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Abstract: - In response to the governmental policy of saving energy sources and reducing CO2, and carry out 
the resident quality of local; this paper proposes a new method for a non-intrusive load-monitoring (NILM) 
system in smart home to implement the load identification of electric equipments and establish the electric 
demand management. Non-intrusive load-monitoring techniques were often based on power signatures in the 
past, these techniques are necessary to be improved for the results of reliability and accuracy of recognition. By 
using neural network (NN) in combination with genetic programming (GP) and turn-on transient energy 
analysis, this study attempts to identify load demands and improve recognition accuracy of non-intrusive load-
monitoring results. The turn-on transient energy signature can improve the efficiency of load identification and 
computational time under multiple operations. 
 
 
Key-Words: - load identification, artificial neural networks, non-intrusive load monitoring, turn-on transient 
energy analysis, smart home. 
 
1 Introduction 
Smart home provides an integrated service in 
intelligent residences for health care, human life, 
residence safety and environment of leisure in a 
community; for examples, security service, 
monitoring and management system service, 
logistics service, medical care service, distance e-
learning service, leisure service, e-commerce service, 
and etc. The quality of human life is gradually 
emphasized by peoples; the demands of resident 
services for user’s own need are increasing. The 
smart home is an emphasis on quality of residence. 
The peoples can enjoy the professional and 
considerate resident services, medical care with 
comfortable, carefree residence space and happiness 
environments in the smart home by using innovative 
techniques. 

Smart home applies some information 
technologies of computer, communication and 
consuming electronic products to arrange the 
demands of electrical equipment and design the 
space of residence by managing lamplights, air-
conditions and energy sources for the management 
of entrance guard, health care, saving energy and 
reducing CO2, and comfortable life. Intelligent life 
of residence includes digital home, energy source of 
residence, and health care of residence. Digital 
home is an application of entertainment and learning. 

Energy source of residence is an objective of saving 
energy and reducing CO2 of residence using some 
new techniques. Health care of residence is medical 
cares of members of home using some information 
technologies, especially for health and safety care 
for hidden elderly. 

The years of mining for petroleum, natural gas 
and coal are estimated to be 40, 62 and 272 years 
respectively for the whole world [1]. The energy 
demands of worldwide quickly increase from the 
view of energy consumption for 1999 to 2020. The 
energy consumption growth of petroleum is 2.2% 
every year. The demand of nature gas is from 23% 
to 28% for all energy demands of worldwide [2]. 
The petroleum and nature gas are main energy 
sources for all peoples of worldwide and they will 
be not too much for use after the middle of the 
twenty-first century. The energy crisis will approach 
for all peoples of world. 

In Taiwan, the developments of economics 
highly depend on energy sources of import. The 
generating costs of coal-fired unit, oil-fired unit and 
gas combined-cycle unit in 2001 are more than 30%, 
44% and 22% in 1999 respectively. The generating 
costs continually increase in Taiwan, and then unit 
prices of electric power are also raised. In energy 
demands, the amount of residence is increasing 
5.93% every year from the view of amount of 
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residence; the demands of electric power are 
increasing 11.43% every year from the view of 
power demands for home. The energy demands of 
home are 0.555% of energy demands of all in 
Taiwan [3]. The energy demands of home are 
increasing obviously from analysis of energy 
demands for the amount of residence and electric 
power demands. 

The methods of saving energy play an important 
role of reducing costs for the users of high electric 
power demands. The policy of environmental 
protection is set positively into action by the 
government for different country for the problems 
of warm for the whole world. In contrast to the 
difficulty of exploitation of energy sources, the 
sustainable energy sources exploitation, saving 
energy and reducing CO2 and protection of 
environment of earth can be still executed by 
efficient energy management policies. 

In 1990, the real time operating system nucleus 
house (TRON House) was built by Japanese 
computer residence research association. The TRON 
House is a typical smart home. The TRON House 
can control automatically various sensors and 
drivers to sense actively the temperature and 
humidity for inside and outside from home, and 
control automatically the windows and various 
electric appliances through different terminal. 

From 2004, some information, communication 
and monitoring technologies are applied in buildings 
by American National Science Council after 
executing intelligent construction development 
project to speed the market trend of smart home. In 
Europe, the demands of health care are increasing 
because elderly populations are increased. The 
intelligent health care services are developed by 
using information and communication technologies. 
For instance, the wearable micro device is 
developed in the CAALYX program in 2008 to 
detect user’s condition for anytime. 

