 51.5 90.2
K 82.5 66.0 54.8 90.2

Dvd
B 86.2 72.0 53.1 92.2
E 83.2 68.0 51.3 91.0
K 83.2 70.0 53.8 89.5

Electronics
B 85.1 70.0 52.2 91.7
D 86.2 70.0 52.0 89.5
K 87.8 74.0 54.1 91.7

Kitchen
B 87.9 72.0 52.9 87.7
D 88.1 73.0 51.6 89.7
E 90.0 80.0 51.8 91.0

2) Multiple Source Domains - Binary Labels: Next, we
considered the problem of polarity detection in the target
domain ‘Books’ when the model is trained on the source
data from the other three domains. To evaluate cross-domain
transfer we follow the experiment defined in [43]. Here, 2000
samples are taken from each of the three source domains and
the model is tested on the 2000 samples in the target domain.
The 2000 samples in each source domain are divided equally
among the 4 ratings.

TABLE II: Classification accuracy by different models in the
multi-domain Amazon dataset. In all tasks, the training set is
from three domains and the test set is from the fourth domain.

Target PDM GOAL
Books 71 86.9
Dvd 71 88.9
Electronics 76 89.6
Kitchen 75 89.9

3) Visualization of features: Our experiment also show
that the classification performance seems to benefit from
adaptation between semantically close domains such as
‘Books→Dvd(92.2%)’, however the performance is less when
the source and the target domains are dissimilar such as
‘Books→Kitchen(87.7%)’. Lastly, Table III illustrates the
predicted mathematical expressions for four hidden neurons
on the Books review dataset. The terminal nodes A1:A8

correspond to n-gram features learned by CDBN. We also
visualized some positive and negative 4-grams in the first
layer of CDBN. Positive bi-grams are ‘trademark humor’ and
‘communicating wisdom’. An example of a negative bi-gram
learned is ‘peculiar biblical’.

C. Cross-Language Sentiment Dataset

In this section, we verify the portability of GOAL for classi-
fying sentences across other languages. In particular, we used
a cross-language sentiment analysis dataset available in [44].
Similar to the previous experiment, there are three domains
(namely, ‘Books’, ‘Music’ and ‘DVD’) and four languages
(English, French, German and Japanese). We tokenized the
Japanese sentences in order to split phrases into individual
words (available on GitHub3).

We construct 18 cross-domain cross-language tasks of senti-
ment classification on this dataset. Following previous authors,
we first report the results on classifying reviews as positive (4
or 5) and negative (1 or 2). Here a balanced dataset of 2000
reviews (1000 positive and 1000 negative) in one domain and
in English language are the training data and 2000 reviews in
a different domain and in a different language is the test data.
In addition, we consider an unbalanced set of 20,000 reviews
(unequal number of positive and negative reviews) in the target
domain as training data. This makes it difficult for the classifier
to learn both positive and negative features in the target domain
simultaneously. Domain adaptation from the source domain is
then needed to learn the features accurately. Table V shows the
comparison for different methods. The proposed GOAL out-
performs the baseline distributional correspondence function
(DCF) [26] by over 10%. In DCF, the authors represent terms
in vectorial space based on their distributional correspondence
with respect to a fixed set of terms. Hence, their method
relies on human effort for selecting suitable ‘bilingual pivots’.
Instead in our model can automatically learn a dictionary of
features that is portable across languages.

TABLE III: Predicted Mathematical Expression for Book re-
views. The terminal set corresponds to 4-gram features learned
by CDBN

GP
Books→Dvd exp(

√
(A4))

Books→Electronics exp((A5−A2))
Books→Kitchen γ((

√
(A2) ∗ (exp(A2))

+ve

A1 trademark humor sideways religion
A2 wordy numerous metaphors make
A3 exercises communicating wisdom effective
A4 preacher meditate ability respond

-ve

A5 peculiar biblical misinterpretations editors
A6 witches almanac elizabeth pepper
A7 man battles fray sword
A8 necessarily machines today review

Next, we consider the problem of polarity detection in
the target language when the model is trained on product
reviews in other languages. Here we consider 600 product
reviews each from Books, DVD, and Electronics, resulting

3http://github.com/gpeterson2/Japanese-Tokenizer

http://github.com/gpeterson2/Japanese-Tokenizer


in 1800 training reviews in each language. Similarly, the
test data is 1800 reviews from the target domain. It can
be seen in Table IV that the proposed GOAL outperforms
the accuracy of baselines by 5–10%. For the case of the
cross-language sentiment dataset, almost 10% improvement is
observed over Distribution Matching based Matrix Completion
(DMMC) [27]. This is because they consider active learning
to include human annotation into the prediction. Their model
is not practical for diverse languages such as English and
Japanese. On the other hand, GOAL is able to automatically
learn features from different languages simultaneously.

