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Energy consumption forecasting (ECF) is an important policy issue in today’s economies. An accurate ECF has great benefits for
electric utilities and both negative and positive errors lead to increased operating costs.The paper proposes a semantic based genetic
programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with
high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends
a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The
main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with
the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy
consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on
the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic
programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting
also on unseen data.

1. Introduction

As reported in [1, 2], energy consumption forecasting (ECF)
is the task of predicting the electricity demand on different
time scales, in minutes (very short-term), hours/days (short-
term), months, and years (long-term). An accurate ECF has
great benefits for electric utilities and both negative and
positive errors lead to increased operating costs. Overesti-
mating the energy demand leads to an unnecessary energy
production or purchase and, on the contrary, underesti-
mation causes unmet demand with a higher probability
of failures and costly operations. With the recent trend of
deregulation of electricity markets, ECF has gained even
more importance. In particular, in a dynamic market envi-
ronment, precise forecasting is the basis of electrical energy
trade and spot price establishment for the system to gain
the minimum electricity purchasing cost. At the same time,
with the amount of data steadily growing, the problem is

getting more and more complex. All these facts show the
importance of having reliable predictive models that can
be used for an accurate energy consumption forecasting
[2]. Numerous contributions presenting computational intel-
ligence (CI) based approaches for ECF have appeared in
the last years [3]. Surveys can be found in [2, 4]. Among
the different CI methods, particular importance was given
to neural networks [5, 6], particle swarm optimization [7],
support vector machines [8], simulated annealing [9], and
genetic algorithms [10]. One of the outcomes of the European
Energy Forecast conference [11] that took place in Brussels in
February 2014 was the identification the following facts and
open issues. (a) ECF will have a huge impact on economy
in the near future. (b) ECF is a very difficult problem, since
it is influenced by asynchronous and often unpredictable
facts. (c) Several different geographical and time scales can be
identified for ECF, which contribute to making the task even
more complex. (d) The currently existing CI technologies
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are inadequate to take on this new challenge, making new
computational methods much in demand. In particular, the
following flaws of the current CI methods were identified.

(1) Given the high complexity of ECF, the iterative pro-
cess of stepwise improvement of solutions that char-
acterizes many CI methods often gets stuck in local
optima, stagnating the search for better solutions.

(2) Several existing forecasting methods are not able
to deal with nonlinearity and other difficulties in
modelling of time series. Hence, the performance of
these models on test data are not as good as the one
achievable on the training data.

The objective of the work presented in this paper is to fill
this gap by developing a ground-breaking Genetic Program-
ming (GP) system that (i) finds (quasi-)perfect solutions with
high probability (no error on training data) and (ii) generates
models able to produce near optimal predictions also on
unseen data (test instances). GP is one of the most successful
existingCImethods. In the last years, it has obtained excellent
results on a large number of complex real-life applications
[12] and it has recently made an important breakthrough:
the definition of geometric semantic operators (GSOs), new
genetic operators that induce a unimodal error surface on any
supervised learning problem (including forecasting). Elimi-
nating local optima, GSOs have a stronger problem solving
ability. So, they are an excellent first step for overcoming
issue number (1) discussed above and developing appropriate
forecasting models. However, much work has still to be done
in order to use GSOs in a complex application like the ECF.
In particular, GSOs converge to optimal solution(s) very
slowly and this behaviour is an important limitation in all the
applications characterized by the presence of a large amount
of data. Hence, in this paper we propose the definition of a
CI system that combines GSOs with a local search algorithm.
The main idea in combining GSOs and a local searcher is to
integrate the exploration ability of GSOswith the exploitation
ability of the local searcher. In this way, we expect to achieve
optimal solutions faster and to obtain a final model that does
not overfit the training data. To analyze the appropriateness
of the proposed computational method for ECF, the energy
consumption in Italy has been used as a test case.

