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Abstract

The standard tournament selection samples individuals with replacement. The
sampling-with-replacement strategy has its advantages but also has issues. One of
the commonly recognised issues is that it is possible to have some individuals not
sampled at all during the selection phase. The not-sampled issue aggravates the loss
of diversity. However, it is not clear how the issue affects GP search. This paper
uses a round-replacement tournament selection to investigate the importance of the
issue. The theoretical and experimental results show that although the issue can be
solved and the loss of diversity can be minimised for small tournament sizes, the
different selection behaviour in the round-replacement tournament selection cannot
significantly improve the GP performance. The not-sampled issue does not seriously
affect the selection performance in the standard tournament selection.

Keywords Genetic Programming; tournament selection; standard tournament se-
lection; round-replacement tournament selection.
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Not-Sampled Issue and Round-Replacement

Tournament Selection

Abstract. The standard tournament selection samples individuals with
replacement. The sampling-with-replacement strategy has its advantages
but also has issues. One of the commonly recognised issues is that it is
possible to have some individuals not sampled at all during the selec-
tion phase. The not-sampled issue aggravates the loss of diversity. How-
ever, it is not clear how the issue affects GP search. This paper uses a
round-replacement tournament selection to investigate the importance of
the issue. The theoretical and experimental results show that although
the issue can be solved and the loss of diversity can be minimised for
small tournament sizes, the different selection behaviour in the round-
replacement tournament selection cannot significantly improve the GP
performance. The not-sampled issue does not seriously affect the selec-
tion performance in the standard tournament selection.

1 Introduction

Tournament selection is one of the commonly used parent selection schemes
in Evolutionary Algorithms (EAs) and becomes more popular in Genetic Pro-
gramming (GP). According to the description given by Goldberg and Deb [1],
the initial study of tournament selection can be traced back to the earlier 1980s
[2]. One form of the conventional tournament selections introduced in [2] be-
comes the standard nowadays. The standard tournament selection repeatedly
randomly samples k individuals uniformly with replacement from the current
population of size N and selects the one with the best fitness. Because indi-
viduals in a tournament are sampled from the population with replacement,
the standard tournament selection is simple to code and efficient for both non-
parallel and parallel architectures [3]. The standard tournament selection has
been widely studied theoretically since the 1990s [3–6], while many alternative
implementations have been developed [7–11].

One commonly recognised issue in the standard tournament selection is that
it is possible to have some individuals not sampled at all during the selection
phase when using small tournament sizes [4]. We think the not-sampled issue
aggravates the loss of diversity [5, 6, 12], which is a well recognised issue in EAs.
However, it is not clear how seriously the aggravation affects GP search.

We split the loss of diversity into two parts. One contribution is from the
fraction of the population that are not sampled at all during the selection phase.
The other contribution is from the fraction of population that never win any
tournament. An obvious way to tackle the not-sampled issue is to increase the
tournament size because larger tournament sizes provide more sampling chances.



However, increasing tournament size will increase the tournament competition
level. The loss of diversity contributed by not-selected individuals will increase,
resulting in worse total loss of diversity.

The not-sampled issue will only be completely solved if every individual in a
population is guaranteed to be sampled at least once during the selection phase.
However, the sampling-with-replacement method in the standard tournament
selection cannot guarantee this no matter how other aspects of selection will be
changed. Therefore, a sampling-without -replacement strategy must be used. One
strategy is that individuals are sampled without replacement into a tournament,
then after the winner is selected all individuals in the tournament are returned
back to the population. According to [1], the tournament selection using this
sampling-without-replacement strategy is one of the conventional tournament
selection methods. Unfortunately, it still cannot solve the not-sampled issue.
The status of the not-sampled issue remains open.

The goal of this paper is to investigate whether the not-sampled issue se-
riously affects the selection performance in the standard tournament selection.
To achieve this, we will firstly develop an approach that satisfies the following
requirements: (1) can minimise the number of not-sampled individuals, (2) can
maintain the same tournament competition level as in the standard tournament
selection, and (3) can preserve selection pressure across the population, then
compare the approach with the standard tournament selection. In particular,
this paper addresses the following questions:

– How should individuals be sampled to minimise the loss of diversity con-
tributed by not-sampled individuals?