In Korea, Smart Home Vision 2007 program was 
executed from 2003. This program will promote 
60% for smart home by investing 2,000 billion 
dollars during four years to make the output value of 
intelligent residences for 14,000 billion dollars. In 
Taiwan, the Center of Innovation and Synergy for 
Intelligent Home Technology (INSIGHT Center) 
was built by National Science Council to actively 
develop the innovative application of intelligent 
home and promote intelligent home market. In 
intelligent sustainable management, there are some 

products include solar energy tracking controllers, 
the tracer of battery maximum power, energy 
conservation insulated board, excellent ventilation 
system and energy conservation and management 
system, etc. 

Currently, the trend of intelligent home is 
springing up all over the world. Smart home creates 
tremendous business. The output value of intelligent 
home in whole world and Taiwan will meet 256 
billion US dollars and 333.1 billion NT dollars up to 
2015, respectively. The markets of home safety and 
heath care are the biggest among applications of 
intelligent home. According to the report from 
institute of information industry, the output value of 
monitoring market will be 4.23 US dollars and 14 
billion NT dollars in 2011 for worldwide and in 
2012 for Taiwan, respectively. 

Traditional energy-monitoring instrumentation 
systems employ meters for each load to be 
monitored because they tend to be comprehensive, 
systematic, and convenient. These meters may incur 
significant time and costs to install and maintain. 
Furthermore, increasing numbers of meters may 
influence system reliability. Some research also 
indicate that the utility of energy-monitoring 
systems have been questioned by energy-monitoring 
system practitioners, and future studies of energy-
monitoring systems will focus on more significant 
issues, such as strategies for minimizing the number 
of instruments using non-intrusive load-monitoring 
(NILM) system [4]-[6]. Figure 1 shows the NILM 
system in smart home used to monitor voltage and 
current waveforms in an electrical service entry 
powering loads representative of different important 
load classes. The results of monitoring are used to 
analyze and identify the ON/OFF status of loads and 
then to estimate the electric power demands of 
different loads from time of use, and power. The 
NILM system is worth to be researched because it 
can not easily install but reduce the costs of system. 

In feature extraction, this paper applies genetic 
program (GP) to search the best solutions for the 
optimum of feature input vectors of load pattern 
recognition system using the operation of 
reproduction, crossover and mutation. The results of 
analysis for NILM system can identify various loads 
of home and to know the condition of use for loads 
including of the electric power demands, names or 
items, time of use and overloaded capacities of 
loads, etc. Figure 2 shows the flowchart for NILM 
in smart home. 
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Fig. 1 Non-intrusive load-monitoring system in smart home 
 

 
 

Fig. 2 The flowchart of Non-intrusive load-monitoring system 
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2 Review of Related Studies 
Due to the importance and difference of recognition 
accuracy of power signatures, several previous 
studies have addressed the load identification of 
power signatures in NILM. Hart [7] proposed a load 
identification method that examined the steady-state 
behavior of loads. Hart conceptualized a finite state 
machine to represent a single appliance in which 
power consumption varied discretely with each step 
change. The method performs well. However, it has 
the limitations of the method. For example, small 
appliances and appliances, which are always on or 
non-discrete changes in power, should not be chosen 
as targets for the method [4], [7]. Robertson [8] 
employed a wavelet transformation technique to 
classify several unknown transient behaviors for 
load identification. This technique, however, is 
expensive for the detection of transients. In addition, 
the detection of transient behavior can be obscured 
by the simultaneous transient of other loads [9]. 
Cole [9], [10] examined a data extraction method 
and a steady-state load identification algorithm for 
NILM. The algorithm developed by Cole can be 
employed for load switching between individual 
appliances when one or more appliances are 
switched on or off. This algorithm, however, 
requires an extended period of time to accumulate 
real power (P) and reactive power (Q) for sample 
data. In addition, any appliance power consumption 
that does not change cannot be recognized [10]. 