The paper is organized as follows. Section 2 presents
the variant of GP proposed in this study for addressing the
ECF problem. Section 3 describes the data that have been
considered and reports experimental results, comparing the
proposed approach to the standard GP algorithm and other
state-of-the-art GP variants. Section 4 concludes the paper,
highlighting the main contributions of this work. In the final
part of the paper, the appendix contains general introductions
of basic concepts for nonexperts in the GP field.

2. Methodology

This section describes the components of the proposed com-
putational intelligence system designed for the ECF problem.
In particular, Section 2.1 describes the geometric semantic

operators and their properties, while Section 2.2 presents the
local search strategy that we used with the GSOs.

2.1. Geometric Semantic Operators. Despite the large num-
ber of human-competitive results achieved by GP [12],
researchers still continue to investigate new methods for
improving the power of GP as a problem solving method.
In recent years, one of the emerging ideas is to include
semantic awareness in the evolutionary process performed
by GP. While several studies exist (a survey can be found
in [13]), the definition of semantics is not unique and this
concept is interpreted in different ways and under different
perspectives [13]. In this work, we use the most common and
widely accepted definition of semantics in the GP literature.
Hence, the semantics of a program 𝑇

𝑖
is defined as the vector

of outputs s
𝑖
= [𝑇

𝑖
(x1), 𝑇𝑖(x2), . . . , 𝑇𝑖(x𝑛)] obtained after

executing the program (or candidate solution) on a set of the
training data T = {x1, x2, . . . , x𝑛}, such that s

𝑖
∈ R𝑛 [14].

In this section, we briefly describe the definition of the
geometric semantic operators (GSOs) proposed by Moraglio
and coauthors [14]. The objective of GSOs is to define
modifications on the syntax of GP individuals that have a
precise correspondence on their semantics. More in partic-
ular, the idea is to define transformations on the syntax of
GP individuals that correspond to well known operators of
genetic algorithms (GAs). In this way, GP could “inherit”
the known properties of those GAs operators. Furthermore,
contrarily to what typically happens in real-valued GAs or
other heuristics, in the GP semantic space the target point is
also known (it corresponds to the vector of expected output
values in supervised learning) and the fitness of an individual
is simply given by the distance between the point it represents
in the semantic space and the target point (it corresponds to
an errormeasure).The real-valuedGAoperators thatwewant
to “map” into the GP semantic space are geometric crossover
and ball mutation. In real-valued GAs, geometric crossover
produces an offspring that stands in the segment that joins the
parents. It was proven in [15] that in cases where the fitness
is a direct function of the distance to the target (like the case
we are interested in here) this offspring cannot have a worse
fitness than the worst of its parents. Ball mutation consists in
a random perturbation of the coordinates of an individual. It
was shown in [14] that it induces a unimodal error surface
for all the problems where fitness is a direct function of the
distance to the target. The definitions of the operators that
correspond to geometric crossover and ball mutation in the
GP semantic space are as given in [14], respectively.

Definition 1 (geometric semantic crossover (GSC)). Given
two parent functions 𝑇1, 𝑇2 : R

𝑛
→ R, the geometric

semantic crossover returns the real function𝑇
𝑋𝑂
= (𝑇1 ⋅𝑇𝑅)+

((1−𝑇
𝑅
)⋅𝑇2), where𝑇𝑅 is a randomreal functionwhose output

values range in the interval [0, 1].

Definition 2 (geometric semantic mutation (GSM)). Given a
parent (as in [14], we abuse of the term “parent,” using it also
to identify the solution that is transformed by a mutation
operator) function 𝑇 : R𝑛 → R, the geometric semantic
mutation with mutation step ms returns the real function
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𝑇
𝑀
= 𝑇+ms ⋅ (𝑇

𝑅1 −𝑇𝑅2), where 𝑇𝑅1 and 𝑇𝑅2 are random real
functions.