– Can significant improvement in GP be obtained after the not-sampled prob-
lem is solved?

2 Sampling Without Replacement Strategies

We propose an alternative sampling-without-replacement strategy that is to only
return the losers instead of all sampled individuals back to the population after
choosing a winner. We term this strategy as loser-replacement. By using this
strategy, the size of the population gradually decreases along the way to form the
next generation. At the end, the population may be smaller than the tournament
size so that a tournament may not be filled. If we simply accept such cases and
run tournaments as usual, then the loser-replacement tournament selection will
not have any selection pressure across the population. It will be very similar to
a random sequential selection where every individual in the population can be
randomly selected as a parent to mate but just once. The only difference between
the outcomes of the loser-replacement tournament selection and the random
sequential selection is the mating order. In the random sequential selection, the
mating order is completely random, while in the loser-replacement tournament
selection it is possible that better parents mate together and worse parents mate
together with some stochastic elements. Although the loser-replacement strategy



can ensure zero loss of diversity, it cannot preserve any selection pressure across
population. Therefore, it is not very useful.

To satisfy all the essential requirements, we propose another sampling-without-
replacement strategy. It is that after choosing a winner, all sampled individuals
are kept in a temporary pool instead of being immediately returned back to
the population. For this strategy, as long as the tournament size is greater than
one, after a number of tournaments, the population will be empty. If there is a
need to conduct more tournaments for selecting parents, the population must
be refilled using the temporary pool. More precisely, for a population P of size
N and tournaments of size k, the algorithm is:

1: Initialise an empty population T
2: while need to generate more offspring do

3: if population size < k then

4: Refill: move all individuals from the temporary population T to the
population P

5: end if

6: Sampling k individuals without replacement from the population P
7: Select the winner from the tournament
8: Move the k sampled individuals into the temporary population T
9: return the winner

10: end while

We term a tournament selection using this strategy as round-replacement

tournament selection. The remainder of the paper theoretically and experimen-
tally analyses this strategy to further investigate the research questions.

3 Assumptions and Definitions

In general, a population consists of a set of bags of programs with distinct fitness
where the sizes of these bags may be different. Let the population be S and the
size of the population be |S|. Let the bag of programs with the fitness rank j be
Sj and let its size be |Sj |. Let the tournament size be k. Let the program with
the worst fitness be ranked 1st. We follow the standard breeding process, that
is, one parent produces one offspring after mutation and two parents produce
two offspring via crossover. Therefore the total number of tournaments is |S| at
the end of generating individuals in the next generation.

To analyse the selection behaviour, this paper uses the loss of program diver-
sity and the selection probability distribution on three populations with different
fitness distributions, namely uniform, random, and quadratic fitness distributions
(see Figure 1).

The loss of program diversity is calculated based on the refined definition
given in [12]. It is the ratio of the sum of the probabilities that each individual
in the population has never been selected during the selection phase to the
population size.

The selection probability distribution of a population is defined to consist of
the probabilities of each individual in the population being selected at least once
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Fig. 1. Three populations with different fitness distributions.

in the selection phase. It gives a thorough picture about the selection behaviour
over the population.

The three fitness distributions are designed to simulate the three stages of
evolution. The uniform fitness distribution represents the initialisation stage,
which is the only place that users can easily manipulate the fitness distribution
of the population. Its population size is set to 40. The random fitness distribution
represents the middle stage of evolution, where better and worse individuals are
possibly randomly distributed. Its population size is set to 400. The quadratic
like fitness distribution represents the later stage of evolution, where a large
number of individuals converge to better fitness values. Its population size is
set to 2000. Note that although these three populations have different sizes, the
distinct number of fitness ranks are designed to be the same value 40 for easy
visualisation and comparison purposes.

4 Modelling Standard Tournament Selection

The sampling probability and the selection probability models in the standard
tournament selection are referenced below with some adaptions to meet the
context in this paper.

