Using Differential Evolution for Symbolic Regression and
Numerical Constant Creation

Brian M. Cerny
Department of Computer
Science

Chicago, IL 60607 USA
bcerny@cs.uic.edu

ABSTRACT

One problem that has plagued Genetic Programming (GP)
and its derivatives is numerical constant creation. Given
a mathematical formula expressed as a tree structure, the
leaf nodes are either variables or constants. Such constants
are usually unknown in Symbolic Regression (SR) problems,
and GP, as well as many of its derivatives, lack the ability to
precisely approximate these values. This is due to the inher-
ently discrete encoding of GP-like methods which are more
suited to combinatorial searches than real-valued optimiza-
tion tasks. Previously, several attempts have been made
to resolve this issue, and the dominant solutions have been
to either embed a real-valued local optimizer or to develop
additional numerically oriented operators. In this paper,
an entirely new approach is proposed for constant creation.
Through the adoption of a robust, real-valued optimization
algorithm known as Differential Evolution (DE), constants
and GP-like programs will be simultaneously evolved in such
a way that the values of the leaf nodes will be approximated
as the tree structure is itself changing. Experimental results
from several SR benchmarks are presented and analyzed.
The results demonstrate the feasibility of the proposed algo-
rithm and suggest that exotic or computationally expensive
methods are not necessary for successful constant creation.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis

General Terms
Algorithms

Keywords

Differential Evolution, Constant Creation, Genetic Program-
ming, Genetic Algorithms, Prefix Gene Expression Program-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

Peter C. Nelson
Department of Computer
Science
University of lllinois at Chicago University of lllinois at Chicago
Chicago, IL 60607 USA
nelson@uic.edu

1195

Chi Zhou
Physical & Digital Realization
Research Center
Motorola Inc.
Schaumburg, IL 60196 USA

chi.zhou@motorola.com

ming, Symbolic Regression, Neutral Mutations, Redundant
Representation, Optimization, Combinatorial Search

1. INTRODUCTION

Given a set of numerical inputs and outputs, one fre-
quently wants to find a mathematical formula which ade-
quately models the provided data. The term given to this
task is Symbolic Regression (SR) and a widely used method
to discover such expressions is the paradigm of Evolution-
ary Algorithms (EAs). A tree structure is generally utilized
to evaluate the performance or quality of an expression and
the nodes of the tree represent functions, variables, and con-
stants. As SR has become increasingly popular, the need to
model more complex functions has naturally occurred and in
addition to synthesizing an expression, numerical constants
must be approximated as well. A novel method which was
developed just for SR with numerical constants is introduced
and evaluated in this paper using Prefix Gene Ezxpression
Programming (PGEP) and Differential Evolution (DE). Al-
though the PGEP notation is used to represent the mathe-
matical formulas, the method is generally applicable to other
Genetic Programming (GP) paradigms. That is, as long as
a well-defined method exists to convert a linear encoding to
a valid tree structure, this new method is easily adapted.

Originally proposed by Xin Li [1], Prefiz Gene Expression
Programming (PGEP) is an adaptation of the Gene Ezpres-
ston Programming (GEP) algorithm invented by Céandida
Ferreira [2]. GEP is also an extension of two more traditional
Evolutionary Algorithms (EAs) which are Genetic Program-
ming (GP) [3] and Genetic Algorithms (GAs) [4]. Unlike its
ancestors, GEP and thus PGEP as well, do not suffer from a
constrained search space. That is, GAs and GP do not have
separate genotypes (genetic makeup) and phenotypes (body
and behavior). In the case of GAs, binary or real-valued
linear representations of a fixed-length are standard where
GP uses tree structures composed of discrete symbols. GP
is then more suited to handle dynamic or not so well-defined
problems where GAs lend themselves to problems of a more
static nature, e.g., parameter optimization. GEP combines
the desirable aspects of both GAs and GP by adopting a
fixed-length, linear genotype and a tree based phenotype.
This has the effect of separating the genotype search space
from the phenotype solution space. In addition, this per-
mits GEP to utilize the more efficient linear operators of
GAs instead of the tree based operations required by GP.

Unfortunately, one consequence of separating the geno-
type from the phenotype requires that the hierarchy and

proximity of genes be maintained, otherwise crossover op-
erations will be more harmful than helpful. The major dif-
ference between PGEP and GEP, is that PGEP exploits an
encoding which is more resistant to the destructive forces of
linear crossover operations. The preservation of good struc-
tural encodings yields better performance as convergence is
increased and good building blocks are more likely to be ex-
changed as a whole. Yet in light of these advantages, the
discrete encoding of PGEP is not well suited to accommo-
date unknown numerical terms. In other words, given the
essential components or minimalistic building blocks which
can include numbers, PGEP is unable to synthesize mathe-
matical expressions which require the approximation of nu-
merical constants to a high precision.