The interested reader is referred to [14] for a detailed
discussion of these operators, including a justification of the
fact that they correspond, respectively, to geometric crossover
and ball mutation in the GP semantic space. Following [14],
from now on GP that uses geometric semantic operators
will be called geometric semantic GP (GSGP). As Moraglio
et al. point out, geometric semantic operators create much
larger offspring than their parents and the fast growth of the
individuals in the population rapidlymakes fitness evaluation
unbearably slow, making the system unusable. Moreover,
while this growth produces fitter solutions, it is responsible
for creating models that are too specialized on training
data, hence often generating overfitting. In [16], a possible
workaround to the problem related to the slowness of the
fitness evaluation process was proposed, consisting in an
implementation of these operators that makes them not
only usable in practice, but also very efficient. Basically, this
implementation is based on the idea that, besides storing the
initial trees, at every generation it is enough to maintain in
memory, for each individual, its semantics and a reference
to its parents. As shown in [16], the computational cost of
evolving a population of 𝑛 individuals for 𝑔 generations is
𝑂(𝑛𝑔), while the cost of evaluating a new, unseen, instance
is 𝑂(𝑔). Hence, the system can be efficiently used to address
problems characterized by a large amount of data. This is the
implementation used in this work.

2.2. Local Search in Geometric Semantic Operators. In this
work, we integrate a local search (LS) strategy within GSGP.
In particular, we include a local searcher within the GSM
mutation operator, since previous works have shown that
GSGP achieves its best performance using onlymutation [13].
In particular, theGSMwith LS (GSM-LS) of a tree𝑇 generates
an individual:

𝑇
𝑀
= 𝛼0 +𝛼1 ⋅ 𝑇 + 𝛼2 ⋅ (𝑇𝑅1 −𝑇𝑅2) , (1)

where 𝛼
𝑖
∈ R. Notice that 𝛼2 replaces the mutation step

parameter ms used in the definition of GSM. Equation (1)
defines a basic multivariate linear regression problem, which
can be solved, for example, by Ordinary Least Square (OLS)
regression. In this sense, after each mutation event, OLS
is applied to the above expression to obtain the values of
the model parameters (𝛼0, 𝛼1, 𝛼2) that best fit the training
fitness cases. We point out that, in some sense, this approach
contrasts with previous work [17] that relied on a nonlinear
local optimizer, since the linear assumption is mostly not
satisfied by the expression evolved with standard GP and
the corresponding parametrization. On the other hand, in
this new approach it is simple to apply a linear regression
optimizer, given that the GSM operator defines a linear
expression in the parameter space. The idea of including a LS
method is based on a very simple observation related to the
properties of the geometric semantic operators: while these
operators are effective in achieving good performance with
respect to standard syntax-based operators, they require a lot

of generations to converge to optimal solutions. Including a
local search method, we expect to speed up the process and
to obtain better solutions faster.Moreover, by speeding up the
search process, it will be possible to limit the construction of
overspecialized solutions that will eventually overfit the data.

3. Experimental Study

This section describes the data, the experimental settings, and
the obtained results for the ECF problem.

3.1. Data Description. Historical energy consumption data
and weather information in Italy in the years between 1999
and 2010 have been used to test the performance of the
proposed system. TERNA S.p.A. (Rete Elettrica Nazionale)
is an Italian electricity transmission system operator based
in Rome, Italy. With 63,500 kilometres of power lines or
around 98% of the Italian high-voltage power transmission
grid, TERNA is the first independent electricity transmission
grid operator in Europe and the sixth in world based on the
size of its electrical grid. TERNA is the owner of the Italian
transmission grid and responsible for energy transmission
and dispatching. The aim of the forecasting task studied
in this paper is to predict the energy consumption at day
𝑡, providing information until day 𝑡 − 1 (one-day ahead
forecasting) using the past samples of the load and weather
information. Data include temperatures, pressure values,
wind speed, and other weather related information. Data
from 1999 to 2006 have been used during the training phase,
while the remaining available data (i.e., from 2006 to 2010)
have been used to validate the model on unseen data and
hence to assess the quality of the forecasting.The samedataset
has been used in [1], where the standard GSGP system has
been used for the same task and where GSGP was able to
outperform state-of-the-art machine learning techniques in
the ECF problem. Hence, in the presentation of the results,
it will be interesting to assess whether or not the inclusion
of a local searcher optimizer is able to produce a competitive
advantage with respect to the simple use of GSGP.