Recently, several papers have proposed new 
power signature analysis algorithms [11]-[15], load 
identification methods [16]-[19], and feature 
selection approaches [20]-[22] to recognize loads 
and to solve classification problems. For the load 
identification methods, many papers have been 
published to improve the performance of 
recognition using artificial neural networks for the 
NILM system. For example, Roos et al. [5] 
proposed a detailed analysis of steady-state 
appliance signatures to recognize industrial 
electrical loads. This method, however, requires 
complicated computations for accurate data of 
power signatures. In addition, Srinivasan et al. [19] 
proposed a neural-network-based approach to 
identify non-intrusive harmonic source. The method 
performs well. However, it does not incorporate the 
various operational modes of each load and 
operation under different voltage sources. In a 
practical power system, there exist many harmonics. 
How harmonics affect the results of the proposed 
method has been demonstrated by authors in [23]. 
However, harmonic content is very small for 
constant linear loads [13], especially for commercial 
buildings and residences. Therefore, another feature 

besides harmonics is necessary for power systems, 
commercial buildings and residences. 

To solve the disadvantages for the previously 
published research, a new method for load 
identification of the NILM system in smart home is 
proposed in this paper. This method uses the turn-on 
transient energy (UT) analysis and artificial neural 
networks to improve the recognition accuracy and to 
reduce computational requirements. The proposed 
improvement technique is unrelated to operational 
mode of loads, operation under different voltage 
sources, and power consumption change. The 
proposed method can be applied for commercial 
loads and industrial loads. Moreover, the proposed 
method can be applied for different loads with the 
same real power and reactive power. Experimental 
results show that the proposed method for the NILM 
system in smart home allows efficient recognition of 
commercial or industrial loads as well as 
improvement of computational requirements. 
Moreover, the turn-on transient energy signature can 
be used to distinguish different loads with the same 
real power and reactive power. 

 
 

3 Data Preparation 
Figure 1 schematically illustrates the overall scheme 
in the NILM system of smart home. One-phase 
electricity powers the loads, which are 
representative of important load classes in a 
residential building. A dedicated computer 
connected to the circuit breaker panel controls the 
operation of each load. The local computer can also 
be programmed to stimulate various end-use 
scenarios. The work presented in this paper is load 
recognition using neural networks and the 
employment of features to estimate the energy 
consumption of major loads.  
 
 
3.1 Data Acquisition 
The main parameters to be acquired are the voltage 
and current of aggregated loads. To compile data for 
training purposes, either every load of interest or a 
representative sample of the loads should be 
monitored. Taking 256 samples of each cycle is 
sufficient and hence the sampling frequency is 
approximately 15 kHz. 
 
3.2 Data Preprocessing 
Neural network training can be made more efficient 
if certain preprocessing steps are performed on the 
network inputs. Before training, it is often useful to 
scale the inputs and targets so that they always fall 
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within a specified range. The approach for scaling 
network inputs and targets is to normalize the mean 
and standard deviation of the training set, 
normalizing the inputs and targets so that they will 
have zero mean and unity standard deviation. After 
the network has been trained, these vectors should 
be used to transform any future inputs that are 
applied to the network. These can be computed by 

stdp/)meanpP(Pn −=  (1) 
and 
  (2) stdt/)meantt(t n −=
where the matrices P and t are respectively the 
original network inputs and targets, the matrices Pn 
and tn  represent respectively the normalized inputs 
and targets. The vectors meanp and stdp contain the 
mean and standard deviations of the original inputs, 
and the vectors meant and stdt contain the means 
and standard deviations of the original targets. 
 
 
4 Power Signature Problems and 
Turn-on Transient Energy Algorithms 
 
 
4.1 Problems of Power Signatures 
In multiple operations, a class shows that any 
configuration can be one or many loads. In other 
words, a class may be a combination of more than 
one load. In general, an appliance may have many 
load representations and a load may involve many 
physical components. For example, a dryer has two 
loads, a motor and a heater. A refrigerator has only 
one load, a compressor, but has different physical 
components for refrigerating and freezing. 

Most appliances are distinguishable by unique 
power signatures that can be observed from voltage 
and current waveforms supplied to the appliance, or 
from processed reproductions of these signals such 
as the delivered real power and reactive power or 
harmonics [5]. According to the switch continuity 
principle, steady-state signatures, for example, real 
power and reactive power, are additive when two 
signatures occur simultaneously. In contrast to 
steady-state properties, transient properties are not 
additive [4]. Distinguishing different loads may be 
problematic when they have equivalent real power 
and reactive power but no harmonic components, 
and/or when the sums of real power and reactive 
power of two load types are equal to that of another 
load during multiple load operations. Therefore, 
classifications are more complicated, especially 
when identifying different loads with the same real 
power and reactive power. 
 