In this paper, a new type of genotype for PGEP is pro-
posed. This new genotype maintains the linear and fixed-
length aspects of the original PGEP, and replaces the orig-
inal symbolic representation with a real-valued one. But
with this new encoding comes the need for an alternative
approach to drive the combinatorial search of PGEP. A ro-
bust and powerful real-valued optimizer called Differential
Evolution (DE) which was also inspired by GAs is recruited.
PGEP expressions are then evolved by interpreting real-
valued parameters as discrete integer values which are in
turn converted to PGEP program components. Numerical
constants exist in the same representation, are stored after
the encoded PGEP expression, extracted when needed, and
then incorporated into the expression.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces all related work which includes PGEP, DE,
and existing constant creation techniques. Section 3 then
presents the combined Differential Evolution-Prefiz Gene
Ezxpression Programming (DE-PGEP) algorithm in detail.
The set of benchmark problems used to evaluate DE-PGEP
is described in Section 4.1. The experimental results are
presented in Section 4.2, an analysis of DE-PGEP appears
in Section 4.3, and example solutions are presented and cri-
tiqued in Section 4.4. Section 5 summarizes the research
and gives a brief overview of the direction of future work.

2. RELATED WORK

2.1 Prefix Gene Expression Programming

Recently devised, Prefic Gene Ezpression Programming
(PGEP) is an Evolutionary Algorithm (EA) which although
extremely simple in structure and function, provides for an
efficient yet powerful approach to the evolution of computer
programs. Applied to areas such as symbolic regression [1],
text summarization [5], and classification rule mining [6],
PGEP has consistently outperformed both traditional ma-
chine learning techniques and other existing EAs. Borrow-
ing the fixed-length linear encoding scheme from Genetic
Algorithms (GAs) and adopting the ramified non-linear tree
structures of Genetic Programming (GP), PGEP has suc-
cessfully separated the genotype from the phenotype through
a static ontological process. This precise translation from
the linear genotype (chromosome) to a hierarchical realiza-
tion of the phenotype (expression tree), permits PGEP to
maintain the advantages of an easily modifiable and uncon-
strained autonomous genome, while reaping the benefits of
adaptable structures that allow for sophisticated behavior
[7].

An example of a linear PGEP chromosome with a fixed-

1196

(a) Expression tree

—*xasqrt bx 579 4+cd— 014 - 361 bd
(b) Linear chromosome

av/b
579 (c+ d)
(c) Encoded expression

Figure 1: An example of linear PGEP chromosome,
the corresponding expression tree, and the encoded
mathematical expression

length of sixteen can be seen in Figure 1(b) and the encoded
mathematical expression is shown in Figure 1(c). A chromo-
some is composed of uniquely indexed elements called genes,
each of which belongs to the gene set G. In the case of Figure
1 where @ denotes the square root and -+ represents division,
G = {+, —, %, +,sqrt, a, b, ¢,d,0.14,3.61,5.79}. Typically G
can be divided into two disjoint subsets, which in the case of
Figure 1 are the terminal set T' = {a,b,¢,d,0.14,3.61,5.79}
and the function set F = {+, —, %, +,sqrt}. As just demon-
strated, T usually consists of the input variables (attributes)
and selected constants, where F' contains all the functions
(operators) with an arity greater than or equal to one.

By adopting a prefix notation encoding scheme, PGEP al-
lows for the seamless and unambiguous translation from the
chromosome to the expression tree [1]. The chromosome in
Figure 1(b) may then be converted to the expression tree in
Figure 1(a) by iterating over genes of the chromosome and
filling out the expression tree in a depth-first fashion. Dur-
ing this translation process, the expression tree continually
grows by branching out according to the arity of the encoun-
tered genes. Thus when any terminal gene is encountered,
the appropriate branch of the expression tree naturally ter-
minates, and trees of various sizes, shapes, and complexities
are produced. It can also be seen in Figure 1 that the en-
coded expression naturally terminates within the provided
bounds. This is the preferred behavior which only results in
“junk” or superfluous genes that are ultimately harmless and
thus ignored. On the other hand, a branch of the expression
tree may also terminate prematurely. Situations such as this
can be easily avoided by first subjecting a chromosome to
an arity check. Any illegal chromosomes may then be either
repaired, discarded, or penalized. To obtain a more thor-
ough understanding of the original PGEP algorithm, the
interested reader may wish to consult [1].

2.2 Differential Evolution

Differential Evolution (DE) is an example of a global,
derivative-free optimization algorithm that combines a multi-
point based search with a generate-and-test paradigm [8].

Similar to other EAs, DE adopts a generational approach
and maintains a constant sized population of solutions en-
coded as fixed-length, real-valued vectors. Exploration of
the search space is conducted by means of innovative trial
vectors which are the result of perturbations and combina-
tions of other vectors. One noteworthy advantage of the DE
algorithm is that the step-size is dynamic in nature [8]. That
is, the magnitude of movements throughout the search space
are free to increase or decrease automatically. In fact, since
the step-size is determined with respect to a small subset of
the population, it is not abnormal for the step-size to vary
between generations or even during a single generation. This
greatly decreases the likelihood that the DE algorithm will
get stuck in a local optimum as it has the ability to escape
when necessary. Adopting the original notation and termi-
nology from [8], the classic version of DE is now introduced
in more detail.

At any given generation g, the Np sized population Py 4
is defined according to Equation 1 where i denotes the i*®
vector X; 4 of Py 4, j denotes the j*® parameter x;; 4 of X4,

and D is the number of parameters in x; 4.
Px,g (Xi,g),g:(),...,gmaz,i:O,...,Np—1 (1)
Xig = (Tji9),j=0,...,D—1 (2)

When g = 0, the initial population Px o is randomly initial-
ized according to Equation 3 where b, 1, and b; iy respectively
represent the initial lower and upper bounds of z;; 0, and
rand; (0, 1) returns a uniformly distributed random number
from [0, 1).