3.2. Experimental Settings. Four different GP systems were
compared: standard GP (STGP) that uses the standard
syntax-based genetic operators also considered in [1], GSGP
that only uses the GSM operator; HYBRID that uses the
GSM operator and the proposed GSM-LS operator, LSGP
that only uses the GSM-LS operator at each generation of the
evolutionary search process.

Regarding the four GP systems, all the runs used popula-
tions of 200 individuals allowed to evolve for 50 generations.
Tree initializationwas performedwith the RampedHalf-and-
Half method [18] with a maximum initial depth equal to 6.
The function set contained the arithmetic operators, includ-
ing protected division as in [18]. The terminal set contained
45 variables, each one corresponding to a different feature in
the dataset. Mutation has been used with probability 1, while
in STGP we used a mutation rate of 0.4 and a crossover rate
of 0.6. The use of different settings for STGP is motivated
by the fact that STGP with only mutation performs poorly
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on this problem. Hence, we decided to consider the settings
that are able to produce the best performance for each of
the studied systems. Survival from one generation to the
other was always guaranteed to the best individual of the
population (elitism). For GSM, a random mutation step has
been considered in each mutation event, as suggested in [13].
Regarding theHYBRID system,GSM-LS has been used in the
first 20 generations, while in the remaining generations we
considered the standard GSM operator. We decided to limit
the number of generations where the local search has been
used in order to assess whether theHYBRID systemproduces
“similar” results with respect to GSGP or LSGP.

For all the considered techniques we studied the obtained
performance over two different measures of error. In particu-
lar, these two measures are the mean absolute error (MAE)
and the mean square error (MSE). The definition of these
error measures is as follows:

MAE = 1
𝑁
∑

𝑖∈𝑄

󵄨󵄨󵄨󵄨𝑡𝑖 −𝑦𝑖
󵄨󵄨󵄨󵄨 ,

MSE = 1
𝑁
∑

𝑖∈𝑄

󵄨󵄨󵄨󵄨𝑡𝑖 −𝑦𝑖
󵄨󵄨󵄨󵄨

2
,

(2)

where 𝑦
𝑖
= 𝑇(x

𝑖
) is the output of the GP individual 𝑇 on the

data sample x
𝑖
and 𝑡
𝑖
is the target value corresponding to x

𝑖
.

𝑁 denotes the number of samples in the training or testing
subset, and 𝑄 contains the indices of that set.

In the next section, the obtained experimental results are
reported using curves of themedian error on the training and
test set. In particular, at each generation the best individual
in the population (i.e., the one that has the smaller training
error) has been chosen and the value of its error on the
training and test sets has been stored. The reported curves
finally contain the median of all these values collected at each
generation. The median was preferred over the mean in the
reported plots because of its higher robustness to outliers.
The results discussed in the next section have been obtained
using theGSGP implementation freely available at http://gsgp
.sourceforge.net and documented in [16].

3.3. Experimental Results. Figure 1 reports training and
test error (MAE and MSE) for the considered GP systems
against generations. For all the considered GP systems 30
runs have been performed. These figures clearly show that
LSGP outperformsGSGP and STGP on both training and test
sets, for both the considered errormeasures. In particular, it is
possible to note the fast convergence of the proposed system
as well as the fact that the final model does not overfit the
training data. A further corroboration about the suitability
of combining GSGP with a local search optimizer is given
by the performance of the HYBRID system. As it is possible
to see from the figures, its performance is similar to the one
achieved with LSGP, on both training and test data.