4.2 Turn-on Transient Energy Algorithms 
The transient properties of a typical electrical load 
are mainly determined by the physical task that the 
load performs [24, 25]. Transient energy may 
assume different forms in consumer appliances, 
depending on the generating mechanism [7]. 
Estimating current waveform envelopes at the utility 
service entry of a building, for example, allows 
accurate transient event detection in the NILM [24]. 
Load classes performing physically different tasks 
are therefore distinguishable by their transient 
behavior [24, 25]. Since the envelopes of turn-on 
transient instantaneous power are closely linked to 
unique physical quantities, they can serve as reliable 
metrics for load identification. Two different 
appliances consuming identical levels of real power 
and reactive power may have very different turn-on 
transient currents. Analysis of these transient 
currents can accurately determine which of the two 
is actually present in the load. 

In general, the transient behavior of many 
important loads is sufficiently distinct to identify 
load type. The long characteristic switching-on 
transient, the less substantial switching-on transient, 
the short but very high-amplitude switching-on 
transient, and the long two-step switching-on 
transient are the principal values measured in pump-
operated appliances, motor-driven appliances, 
electronically fed appliances, and fluorescent 
lighting, respectively [26]. 

However, the transient is the dominant state 
directly after load inception. Figure 3 plots the turn-
on real-power transient of each load for an NILM 
system at the entry of an electrical service.  In Figs. 
3(a) and 3(b), these loads are respectively a 119-W 
dehumidifier and a 590-W vacuum cleaner. The 
turn-on real-power transients differ from each other 
because the motor is started and operated using 
different methods. In Fig. 3(c), this load is an oven 
of an R-L linear load with real power and reactive 
power equivalent to that of a 590-W vacuum cleaner. 
The real-power transient is quickly increased and 
then back to the normal rated power. 

The one-phase turn-on transient energy is 
determined as follows. 

 
)1()()( −−= kvkvkV  (3) 
2/))1()(()( −+= kikikI  (4) 

∑
=

==
K

k
transientT kIkVUU

0
,1 )()(φ

 (5) 

where )(kV  is derivative of transient voltage for 
sample k; )(kI  is average transient current for 
sample k; is voltage sampled for sample k; )k(v
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)k(v 1−  is voltage sampled for sample k-1;  is 

current sampled for sample k;  is current 
sampled for sample k-1; K is number of samples, 
k=1, 2, …K. 

)k(i
)k(i 1−

where  are derivatives of 
transient voltage in phases a, b, and c for sample k; 

are the average value of 
transient current in phases a, b, and c for sample k. 

)(),(),( kVkVkV cba

)(),(),( kIkIkI cba

The three-phase turn-on transient energy is 
computed as follows: 
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Fig. 3 Turn-on real-power transient for a NILM system, (a) a 119-W dehumidifier; (b) a 590-W vacuum cleaner; 
(c) an oven of an R-L linear load with real power and reactive power equivalent to that of a 590-W vacuum 
cleaner.
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5 Load Identification by Artificial 
Neural Network 
Pattern classifiers partition multidimensional space 
into decision regions indicating to which class any 
input belongs [27]. Many classification techniques 
have been developed for load identification. The 
non-parametric and learning-supervised classifier is 
adopted for electrical patterns of commercial or 
industrial appliances because the distribution of 
these patterns is quite complicated without any 
formulation, and the larger loads can be easily and 
clearly labeled. 

Most back-propagation (BP) neural network 
applications employ single- or multi-layer 
perceptron networks using gradient-descent training 
techniques, with learning by back propagation. 
These multi-layer perceptrons can be trained with 
supervision using analytical functions to activate 
network nodes (“neurons”) and by applying a 
backward error-propagation algorithm to update 
interconnecting weights and thresholds until proper 
recognition capability is attained. In the present 
study, the back-propagation classifier is generally 
used as a trainable classifier. “Classification” in this 
context denotes a mapping from a feature space to 
the set of class labels – the names of commercial or 
industrial load combinations. 
 