For any program p, let Iy be the event that p is drawn or sampled at least
once in y tournaments. The probability of the event Iy is:

P (Iy) = 1 −

(

(

|S| − 1

|S|

)|S|)
y

|S|
k

(1)

Let Ej,y be the event that p ∈ Sj is selected at least once in y tournaments.
The probability of the event Ej,y is:

P (Ej,y) = 1 −



1 −
1

|Sj |

(

∑j

i=1
|Si|

|S|

)k

−

(

∑j−1

i=1
|Si|

|S|

)k




y

(2)



5 Modelling Round-Replacement Tournament Selection

After |S|/k tournaments, the round-replacement algorithm will refill the popu-
lation to start another round of tournaments and will conduct k rounds in total
in order to form the entire next generation provided that the remainder of |S|
divided by k is zero. It is obvious that any program will be sampled exactly k
times during the selection phase.

Lemma 1 For a particular program p ∈ Sj, let Wj be the event that p wins or

is selected in a tournament. The probability of the event Wj is:

P (Wj) =

∑k

n=1

1

n

(

|Sj | − 1
n − 1

)(
∑j−1

i=1
|Si|

k − n

)

(

|S|
k

) (3)

Proof. The characteristic of the round-replacement tournament selection is that
it guarantees p will be sampled in just one of the |S|/k tournaments in a round.
According to this, the effect of a full round of tournaments is to partition S into
|S|/k disjoint subsets. The program p is a member of precisely one of these |S|/k
subsets. Therefore the probability of it being selected in the first tournament is
exactly the same as that in any other tournament in the round. Further, the
probability of it being selected in the first round is exactly the same as that in
any other rounds since all k rounds of tournaments are independent. Therefore
we only need to model the selection probability of p in the first tournament
of a round. Note that p will only be selected if no better ranked programs are
sampled in the same tournament.

As it is possible that more than one program have the same rank, the proba-
bility of p ∈ Sj being selected depends on the number of other programs having
the same rank that are sampled in the same tournament. Assuming within the
rest k − 1 samples in the tournament, they are all from programs having the
rank j and no programs with worse ranks are sampled, the number of possible
sampling events is:

(

|Sj | − 1
k − 1

)(
∑j−1

i=1
|Si|

0

)

(4)

If within the rest k − 1 samples in the tournament, there are n programs (0 ≤
n ≤ k − 1) from the rank j and k − 1 − n programs from worse ranks, then the
number of sampling events is:

(

|Sj | − 1
n

)(
∑j−1

i=1
|Si|

k − 1 − n

)

(5)

Therefore, the total number of sampling events where p ∈ Sj can be selected as
the winner is:

k−1
∑

n=0

(

|Sj | − 1
n

)(
∑j−1

i=1
|Si|

k − 1 − n

)

(6)



As each of the n + 1 programs has an equal probability to be chosen as the
winner. Therefore, after a simple manipulation, we obtain Equation (3). ⊓⊔

Let Ej be the event that p is selected in a round of tournaments. As there
are |S|/k times in total that p can be selected in a round, the probability of the
event Ej is:

P (Ej) = P (Wj)
|S|

k
=

∑k

n=1

1

n

(

|Sj | − 1
n − 1

)(
∑j−1

i=1
|Si|

k − n

)

(

|S| − 1
k − 1

) (7)

Let Tj,c be the event that p is selected at least once by the cth round. As
the selection behaviour in any two rounds are independent and identical, the
probability that the event Tj,c is:

P (Tj,c) = 1 − (P (Ej))
c (8)

6 Selection Behaviour Comparison and Analysis

Based on the sampling probability models and the selection probability mod-
els presented in Sections 4 and 5, we calculated three loss of program diver-
sity measures, namely the total loss of program diversity and the contributions
from not-sampled and not-selected individuals, for the standard and the round-
replacement tournament selections on each of the three populations with differ-
ent fitness distributions (see Figure 2).
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Fig. 2. Loss of program diversity comparison. Note that tournament size is discrete
but the plots show curves to aid interpretation only.



In Figure 2 (a), when the tournament size is 1, the total loss of program di-
versity is contributed by the not-sampled individuals only. This is because once
an individual is sampled, it must be selected as a parent as there is no other
competitors in the tournament. However, the contribution from not-sampled in-
dividuals becomes smaller and close to zero when the tournament size increases,
while the contribution from not-selected individuals becomes larger and dom-
inates the total loss of program diversity when the tournament size is greater
than five. There is no noticeable differences between the loss of program diversity
measures on different sized populations with different fitness distributions. The
loss of program diversity is mainly controlled by the tournament size. Extra vi-
sualisations on other sized populations with the three given fitness distributions
support the finding (figures are omitted due to the space limit).