To analyze the statistical significance of these results,
a set of tests has been performed on the median errors.
In particular, we want to assess whether the final results
(generation 50), produced by the considered GP systems,
have a statistically significant difference. As a first step, the

Shapiro Wilk test (with 𝛼 = 0.1) has shown that the data
are not normally distributed and hence a rank-based statistic
has been used. Then, the Friedman test has been used. The
null hypotheses for the comparison across repeatedmeasures
are that the distributions are the same across repeated
measures. The alternative hypotheses is that distributions
across repeatedmeasures are different. Also in this test a value
of 𝛼 = 0.1 has been used and the Holm post hoc procedure
has been considered. The 𝑝 values obtained are reported in
Table 1. According to the 𝑝 values, we can clearly state that
LSGP produces solutions that are significantly better (i.e.,
with lower error) than GSGP and STGP on both training and
test data and for both the considered error measures. Also,
theHYBRIDmethod produces statistically better results with
respect to GSGP and STGP.When LSGP is compared against
HYBRID, it produces comparable results.The only difference
that is statistically significant is the one related to the training
fitness when theMSE is used as errormeasure.This last result
is quite interesting, because it suggests that it is possible to
achieve better results (with respect to the ones achieved with
GSGP), by using the proposed GSM-LS operator only in the
initial phase of the evolutionary search process, hence saving
the computational time needed to run the local searcher in
the subsequent generations.

To conclude the analysis of the experimental results,
Table 2 reports the median (calculated over 30 runs) execu-
tion time of the considered systems as well as the standard
deviation of the execution time. This comparison allows GP
practitioners to compare the solution quality gain versus
the required execution time. All the data are expressed in
seconds. As it is possible to note, STGP is the technique
that requires the largest amount of time to complete a run.
This is an expected result that has been deeply discussed in
[19]. Regarding the semantic-based systems, it seems that,
while the inclusion of the local search method significantly
improves the performance of GP, it has a negligible impact on
the execution time. To strengthen this result, we performed a
set of runs considering 2000 generations for both the GSGP
and LSGP systems. In this case the median execution time
was 89 seconds forGSGP and 93 seconds for LSGP.Hence, we
conclude that LSGP has a competitive ratio between solution
quality and required execution timewith respect to theGSGP
system, at least for the studied problem.

4. Conclusions

Electricity consumption forecasting (ECF) is important for
the power industry, especially in the context of the ongo-
ing deregulation of the electricity market. Proper demand
forecasts help the market participants to maximize their
profits and/or reduce their possible losses by preparing
an appropriate bidding strategy. In this study, the ECF
problem has been considered and in order to address it
a computational intelligence technique has been proposed.
The proposed system is based on a variant of the Genetic
Programming (GP) algorithm. In particular, the GP system
uses particular genetic operators that, differently from the
standard genetic operators used in GP, work on the semantics
of the solutions. While the use of semantic methods in
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Figure 1: Training (plots (a) and (c)) and test (plots (b) and (d)) error for MAE (plots (a) and (b)) and MSE (plots (c) and (d)). The plots
show the median over 30 independent runs.

Table 1: 𝑝 values obtained from the statistical validation procedure.

Training Test
LSGP STGP HYBRID LSGP STGP HYBRID

MAE
GSGP 3.02𝐸 − 11 9.8𝐸 − 01 3.02𝐸 − 11 5.19𝐸 − 03 3.3𝐸 − 02 7.66𝐸 − 05

HYBRID 1.6𝐸 − 01 3.02𝐸 − 11 — 1.7𝐸 − 01 2.0𝐸 − 03 —
STGP 3.02𝐸 − 11 — — 2.0𝐸 − 03 — —

MSE
GSGP 3.02𝐸 − 11 6.6𝐸 − 01 3.02𝐸 − 11 7.70𝐸 − 04 7.8𝐸 − 01 3.81𝐸 − 07

HYBRID 3.02𝐸 − 11 3.02𝐸 − 11 — 4.6𝐸 − 01 9.51𝐸 − 06 —
STGP 3.02𝐸 − 11 — — 7.70𝐸 − 04 — —

Table 2: Execution time (seconds) of the considered GP systems. Median and standard deviation calculated over 30 runs.

MAE MSE
GSGP HYBRID LSGP STGP GSGP HYBRID LSGP STGP

Execution time 2.22 2.32 2.35 3.94 2.19 2.2 2.36 4.2
Standard dev. 0.12 0.11 0.12 0.83 0.14 0.13 0.13 0.78
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Figure 2: The GP algorithm.