Zj,i,0 = randj (07 1) (bij —

bj,L) +bjL (3)

For g > 0, an intermediate population P, 4 is generated by
the differential mutation operator defined in Equation 4.

(4)

In Equation 4, x,0,4 is known as the base vector where x,1 4
and Xx,2,4 are called the difference vectors. The indices of
these vectors are randomly selected such that i # r0 #
rl # r2 as this prevents degenerate vector combinations,
ie., xi4 # vi,g. Commonly referred to as the scaling factor,
F € (0,14) “amplifies” or “dampens” the perturbation by
dynamically adjusting the step-size. After mutation, a trial
population Py 4 is produced using the uniform crossover op-
erator defined in Equation 5.

Ujig = {

This operation combines x; 4 with v; 4 to yield u; 4 by us-
ing the crossover probability Cr € [0, 1] to approximate the
fraction of parameters that u;,4 inherits from v;,4 [8]. Sim-
ilar in purpose to the mutually exclusive indices in differen-
tial mutation, jrana forces innovation by guaranteeing that
Wi,y # Xi 4. Finally, DE utilizes the local, greedy, and re-
productionless selection strategy described in Equation 6.

Xig+1 = { if f(ui,g) S f(xi,g)7

otherwise.
Here, f is the objective function and the optimization task is
to find a vector x* such that f(x*) = 0.0, i.e., the goal is to
find a global optimum x* which minimizes f(x*). Although
less strict, it is often more convenient to establish an error
threshold € where any x* which satisfies f(x*) < e is also

Vig = Xr0,g + F (Xr1,9 — Xr2,g)

if randj (O7 1) S Cr or _7 = jrand7
otherwise.

Vj,i,g
Ljyig

(5)

Ui,g
Xi,g

(6)

1197

optimal. An optimization task is then considered a success
when x* is found or a failure if gmaz is achieved.

2.3 Constant Creation

Probably one of the most widely used applications of GP
and its extensions like PGEP has been to that of Symbolic
Regression (SR). Given a training set consisting of several
input(s) and the corresponding output, the goal is to con-
struct a symbolic expression for an unknown mathematical
function which adequately models the training data. PGEP
attempts to solve such problems by automatically synthe-
sizing a computer program using an evolutionary inspired
approach, e.g., survival of fittest and natural selection. Orig-
inally identified by Koza [3] as a weakness of GP, the inabil-
ity to discover good numerical constants has in the past pre-
vented GP from being successfully applied to more complex,
real-world SR problems. To demonstrate, recall the trivial
example in Figure 1. Unless it was known that 5.79 was
needed, PGEP would also have to evolve an approximate
value of the constant.

The first attempt to deal with the problem of constant
creation was appropriately presented in [3]. Named the em-
phermal random constant and denoted by R, this new ter-
minal was used to introduce a pool of randomly generated
constants into the initial population. By making many con-
stants available to the evolutionary process, new constants
can be assembled with traditional arithmetic operators and
exchanged between chromosomes. That is, the values of con-
stants are not explicitly manipulated, and instead, multiple
constants are combined. Thus, as the evolutionary process
progresses, better constants are expected to be emerge while
the less useful constants will likely vanish. Other more so-
phisticated proposals have followed and most of these meth-
ods can be organized into three general categories.

2.3.1 Embedded Optimizers

The first category employs a second optimization algo-
rithm which is embedded inside the GP-like environment for
a localized search. This approach then uses the optimization
algorithm of choice to “tweak” the values of the constants.
Probably the most relevant literature to this work is [9].
There, DE was shown to significantly improve the perfor-
mance of Gene Ezpression Programming (GEP) on two SR
problems with real-valued constants. An additional gene
called the Random Number Generator (RNG) was included
in the terminal set and independent instances of this gene
were introduced into a GEP population, both initially and
via mutation. For each chromosome in the GEP population,
a separate DE population was initialized with the constants
in the chromosome as a seed. The DE algorithm was then
invoked for a fixed number of generations in order to improve
the chromosome. As anticipated, the number of times the
RNG gene appeared in a chromosome would vary, and this
quantity conveniently defined the dimensions of the corre-
sponding DE vectors. Although the basic idea is the same,
it will be seen later on that the method proposed in this
paper drastically differs in the details.

A very similar technique is described in [10], but instead
of DE, a bit-based GA was used. Unlike the previous work,
only SR problems with integer coefficients were considered.
Other embeddable alternatives include: a gradient based
search [11], a moving least squares algorithm [12], and a
simulated annealing inspired algorithm [13]. To some de-

gree, these types of searches seem restrictive as the opti-
mization of constants occurs within the context of a single
chromosome. Such techniques may produce deceptive solu-
tions, i.e., the constants are optimal but the structure and
makeup of the chromosome are not. This appears to stand in
stark contrast to the improvisational search that evolution-
ary algorithms are so well known for. There is also reason
for concern as none of the previous authors have demon-
strated how well the solutions generalize on a testing set.
Finally, assuming that these methods are applied at every
generation and to all chromosomes in a population, they
can quickly become rather computationally expensive. But
to be fair, [9] and [10] explored various levels of interleaving
and [9] also presented the best and worst solutions.