 
5.1 Recognition Accuracy, Speed, and 
Memory Comparison with different 
Classifier 
In this section we perform a number of benchmark 
comparisons of the various classifiers; for examples, 
back-propagation, probabilistic neural network 
(PNN), and learning vector quantization (LVQ). 
Probabilistic neural networks are a radial basis 
function network (RBF) suitable for classification 
problems. When an input is presented, the first layer 
computes distances from the input vector to the 
training input vectors, and produces a vector whose 
elements indicate how close the input is to a training 
input. The second layer sums these contributions for 
each class of inputs to produce as its net output a 
vector of probabilities. Finally, a competitive 
transfer function of the output of the second layer 
picks the maximum of these probabilities, and 
produces a 1 for that class and a 0 for the other 
classes [24]. Learning vector quantization is a 
method for training competitive layers in a 
supervised manner. A competitive layer 
automatically learns to classify input vectors. 
However, the classes that the competitive layer finds 
are dependent only on the distance between input 

vectors. If two input vectors are very similar, the 
competitive layer probably will put them in the 
same class [25]. 

The following table, Table 1, lists data of power 
signatures, some characteristics of the networks, and 
training processes for three different classifiers. 
Table 2 summarizes the results of recognition 
accuracy and computation time for the example of a 
MILM system in the previous section. In each case, 
the network is trained until the mean square error is 
less than 0.0001. The fastest classifier for this 
problem is the probabilistic neural networks. It is 
over fifteen times and four times faster than the next 
fastest classifier BP for training and testing, 
respectively. However, the back-propagation neural 
network demonstrates higher recognition accuracy 
than the probabilistic neural networks. In addition, 
the number of weights and biases in the BP network 
is less than the PNN network (23 versus. 358). The 
BP classifier is suited for this type of problem. 

 
5.2 Training Algorithms and Performance 
Index Function 
The faster algorithms fall into two main categories 
for the back-propagation neural network [28]. The 
first category uses heuristic techniques, which were 
developed from an analysis of the performance of 
the standard steepest descent algorithm. One 
heuristic modification is the momentum technique. 
There are two more heuristic techniques; for 
example, variable learning rate back-propagation 
(GDX) and resilient back-propagation (RP). 

The second category of fast algorithms uses 
standard numerical optimization techniques. There 
are three types of numerical optimization techniques 
for neural network training. The first is the 
conjugate gradient technique; Scaled Conjugate 
Gradient algorithm (SCG) and Powell –Beale 
Restarts algorithm (CGB), the second is the quasi-
Newton technique; BFGS algorithm (BFG) and 
One-Step Secant algorithm (OSS), and the third 
technique is the Reduced Memory Levenberg-
Marquardt algorithm (LM). 

The typical performance index function that is 
used for training feed forward neural networks is the 
mean sum of squares of the network errors also 
called mean square error (MSE). It is the average 
squared error between the network outputs and the 
target outputs. 

∑∑
==

−===
N

i

N

i

iait
N

ie
N
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1

2
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2 ))()(((1)(1  (7) 

where the variable N is the number of training 
samples, the variable t is the target output, and 
variable a is the network output. 
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It is very difficult to know which training 
algorithm will be the fastest for a given problem. 
This depends on several factors, including the 
complexity of the problem, the number of data 
points in the training set, the number of weights and 
biases in the network, the error goal, and whether 
the network is being used for pattern recognition or 
function approximation. A number of benchmark 
comparisons of the various training algorithms were 
discussed [28]. Figure 4 shows the comparison of 
convergence speed of different training algorithms 
for the example of a MILM system in the previous 
section. A 1-4-3 network, with a tan-sigmoid 
transfer function in the hidden layer and a linear 
transfer function in the output layer, is used to 
identify loads of the NILM system. In each case, the 
network is trained until the mean square error is less 
than 0.0001. This is demonstrated in the figure 4, 
which plots the mean square error versus epochs 
(repetitions) for several representative algorithms. 
Typically, one epoch of training is defined as a 
single presentation of all input vectors to the 
network. The network is then updated according to 
the results of all those presentations. Here the error 
in the Levenberg-Marquardt algorithm decreases 
much more rapidly with epoch than the other 
algorithms shown. 

The Levenberg-Marquardt algorithm is able to drive 
the mean square error to a lower level than the other 
algorithms. The fastest initial convergence 
algorithm for this problem is the Levenberg-
Marquardt algorithm, although the BFGS quasi-
Newton algorithm is as fast. 