GP has been successfully investigated and applied, several
important problems that do not allow us to efficiently use
these methods are still open. In particular, the GP system
that uses the semantic operators (GSGP) requires a huge
amount of generations to converge towards optimal solutions
and, moreover, by producing a (quasi) optimal fitting of
the training data it often generates solutions that are not
able to generalize well over unseen instances. Under this
light, the contribution of this work consists in integrating
the GSGP framework with a local search optimizer. The
use of a local searcher is motivated by the improvement of
convergence speed of GSGP towards good quality solutions.
Thus, by combining the exploration ability of GSGP with the
exploitation ability of a local search method we expect to
find good quality solutions in a small number of generations,
hence avoiding the excessive specialization of a model on the
training instances and, consequently, overfitting.

To validate the proposed system, called LSGP, an exten-
sive experimental analysis has been performed, considering
electricity consumption data that cover the period 1999–
2010 in the Italian territory. We tested three semantic-based
GP systems (GSGP, HYBRID, and LSGP) and a standard,
syntax-based, GP system (STGP). GSGP is the GP system
that uses the geometric semantic mutation defined in [14];
LSGP uses the GSM-LS mutation introduced in this work,
while the hybrid system uses the GSM-LS operator in the
initial generations and then it uses the GSM operator in the
rest of the run. The reported results have shown that LSGP
is able to produce results that are statistically better than the
ones produced by GSGP that, as reported in [1], represents
one of the state-of-the-art methods for addressing the ECF
problem. In particular, LSGP is able to reduce the forecasting
error with respect to GSGP and STGP, thus generating more
accurate and reliable predictive models, without overfitting
the training data. Moreover, LSGP (like the HYBRID system)
outperforms GSGP and STGP also on test instances. Finally,
the HYBRID system produces similar performance with
respect to LSGP. Hence, also using the GSM-LS operator
only at the beginning of the search process results in a more
accurate and reliable model with respect to the one obtained
with GSGP.

To summarize, the paper provides two contributions:
from the point of viewof the energy consumption forecasting,
a system that is able to outperform the existing state-of-the-
art technique has been defined; from the machine learning
perspective, this case study has shown that including a
local searcher in the geometric semantic GP system can
speed up the convergence of the search process, without a
corresponding overfitting of training data. We hope that this
contribution will pave the way for further research on these
topics.

Appendix

Genetic Programming

Genetic Programming (GP) is one of the techniques that
belong to the computational intelligence research area called
evolutionary computation. GP consists in the automated
learning of computer programs by means of a process
inspired by biological evolution [18]. Generation by genera-
tion, GP stochastically transforms populations of programs
into new, hopefully improved, populations of programs. The
quality of a solution is expressed by using an objective
function (also called fitness function). The search process of
GP is graphically depicted in Figure 2.

Hence, the recipe for solving a problem with GP is as
follows.

(i) Choose a representation space in which candidate
solutions can be specified.This consists of deciding on
the primitives of the programming language that will
be used to construct programs. A program is built up
from a terminal set (the variables in the problem and,
optionally, a set of constant values) and a function set
(the primitive operators).

(ii) Design the fitness criteria for evaluating the quality of
a solution. This involves the execution of a candidate
solution on a suite of test cases, reminiscent of the
process of black-box testing. In case of supervised
learning, a distance-based function is employed to
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quantify the divergence of a candidate’s behavior from
the desired one.

(iii) Design a parent selection and replacement policy.
Central to every evolutionary algorithm is the con-
cept of fitness-driven selection in order to exert an
evolutionary pressure towards promising areas of the
program space. The replacement policy determines
the way in which newly created offspring programs
replace their parents in the population.

(iv) Design a variation mechanism for generating off-
spring from a parent or a set of parents. Standard
GP uses two main variation operators: crossover and
mutation. Crossover recombines parts of the struc-
ture of two individuals, whereas mutation stochasti-
cally alters a portion of the structure of an individual.