2.3.2 Special Operators

The collection of research belonging to the second cat-
egory primarily focuses on numerically oriented operators.
In [7], each chromosome in a GEP population was given its
own fixed-length array of real-valued constants and the con-
stants are inserted into an expression tree via indices, i.e., a
single gene ¢; in T for the i*" associated constant. In order
to introduce some variation into the constants, a numerical
mutation operator was devised. Complementing this new
operator, transposition and recombination operators were
also developed to respectively “shuffle” constants about the
chromosome and “circulate” constants throughout the popu-
lation. Assuming that small improvements in the fitness are
caused by minor changes in the constants, [14] introduced
two different types of mutation, uniform and creep. Adopt-
ing a global table of sorted constants, indices into this table
were then allowed to be mutated instead of the actual con-
stants. Similar to the work in [14], Li et al [15] proposed
greedy, elitist, and temporal extensions to one of or both
mutation operators.

2.3.3 Unconventional Methods

Much of the remaining attention given to the area of con-
stant creation has focused on methods which are best de-
scribed as unconventional. For example, a novel digit con-
catenation approach driven by Grammatical Evolution (GE)
was evaluated in [16]. As opposed to some of the other
methods reviewed, the digit concatenation approach pro-
motes incremental improvements while still permitting the
quick generation of numerically distant constants. It also
has the advantage of being extremely easy to integrate into
the GE algorithm. Preferring to avoid the noise introduced
by non-optimal numerical constants, Keijzer [17] took a con-
siderably different approach and focused on estimating the
general shape of a function. This was accomplished by a
Linear Scaling (LS) technique which performs a linear re-
gression on the output of the evolved program with respect
to the training set. Unfortunately, this last method does not
appear to be universally applicable as a linear relationship
is assumed.

3. DE-PGEP

The original motivation behind the development of the
PGEP algorithm was to combat the disruptive nature of
crossover [1], i.e., crossover has the tendency to destroy good
building blocks. PGEP mitigated the affects of this phe-
nomenon by a adopting a prefix notation encoding scheme
which preserves both the hierarchy and proximity of genes

1198

in the expression tree. This simple, but fundamental im-
provement was significant as GEP almost exclusively relied
on linear crossover operations which exchange contiguous
segments of genetic material between chromosomes [7].

In this paper, the continuous linear crossover operations in
PGEP are replaced with a purely mutation based approach.
The mechanism by which programs will be automatically
synthesized is DE and this will also conveniently allow for
the creation of numerical constants. This proposed method
is not exotic, does not introduce any specialized operators,
and does not incur the overhead of an embedded optimizer.
While the user is still required to specify an arbitrary num-
ber of constants, a simple suggestion is given to estimate
this quantity.

Many researchers have investigated the feasibility of DE
for problems that are discrete or combinatorial in nature
[8], but there is only one known piece of work that explores
DE as a means to synthesize symbolically encoded computer
programs. Mainly, [18] recruited DE to drive a Grammati-
cal Evolution (GE) algorithm which was accordingly named
Grammatical Differential Evolution (GDE). Here, a similar
approach is adopted, but various aspects differ. Moreover,
GDE failed to utilize the inherent numerical representation
of DE for the purposes of constant creation.

Any continuous DE vector x; 4 can be easily and consis-
tently mapped to a discrete vector w; 4. This is accom-
plished by the simple formula appearing in Equation 7.

(7)

The search is constrained by a repair operation and thus
it can be safely assumed that Equation 7 always yields a
valid index. A trial vector u; 4 is repaired by the formula
in Equation 8 where |G| denotes the number of genes in G,
|uj,i,g] is the floor of uj; 4, and % is the common residue.

ujig = (ugi6l] %IG)) + (ugigl — Lluzagll) (8)

Since the user-defined gene set G remains fixed throughout
the entirety of a PGEP run, a unique integer index from
[0,]G| — 1] may be assigned to every gene g € G at the
onset of a DE-PGEP run. Each parameter wj; 4 of w; g4
may then be interpreted as the gene with the appropriate
index. This exactly defines a PGEP chromosome which can
be converted to an expression tree using the aforementioned
method. Therefore, if the user-defined length of all PGEP
chromosomes is [, then D will be equal to [. As a result,
a many-to-one mapping is established between a DE vector
and a linear PGEP chromosome.

One subtle, but interesting consequence of this mapping is
that any value in the half-closed interval [||z;,i.¢]] , [|Z5,i,9]1)
is equivalent with respect to the final outcome, i.e., the same
index is realized and thus the same gene is selected. Repre-
sentations like this have been termed redundant. With re-
dundancy, a new and fundamentally different type of muta-
tion is now possible. Prevalent in nature, neutral mutations
produce genotypical differences without affecting phenotyp-
ical behavior [19]. Or in other words, the genetic material
is manipulated without adversely affecting the quality of an
individual. Extending this idea to artificial search spaces,
formations termed neutral ridges appear and “drifting” along
these neutral ridges allows access to previously unreachable
areas of the search space [20]. Conceivably preventing stag-
nation and increasing performance [19, 20].