0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

Epochs

M
   

 S
   

 E

LM
BFG

GDXRP

CGB OSS
SCG

 
 
Fig. 4 Convergence speed comparison for the 
different training algorithms 

Table 1. List of different classifiers for Artificial Neural Networks 
Classifier Power 

signature 
Network 
structure 

Error goal Maximum 
epoch 

BP UT 1-4-3 0.0001 1000 

PNN UT 1-39-7 -- -- 

LVQ UT 1-14-7 0.0001 1000 

 
Table 2. Recognition accuracy, speed, and memory comparison for different 
classifiers 
Classifier Power 

signature 
Function Recognition accuracy 

(%) 
Time (Seconds) 

Training 100 4.16 BP UT

Test 100 0.45 

Training 100 0.27 
PNN UT

Test 92.1 0.11 

Training 87.18 91.4 
LVQ UT

Test 86.8 0.17 
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6 Turn-on Transient Energy 
Repeatability 
Most loads observed in the field have repeatable 
transient profiles or at least repeatable sections of 
transient profiles [12]. The load survey reveals that 
non-linearity in the constitutive relationships of the 
elements comprising a load model and/or in the state 
equation describing a load tends to produce 
interesting and repeatable observable turn-on 
transient profiles suitable for use in identifying 
specific load classes [29, 30]. Because of the 
varying transients (which often depend on the exact 
point in the voltage cycle at which the switch opens 
or closes), data sets for load identification must 
provide accurate repeatability of the turn-on 
transient energy signatures. 

As Figures 5 and 6 demonstrate, the turn-on 
transient profiles exhibit repeatable measured 
current waveforms in one phase at voltage phase 0° 
and 90° for the turn-on transient of a three-phase 
300-hp induction motor. The turn-on characteristic 
of a load clearly increases in complexity over time. 
Closer investigation of the load turn-on is thus 

 required before the characteristics can be used as a 
distinguishing feature of a load. This information, 
collected via non-intrusive monitoring, can be used 
to answer important questions using the statistical 
validity of power measurements. 

Determination of whether or not turn-on transient 
energy content is repeatable would be useful in 
developing a turn-on transient energy signature. As 
Eq. 8 shows, the average value of the sample data 
( ) for the turn-on transient energy of each load 
is

ix
x . The standard deviation (S) of the turn-on 

transient energy for each load is computed 
according to Eq. 9 for all loads monitored in 
isolation. An experiment is then used to demonstrate 
that the statistical validity of the turn-on transient 
energy for each load is repeatable in terms of the 
coefficient of variation (C.V.) according to Eq. 10. 

∑
=

=
n

i
ix

n
x

1

1 , (8) 

where the variable  is the sample data for the 
turn-on transient energy of each load, and the 
variable  is the number of sample. 

ix

n

 

△t

 
Fig. 5 Current waveform at voltage phase 0° for the turn-on transient 

 
 

 
 

Fig. 6 Current waveform at voltage phase 90° for the turn-on transient 

△t
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and 

C . V . S
x

= . (10) 

where the variable x is the average value of the 
sample data, and the variable S is the standard 
deviation of the turn-on transient energy for each 
load. 
 
 
7 Experimental Results 
 
 
7.1 Case Study Environment 
Each entry in the table represents 10 different trials, 
where different random initial weights are used in 
each trial. In each case, the network is trained until 
the mean square error is less than 0.0001 or the 
maximum of epoch is 3000. 

Experimental datasets were generated by 
preprocessing the data on the voltage and current 
waveform of the total load. Each final sample 
consists of 4,608 data samples obtained over a 
period of 0.3s. Each example of the power feature 
includes a voltage variation from − 5% to +5% at 
1% intervals, yielding eleven examples of power 
feature for each scenario and  raw data 
for  scenarios given N loads in a power 
system network. To confirm the inferential power of 
the neural networks, the raw data examples are 
categorized into  learning and test 
datasets, respectively. The full input dataset 
comprises a  matrix as both 
the training dataset and the test dataset. Notably, the 
learning data and test data are selected randomly 
from all data. A neural network simulation program 
was designed using MATLAB. The program was 
run to identify load on an IBM PC with an Intel 
1.5GHz Pentium M CPU. 

11)12( ×−N

12 −N

2/)11)12(( ×−N

4608)11)12(( ××−N

 
7.2 Case Study Results 
 
7.2.1 Case Study 1: EMTP Simulation 
In case study 1, the NILM system monitors voltage 
and current waveforms in a one-phase electrical 
service entry powering a collection of loads 
representative of the major load classes in a 
commercial building. The neural network algorithm 
in the NILM system identifies three loads with 
transient signatures operating on a 220-V common 
bus. These loads include a 2.6-hp induction motor, a 
4.7-hp induction motor, and an R-L linear load with 

real power and reactive power equivalent to that of a 
4.7-hp induction motor. 