(v) After a random initialization of a population of com-
puter programs, an iterative application of selection-
variation-replacement is employed to improve the
programs quality in a stepwise refinement way.

In order to transform a population, GP uses genetic
operators. Considering the common tree representation of
GP individuals, the standard genetic operators (crossover and
mutation) act on the structure of the trees that represent
the candidate solutions. In other terms, standard genetic
operators act on the syntax of the programs. In this paper,
we used genetic operators that, differently from the standard
ones, are able to act at the semantic level. The definition of
semantics used in this work is the one also proposed in [14]
and it is discussed in Section 2.1.

However, to understand the differences between the
genetic operators used in this work and the ones used in the
standard GP algorithm, the latter are briefly described. The
standard crossover operator is traditionally used to combine
the genetic material of two parents by swapping a part of one
parent with a part of the other. More in detail, after choosing
two individuals based on their fitness, the crossover operator
performs the following operations: (1) it selects a random
subtree in each parent and (2) swaps the selected subtrees
between the two parents (the resulting individuals are the
children).Themutation operator introduces random changes
in the structures of the individuals in the population. The
most well-knownmutation operator, called subtreemutation,
works as follows: (1) it randomly selects a point in a tree,
(2) it removes whatever is currently at the selected point
and whatever is below the selected point, and (3) it inserts
a randomly generated tree at that point. This operation is
controlled by a parameter that specifies the maximum size
(usually measured in terms of tree depth) for the newly
created subtree that is to be inserted.

Symbolic Regression with Genetic Programming. In symbolic
regression, the goal is to search for the symbolic expression
𝑇
𝑂
: R𝑝 → R that best fits a particular training set T =

{(x1, 𝑡1), . . . , (x𝑛, 𝑡𝑛)} of 𝑛 input/output pairs with x𝑖 ∈ R𝑝 and

𝑡
𝑖
∈ R. The general symbolic regression problem can then be

defined as

(𝑇
𝑂
, 𝜃

O
) ←󳨀 arg min

𝑇∈G;𝜃∈R𝑚
𝑓 (𝑇 (x

𝑖
, 𝜃) , 𝑡
𝑖
)

with 𝑖 = 1, . . . , 𝑝,
(A.1)

where G is the solution or syntactic space defined by the
primitive set P (functions and terminals), 𝑓 is the fitness
function based on the distance or error between a program’s
output 𝑇(x

𝑖
, 𝜃) and the expected, or target, output 𝑡

𝑖
, and 𝜃

is a particular parametrization of the symbolic expression
𝑇, assuming 𝑚 real-valued parameters. In standard GP,
parameter optimization is usually not performed explicitly,
since GP search operators only focus on syntax. Therefore,
the parameters are only implicitly considered. However,
recent works have begun to address this issue, such as
in [17], where a nonlinear numerical optimizer is used to
tune the parametrization of the evolved programs, achieving
substantial improvements in terms of convergence speed and
solution quality. Let us consider the following hypothetical
example to grasp the importance of such a process. Imagine
a GP individual with a syntax 𝑇(𝑥) = 𝑥 + sin(𝑥) and the
following parametrization: 𝜃 = (𝛼1, 𝛼2, 𝛼3), with𝑇(𝑥) = 𝛼1𝑥+
𝛼2sin(𝛼3𝑥). In a traditional GP, these parameters are usually
set to 1, which does not necessarily lead to the best possible
performance for this particular syntax. Indeed, if the optimal
solution is, for instance, 𝑇𝑂(𝑥) = 3.3𝑥 + 1.003sin(0.0001𝑥),
then individual 𝑇 might be easily discarded by the search,
even though it has a quite similar shape to 𝑇𝑂. On the
other hand, a local search process that performs a numerical
optimization of these implicit parameters might be able
to tune them and produce a substantial improvement in
programs performance, potentially improving the fitness
assigned to the above syntax. This is the view taken in this
work, and while previous works have included parameter
optimization for a standard GP search [17], this work applies
it to GP that uses the new semantic-based genetic operators.
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