Next, in order to accommodate numerical constants, a

Wji,g = 1T,

predefined number of genes ci, ..., ¢y, are added to T'. Each
such terminal will represent a distinct constant which resides
at or near the end of x; 4, and thus D will now be equal to
l + m. Furthermore, when a chromosome a; 4 is expanded
into an expression tree ¢; 4, the value of each constant is re-
trieved from x; 4. Specifically, for k = 0,...,m—1, the value
of all cx41 in &4 1S ck,i,g = Ti4k,9. That is, the terminals
ci, ..., Cm are simply placeholders and the actual constants
are substituted into the expression tree at the time of eval-
uation. This not only ensures that a local pool of reusable
constants is available to each chromosome, but it also con-
tributes to the specialization of constants within the context
of a single chromosome. By virtue of Equations 4 and 5,
constants with the same parameter index j influence each
other’s values. So even though the constants may appear in
different positions and quantities in their respective expres-
sion trees, the interplay between incompatible constants is
essential for variation. With this in mind, we can see that
the positions and quantities of all genes are determined in a
similar manner, and therefore the constant creation process
has both local and global qualities.

For future reference, we will denote the two sub-vectors
of x;,4 as ;4 and c; 4 as these respectively represent the
expression vector and the associated array of constants. The
relationship between x; 4 and its two sub-vectors e; 4 and
Ci,g is now more clearly defined in Equation 9.

(mj,i,g),j:O,...7l—1
(a:j,i,g),j:l,...,l—f—m—l

€i,g

(9)

Recalling Equation 3, the task of vector initialization must
also be addressed. For e; 4 the bounds are simply defined
by the user-defined gene set G, but for c; 4 a good set of up-
per and lower bounds is problem dependent and most likely
unknown in advance. Therefore without any additional in-
formation, the recommendation in [8] is followed and the
complete initialization bounds are defined in Equation 10.

rand; (0, 1)|G|
rand; (0, 1)

Ci,g

€j,i,g

(10)

Ciig
In some cases, the initialization bounds just defined can be
problematic. If the global optimum is not contained inside
the initialization bounds, far initialization has occurred and
a great deal of computational effort may be required just to
reach the general vicinity of the optimum [8].

4. EXPERIMENTS

4.1 Benchmarks

In order to evaluate the performance of DE-PGEP, a col-
lection of SR problems which have become the standard
benchmarks for constant creation have been assembled. The
alm was to construct a diverse set of benchmarks which in-
cluded functions varying in complexity, shape, and type. In
addition, SR problems with different constants, both small
and large were sought. The selected problems appear in
Equations 11-13 and the citations in which a problem ap-
pears are displayed immediately to the left of the functions.

[3,7] : fi(x) = 2.7182° + 3.141636x (11)
[9,13,15] : fo(z) = 2® — 0.32> — 0.4z — 0.6 (12)
[14,7] : f3(z) = 0.3z sin (27x) (13)

1199

Of all the benchmarks, the 2°¢ degree polynomial in Equa-
tion 11 is the easiest and its rational coefficients, from left
to right, are similar to Euler’s number and 7. Although not
exceedingly difficult, the 3' degree polynomial in Equation
12 can be considered slightly more difficult than Equation
11 as more constants need to be approximated. Since Equa-
tion 13 becomes increasingly difficult as the interval under
consideration is widened, a couple of different instances of
this same problem are investigated too.

To make it possible to compare DE-PGEP to other exist-
ing constant creation techniques, we have adopted the com-
mon root mean squared error (RMSE) fitness function which
is defined in Equation 14.

f(xig) = (14)

The terms in Equation 14 are as follows: f(x;,4) is the fitness
of X;,4, p is the program (chromosome) which x; 4 encodes,
n is the size of the training set, p; is the actual output of p
on the j'" training case, and t; is the target output for the
4*1 training case. Compatible with the selection strategy in
Equation 6, the RMSE defines an objective function for a
minimization task. In this case, the task is to evolve a solu-
tion which minimizes the error on a training set. Displayed
in Table 1 are brief summaries of the training and testing
sets. For future reference, ID introduces an unique identifier
for each training/testing set pair which is denoted by «. In-
terval, Size, and Sample columns respectively represent the
intervals on which the samplings occurred, the size of the
sampled sets, and how the sets were sampled. In the case of
the sampling method, Random denotes a uniform random
sampling from the specified interval and a number denotes
the distance between regularly spaced points on the interval.

Training Set Testing Set

ID Interval

Size Sampling Size Sampling
a1 [-10,10] 10 Random 1000 Random
az [-10,10] 21 1.0 1000 Random
as [-0.5,0.5] 21 0.05 1000 Random
o [-1,1] 41 0.1 2000 Random

Table 1: A brief summary of the training and testing
sets used for various benchmark problems.

Although there is no complete agreement on the ideal gene
set for benchmarking these problems, we will generally adopt
the dominant operators appearing in the cited works. The
generic gene sets that appear in Equations 15 and 16 will be
those utilized throughout the remainder of this paper.

Gi={+,—,%, -, x,¢C1,...,Cm}

Go = {+, —, %, +,sin, cos, exp, In, sqrt, =, 1, . .

(15)
(16)

'7Cm}

Besides the common mathematical operators, +, —, *, and
+1 there are several new operators which may require some
clarification. First off, in Equation 16, sin and cos represent
the trigonometric sine and cosine operators. Furthermore,

The protected division function guards against divisions by
zero by returning a special undefined value which defines the
output of the program and indicates that the chromosome
should be assigned the worst possible fitness.

exp, sqrt, and In in Equation 16 are the operators which rep-
resent the exponential function, square root?, and natural
logarithm?®, respectively. Finally, « is the only input vari-
able, and ci, ..., ¢y, are the constant terminals introduced in
Section 3 where m may vary from experiment to experiment.
In Table 2, various control parameters are present and iden-
tified by the appropriate column header. The first column,
ID, represents a unique control parameter combination and
is denoted by (.