Table 3 shows that values for the training and 
test recognition accuracy of load identification in 
multiple operations are all 100% for feature with the 
turn-on transient energy (UT). However, the training 
and test recognition accuracy of load identification 
in multiple operations are only 58.97% and 39.47%, 
respectively, for features with real power and 
reactive power (PQ). Those loads cannot be 
identified by real power and reactive power features 
because the second load and the third load are 
different loads with the same real power and 
reactive power, as are combinations of the first and 
second loads and combinations of the first and third 
loads. In other words, test recognition for those 
loads in multiple operations is quite low when using 
only real power and reactive power features. 

 
7.2.2 Case Study 2: Experiment 
In case study 2, the NILM system is used to monitor 
voltage and current waveforms in a one-phase 
electrical service entry powering representative 
loads in the laboratory. The neural network 
algorithm in the NILM system identifies three actual 
loads with transient signatures on a 110-V common 
bus. These loads include a 119-W dehumidifier, a 
590-W vacuum cleaner, and an R-L linear load with 
real power and reactive power equivalent to that of a 
590-W vacuum cleaner. 

Table 4 shows that values for the training and 
test recognition accuracy of load identification in 
multiple operations are also all 100% for feature 
with the turn-on transient energy (UT). However, the 
accuracy of training and test recognition of load 
identification in multiple operations are only 
51.28% and 39.47%, respectively, for features with 
real power and reactive power (PQ). The test 
recognition for those loads in multiple operations is 
also quite low when using only real power and 
reactive power features. The reason is the same as 
that for the previous section. In other words, the 
presence of different loads with the same real power 
and reactive power can be confirmed in two ways. 
First, test recognition in multiple operations is quite 
low when only using features of real power and 
reactive power. Second, the turn-on transient energy 
for the features can improve load identification, 
especially for different loads with the same real 
power and reactive power. 
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8 Conclusions 
The results of analysis for NILM system can 
identify various loads of home and to know the 
condition of use for loads including of the electric 
power demands, names or items, time of use and 
overloaded capacities of loads, etc. The users of 
home can be reminded to save energy by these 
results. Besides, some related policies of saving 
energy, reducing CO2, health and safety care for 
hidden elderly and the efficiency of electric 
appliances can be established and planed by these 
results of smart home. 

Based on experimental results and EMTP 
simulation of NILM, the transient power signature 

for load identification in NILM can be applied 
extensively to any case for smart home. ANN and 
turn-on transient energy analysis are useful tools for 
improving load recognition accuracy and reducing 
computation time in a NILM system for smart home. 

Table 3. The results of load identification in case study 1 
Features 
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PQ UT 
Number of 

training 
Number of 

test 
Training Test Training Test 

1 5 6 5 5 5 6 
2 6 5 2 0 6 5 
3 6 5 3 0 6 5 

1+2 5 6 1 0 5 6 
1+3 5 6 0 0 5 6 
2+3 6 5 6 5 6 5 

1+2+3 6 5 6 5 6 5 
Number of features 39 38 39 38 39 38 
Recognizable number  23 15 39 38 
Recognition accuracy (%)  58.97 39.47 100 100 
Time (Sec.)  29.5704 0.4938 4.6862 0.4937 
Number of epochs  3000 458.6 
Number of neurons for layers  2-5-3 1-4-3 

 
Table 4. The results of load identification in case study 2 

Features PQ UT 
Number of 

training
Number of 

test 
Training Test Training Test 

1 5 6 5 5 5 6 
2 6 5 1 0 6 5 
3 6 5 1 0 6 5 

1+2 5 6 1 0 5 6 
1+3 5 6 0 0 5 6 
2+3 6 5 6 5 6 5 

1+2+3 6 5 6 5 6 5 
Number of features 39 38 39 38 39 38 
Recognizable number  20 15 39 38 
Recognition accuracy (%)  51.28 39.47 100 100 
Time (Sec.)  29.1968 0.483 1.5345 0.4782
Number of epochs  3000 68.5 
Number of neurons for layers  2-5-3 1-4-3 
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