We also observed a 5% improvement over hybrid heteroge-
neous transfer learning (HHTL) [45], where the authors have
introduced a new bias matrix to improve heterogeneous trans-
fer from English to other languages in a deep auto-encoder
framework. Auto-encoders try to reconstruct the inputs and
hence are not scalable to a large number of layers. English
performs slightly lower on the binary task compared to other
languages. This is because word vectors in other languages are
accurate due to small training samples. It can also be seen that
by using convolution we are able to outperform baselines by
a big margin in Japanese, for example, DCF shows 72.1%
accuracy for ’English Music’→’Japanese Books’, however
GOAL shows 89%.

TABLE IV: Classification accuracy by different models in the
cross-language Amazon dataset. In all tasks, the training set
is from three domains and three languages and the target test
set is from the three domains in the fourth language.

Target DMMC HHTL GOAL
English - - 83.7
French 72 82.5 89.7
German 75 82.7 93.6
Japanese 68 75.5 90.1

TABLE V: Accuracy of the 18 cross-domain and cross-
language tasks with binary labels. In all tasks, the training
set is from one unique source domain and in English and
the test set is from another domain and another language.
For example, when ’English Music’ is the source domain and
’Japanese Books’ is the target domain.

Target Language Source→Target DCF GOAL

German

English Dvd→Books 82.4 89.0
English Music→Books 81.2 90.0
English Books→Dvd 82.7 89.0
English Music→Dvd 83.4 90
English Books→Music 84.3 89
English Dvd→Music 81.6 90

Japanese

English Dvd→Books 76.1 90.0
English Music→Books 72.1 89.0
English Books→Dvd 80.5 90.0
English Music→Dvd 79.0 90.0
English Books→Music 83.1 90
English Dvd→Music 81.6 90

French

English Dvd→Books 84.8 89.0
English Music→Books 84.5 90.0
English Books→Dvd 82.3 89.0
English Music→Dvd 84.1 90
English Books→Music 84.3 89
English Dvd→Music 84.7 90

D. Semeval 2017 Arabic dataset

In this section, we verify the portability of GOAL for clas-
sifying short tweets across languages. In particular, we used
the SemEval 2017 Task 4 dataset [46]. This dataset contains
tweets in ‘English’ and ‘Arabic’. Arabic is written right to left,
hence we reversed the sentences before processing. Following
previous authors, we report the results on classifying reviews
as positive (4 or 5) and negative (1 or 2). The dataset contains
20,510 English tweets and 1,656 Arabic tweets. We used
all the English and 80% of the Arabic tweets to train the
classifier and the remaining 20% of Arabic tweets as the test
dataset. Table VI shows that our method outperforms baseline
NileTMRG [46] and ELiRF-UPV [47] by over 8%. This is
because both baselines use a traditional convolutional neural
network that is unable to model the variable length features
in sentences.

TABLE VI: Accuracy of cross-language twitter task with
binary labels. The training data is in English and the test data
is in Arabic

NileTMRG [46] ELiRF-UPV [47] GOAL
77 73 85

VI. CONCLUSION

In this paper, we have proposed a sentiment classifier
that can be trained in one domain or language and may be
used to classify sentences in a new domain or language.
This is achieved using deep convolutional belief networks
to automatically extract n-grams from product reviews. The
deep model is trained on one or more source languages with
abundant data and tested on the target language that has few
training samples.

Next, in order to mimic variable length sentences structures,
we use a previously proposed GP classifier to evolve the
features extracted using CDBN. We show that our model
is able to accurately classify positive, negative and neutral
reviews in languages such as French and Japanese. Our
simulation and experimental study show that the proposed
method outperforms baseline approaches in terms of prediction
accuracy by over 5–20%. Last but not least, the mathematical
functions linking words in GP provide valuable clues towards
polarity of the sentence and capture the context between words
that are far apart in a sentence. One limitation of the proposed
model is that the variance is high during heuristic search. We
can also target the domain adaptation problem using a multi-
task evolutionary framework in the future.
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