ID G l m D Np F Cr € Gmaz
B Gi 32 5 37 25 0.2 0.1 0.01 10°
B2 Gi 64 5 74 25 0.2 0.1 0.01 10°
Bs Gy 64 10 74 25 04 0.1 0.01 10°

Table 2: An overview of the possible control param-
eter combinations used for a training process.

4.2 Results

Table 3 contains an overview of the results obtained from
performing several selected experiments. Due to the stochas-
tic behavior of DE-PGEP, 40 independent attempts were
made per experiment. Each row presents the results ob-
tained for a single experiment and it is divided in half where
the upper entries reflect the results obtained during train-
ing and the lower entries express the generalization abilities
during testing. The first column, Fnwv., indicates the envi-
ronment of the experiment, i.e., a tuple of the equation, the
training and testing sets, and a control parameter combi-
nation. From this point on, any Min. column refers to the
chromosome with the best fitness value obtained in and over
all runs during training, i.e., it had the lowest error on the
training set indicating it was the fittest chromosome over-
all. Similarly, every Max. column refers to the chromosome
which achieved the worst fitness during training but was still
the best fitness obtained in a single run, i.e., it was the chro-
mosome with the highest error on the training set signifying
it was the least fit best chromosome encountered.

The Fitness of Best Chromosomes column spans several
columns and contains quantities which are expressed in the
best fitness values obtained in one or more attempts during
training. Maz. and Min have already been described, and
the two remaining columns, Avg. and Std. Dewv., simply re-
port the average and standard deviation of the best fitness
values recorded in each and over all 40 trials. The Ezpres-
sion Length column presents the size(s) of the corresponding
expressions, i.e., Min. and Mazx. are the sizes of the overall
best and worst programs, and Awvg. is the average size of the
best programs evolved in each run. Quantities which repre-
sent the number of constants appearing in the program(s)
are also presented in the Ratio of Constants column. That
is, Min., Max., and Avg., detail the number of unique to total
constants utilized in the overall fittest program, overall least
fit program, and averages of all best programs, respectively.
Since each Min. column is expressed in terms of the training

2In order to avoid the use of imaginary numbers, the square
root operator is protected and re-defined as follows: for all
z € R Vx =/|z|

3The protected natural logarithm operator guards against

undefined behavior and is reasonably re-defined as follows:
for # 0, In(z) = In(|z|) and for x = 0, In(z) = —745.

1200

set, one will immediately be able to tell whether or not the
supposedly fittest chromosome has overfit the training data.

Through an inspection of the results presented in Table
3, we can observe some very interesting things about the
behavior of the DE-PGEP:

e From both a training and testing perspective, DE-
PGEP is very consistent in the results it produces.
Combined with the large number of independent runs
and the very small standard deviation, one can con-
clude that the final results are reproducible and not
just coincidental.

Furthermore, the least fit solutions are generally not
exceedingly bad, i.e., the overall worst solutions are in
most cases good approximations as well, but they are
still not as precise as the fittest solutions.

As the number of employed operators increased, it
was empirically determined that m needed to be in-
creased too. Although not conclusive, a recommen-
dation based on some observations will be made: m
should be equal to the number of operators plus the
number of input variables. That is, the additional di-
versity afforded by a larger pool of constants seems
helpful when more functionality distinct operators are
made available.

4.3 Analysis

Even though DE-PGEP utilizes a uniform crossover op-
erator, it is significantly different from most crossover oper-
ators employed by GP, GEP, or PGEP. As a refresher, the
GP crossover operators typically swap sub-trees between two
tree-based chromosomes and GEP/PGEP linear crossover
operators exchange contiguous segments of genes between
two chromosomes. Now in DE-PGEP, the uniform crossover
operator is discrete in nature and only swaps neighboring pa-
rameters by chance if Cr is low. So from a GP/GEP/PGEP
perspective, the uniform crossover operator with a low appli-
cation probability clearly resembles that of point mutation.
In some sense then, Cr can be viewed as the probability of
mutation and F' can be seen as the magnitude of the muta-
tion. Yet, the magnitude of mutation has no real parallel in
GP/GEP/PGEP.

Additionally, the uniform crossover operator only manip-
ulates one individual directly where a single crossover in
GP/GEP/PGEP almost always modifies two. The product
of a mutation and crossover operation here can be much
more subtle and not nearly as exact. Due to neutral mu-
tations, there is no guarantee that any immediate affects
of the operations will be noticeable. It may not be until
several generations in the future, after more and more mu-
tations are compounded, that a noticeable difference in the
phenotype takes effect [19]. Finally, even though the real-
valued representation of DE increases the size of the search
space, “flattening” occurs because of redundancy and vast
plateaus may appear [19]. The transformed landscape may
then explain the viability of differential mutation as search
operator for DE-PGEP.

Upon close inspection of the control parameter combina-
tions in Table 2, it can be seen that Cr is always equal to
0.1. This was empirically determined and anything above
0.3 was consistently useless. Thus, when D = 74, approx-
imately only 7 to 8 parameters are independently adopted

Fitness of Best Chromosomes

Expression Length Ratio of Constants

Env. Min. Max. Avg. Std. Dev. Min. Max. Avg. Min. Max. Avg.
oy SESXNT SWLOT BT BT gy arg 3 3 U0
(20080 1000105 Semxio? Lomclo? ameco: B % w0 5 5 GO
(3.008) 3I05105 pamaio® tanxio? reee P M mee 33 B
(8.008) GT0NI0 4 ITialt Samelo? bamaaos 101 e 2 o

Table 3: An overview of the experimental results on the selected benchmarks, Equations 11-13.

into the trial vector. Furthermore, since a vector encodes
a variable length program, short programs will be affected
less and possibly preserved in their entirety. In this case, the
majority of mutations will then occur in the unused param-
eters which are generally known as introns. While introns
do not directly contribute to the fitness of the vector, these
parameters can be used to alter other vectors by way of dif-
ferential mutation. That is, other vectors may encode longer
programs and therefore the introns can influence other vec-
tors without being explicitly enabled. This is very different
from GEP/PGEP where introns are present, but are only
activated or deactivated when an actual crossover or muta-
tion occurs.

Intuitively, a higher Cr paired with a moderate F, will
generally yield more genotypical differences. So as Cr in-
creases, more phenotypical differences can occur, presum-
ably resulting in a more chaotic and less successful search.
The parameter combinations must then try to maintain a
balance between chaos and order. If not, the search will
deteriorate and good results like those observed here will
be illusive. Also, it was continuously observed that as the
gene set increased in size, F' needed to be increased as well.
This is understandable as a larger scaling factor is required
to cycle through the available genes and find good or useful
innovations.

4.4 Examples of Solutions

Presented in its unsimplified form, Equation 17 is the best
program evolved for Equation 11 with a size of 17 and a
training fitness of 8.238 x 10~%. Once simplified into Equa-
tion 18, it is immediately apparent that this program is a
very good approximation. In fact, it is almost a perfect
solution as the training fitness is 9.140 x 10,

f1(x) = (2/0.439254) + ((1.165761 + 1.165761)x
(z % 1.165761) * x) + (z * 0.864893) 7
= 2.717997 2° 4 3.141480 * = (18)

Instead of evolving just two constants with the exact values,
DE-PGEP utilizes three out of the five uniquely available
constants and reuses one of them three times. Although it
may not be the most intuitive solution, the idea of using
many similar terms to build up good solutions is reasonable
and the desired approach. For completeness, this particular
solution was obtained using (11, aa, 51).

Appearing in Equation 19 is the best solution attained
using (12, a2, B2). In its original and unmodified form, the

1201

size of the expression tree is rather large, 43 to be exact,
and the composition of the expression is somewhat irregu-
lar. That is, instead of utilizing the available constants in a
conservative manner, five unique constants appear a total of
16 times throughout the expression tree. Still, by observing
the simplified solution in Equation 20, it can be easily seen
that this solution is almost perfect.

Ja(z) = (03*1’) +c1+ ((Co+ ((Co—m) *CC>+

C3—|—co—|—m+(co—co)+(04*01)+62+

((cl/(C3 — o)) —x)> » (01 —az)) —c3

where cg = 0.349331, ¢c; = —0.049276,
c2 = 0.017816, cs = 0.505355, c4 = 0.361927 (19)

= 2® — 0.300055 * 2> — 0.400035 * = — 0.598397 (20)

Shifting our attention to the next benchmark function,
the best solution discovered for Equation 13 is presented in
Equation 21. Unmodified, the original solution has a size of
23 and a training fitness of 3.245 x 103, Initially it appears
that this function does not even closely resemble that of
the target function. But upon evaluation on the testing
set, a fitness of 3.436 x 1072 is achieved. This solution is
a remarkably good approximation given its structure and
composition. A simplified and possibly more understandable
version of this solution is presented in Equation 22.

f3(x) ~/sin(3.899029 * 1034) In(z + x) * sin (z * x)

<0.045098 - exp(\/z/ sin (cos(2.960171 1072))))
(21)
(0998604 «In(2 + 2) + sin(«?)) ¢

(0.045098 - exp(1.193832 * ﬁ)) (22)
Utilizing otherwise unnecessary operators like exp, In, and
sqrt, DE-PGEP is still able to evolve good constants given
the most promising, if not ideal, chromosome. Besides the
convoluted appearance of this solution, the rather large val-
ues of the constants do however demonstrate that the default
initial bounds are not too restrictive, i.e., larger constants
are still attainable if needed. For those interested, this so-
lution was obtained using (13, as, 33).

When considering a wider window, Equation 13 becomes
less predictable. But surprisingly, even the unsimplified ex-
pression in Equation 23 is very similar in structure to the
target function. More interestingly though, the simplified
version in Equation 24 is very different from that of Equa-
tion 22 which was trained with the exact same control pa-
rameters, but on a narrower interval. That is, Equation 24
was discovered with (13, a4, 33) and not (13, as, 33).

fa(x) ~ —0.300998 * z * sin (a:/ cos(ln(—5.645193))) (23)
= 0.300998 * x * sin(6.276440 * x) (24)

5. CONCLUSIONS & FUTURE WORK

A significantly different approach to Symbolic Regression
(SR) with a seamlessly integrated constant creation mecha-
nism has been proposed. Abandoning the discrete genotype
used by Prefix Gene Ezpression Programming and adopt-
ing a continuous genotype, has permitted the use of a ro-
bust real-valued optimization algorithm known as Differ-
ential Evolution (DE). This conveniently allows for expres-
sions and constants to co-exist in the same vector-based
representation and be evolved simultaneously. Impressive
performance was consistently obtained on four experimen-
tal benchmarks, selected solutions were critiqued, and var-
ious aspects of redundant representations and neutral mu-
tations were briefly introduced and related to the proposed
method called Differential Evolution-Prefix Gene Expression
Programming (DE-PGEP). Future work will primarily focus
on applying DE-PGEP to real-world problems and explor-
ing more of the consequences, implications, and advantages
of redundancy and neutral mutations.

6. REFERENCES

[1] Xin Li. Self-Emergence of Structures in Gene
Ezxpression Programming. PhD thesis, University of
Illinois at Chicago, 2006.

Candida Ferreira. Gene expression programming: A
new adaptive algorithm for solving problems. Complex
Systems, 13(2):87-129, 2001.

John R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

David E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley
Professional, 1989.

Zhuli Xie, Xin Li, Barbara Di Eugenio, Weimin Xiao,
Thomas M. Tirpak, and Peter C. Nelson. Using Gene
Expression Programming to Construct Sentence
Ranking Functions for Text Summarization. In
Proceedings of the 20th International Conference on
Computational Linguistics, (COLING 2004), pages
1381-1384, Geneva, Switzerland, August 2004.

Chi Zhou, Weimin Xiao, Thomas M. Tirpak, and
Peter C. Nelson. Evolving Accurate and Compact
Classification Rules with Gene Expression
Programming. IEEE Transactions on Evolutionary
Computation, 7(6):519-531, December 2003.

Candida Ferreira. Gene Ezpression Programming:
Mathematical Modeling by an Artificial Intelligence.
Springer-Verlag, second edition, 2006.

2]

1202

[8] Kenneth V. Price, Rainer M. Storn, and Jouni A.
Lampinen. Differential Evolution: A Pratical Approach
to Global Optimization. Springer-Verlag, 2005.
Qiongyun Zhang, Chi Zhou, Weimin Xiao, and

Peter C. Nelson. Improving Gene Expression
Programming Performance by Using Differential
Evolution. In Proceedings of the 6th International
Conference on Machine Learning and Applications
(ICMLA’07), pages 31-37, Cincinnati, OH, USA,
2007. IEEE Computer Society.

Stefano Cagnoni, Daniel Rivero, and Leonardo
Vanneschi. A purely evolutionary memetic algorithm
as a first step towards symbiotic coevolution. In
Proceedings of the IEEE Congress on Evolutionary
Computation, (CEC 2005), pages 1156-1163,
Edinburgh, UK, September 2005. IEEE.

Alexander Topchy and William Punch. Faster Genetic
Programming based on Local Gradient Search of
Numeric Leaf Values. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO
2001), pages 155-162, San Francisco, CA, USA, July
2001. Morgan Kaufmann.

Gunther R. Raidl. A Hybrid GP Approach for
Numerically Robust Symbolic Regression. In Genetic
Programming 1998: Proceedings of the Third Annual
Conference, pages 323-328, Madison, WI, USA, July
1998. Morgan Kaufmann.

Thomas Fernandez and Matthew P. Evett. Numeric
Mutation as an Improvement to Symbolic Regression
in Genetic Programming. In Evolutionary
Programming VII, Tth International Conference,
(EP98), pages 251-260. Springer, 1998.

Conor Ryan and Maarten Keijzer. An Analysis of
Diversity of Constants of Genetic Programming. In
Genetic Programming, 6th FEuropean Conference,
FEuroGP 2003, pages 404-413. Springer, 2003.

Xin Li, Chi Zhou, Peter C. Nelson, and Thomas M.
Tirpak. Investigation of Constant Creation Techniques
in the Context of Gene Expression Programming. In
Maarten Keijzer, editor, Late Breaking Papers at the
2004 Genetic and Evolutionary Computation
Conference, Seattle, WA, USA, July 2004.

Michael O’Neill, Ian Dempsey, Anthony Brabazon,
and Conor Ryan. Analysis of a Digit Concatenation
Approach to Constant Creation. In Genetic
Programming, 6th FEuropean Conference, EuroGP
2003, pages 173—-182. Springer, 2003.

Maarten Keijzer. Improving Symbolic Regression with
Interval Arithmetic and Linear Scaling. In Genetic
Programming, 6th European Conference, EuroGP
2003, pages 70-82. Springer, 2003.

Michael O’Neill and Anthony Brabazon. Grammatical
Differential Evolution. In Proceedings of the 2006
International Conference on Artificial Intelligence
(ICAI 2006), pages 231-236. CSREA Press, 2006.
Franz Rothlauf. Representations for Genetic and
FEvolutionary Algorithms. Springer-Verlag Berlin
Heidelberg, second edition, 2006.

Rob Shipman, Mark Shackleton, and Inman Harvey.
The use of neutral genotype-phenotype mappings for
improved evolutionary search. BT Technology Journal,
18(4):103-111, 2000.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