In Figure 2 (b), there is only one trend visible in each sub-chart. This is
because there is no contribution from the not-sampled individuals at all in the
round-replacement tournament selection. Individuals are guaranteed to be sam-
pled, precisely sampled once in a round and k times in total. The trends of
the total loss of diversity and the contribution from the not-selected individu-
als completely overlap each other. Therefore, the round-replacement tournament
selection minimises the loss of program diversity for the small tournament sizes
(approximately less than five) while maintains the same competition level. Again
there is no noticeable differences between the loss of program diversity measures
on different sized populations with different fitness distributions.

With closer inspection in the total loss of diversity, when larger tournament
sizes are used, a slight difference occurs in the round-replacement tournament
selection on the smaller sized population. Apart from that, there is no noticeable
changes in the two tournament selection schemes.

Figures 3 and 4 illustrate the selection probability distributions of the two
tournament selection schemes on the three populations with different fitness
distributions. Three different tournament sizes, namely 2, 4, and 7, are used to
demonstrate the influences from different tournament sizes to the impacts of the
round-replacement strategy. Tournament size 2 is chosen as it was used when
the tournament selection was first introduced [1]. Tournament size 4 is chosen
as it is a common setting from the literature. Tournament size 7 is chosen as it
is recently recommended by the international GP research community.

Instead of plotting the selection probabilities for each individual, we only
plot them for each of the 40 unique fitness ranks so that plots in different sized
populations are in the same scale.

The two figures show that the round-replacement tournament selection has
some different behaviour from the standard one, especially when the tournament
size is 2. However, the differences are mainly related to the best individuals,
whose selection probabilities reach 100% very quickly.

To further investigate whether the different selection behaviour in the round-
replacement tournament selection can improve a GP system significantly, the
next section presents an experimental analysis on some common problems.
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Fig. 3. Selection probability distribution in the standard tournament selection scheme
with tournament size 2, 4 and 7 on three different fitness distributions.

7 Experiment Design

7.1 Data Sets

The experiments involve three different problem domains: an Even-n-Parity
problem (EvePar), a Symbolic Regression problem (SymReg), and a Binary
Classification problem (BinCla).

EvePar takes an input of a string of n boolean values and outputs true if
there are an even number of true’s, and otherwise false. In this study, the case of
n = 6 is considered. Therefore, there are 26 combinations of unique 6-bit length
strings as fitness cases.

SymReg is shown in Equation (9). We generated 100 fitness cases by choosing
100 values for x from [-5,5] with equal steps.

f(x) = exp(1 − x) × sin(2πx) + 50 sin(x) (9)

BinCla involves determining whether examples represent a malignant or a
benign breast cancer. The dataset is the Wisconsin Diagnostic Breast Cancer
dataset chosen from the UCI Machine Learning repository [13]. The BinCla
consists of 569 data examples, where 357 are benign and 212 are malignant.
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Fig. 4. Selection probability distribution in the round-replacement tournament selec-
tion scheme with tournament size 2, 4 and 7 on three different fitness distributions.

7.2 Function Sets and Fitness Functions

The function set used for EvePar consists of the standard Boolean operators
{ and, or, not } and if function. The function set used for SymReg includes the
four standard arithmetic binary operators and unary operators { abs, exp sin,}.
The function set used for BinCla includes the four standard arithmetic binary
operators, unary operators { abs, sqrt, sin } and if function. The if function takes
three arguments and returns its second argument if the first argument is positive,
and its third argument otherwise.

The fitness function in EvePar is the number of wrong outputs (misses) for
the 64 combinations of 6-bit length strings. The fitness function in SymReg is
the root-mean-square (RMS) error of the outputs of a program relative to the
expected outputs. The fitness function in BinCla is the classification error rate
on the training data set. A program classifies the fitness case as benign if the
output of the program is positive, and malignant otherwise.

7.3 Genetic Parameters and Configuration

The genetic parameters are the same for all three problems. The ramped half
and half method is used to create new programs and the minimum depth of



creation is three and the maximum is five. The maximum size of a program is 50
nodes. The crossover rate, the mutation rate, and the reproduction rate are 85%,
10% and 5% respectively. A run is terminated when the number of generations
reaches the pre-defined maximum of 101 (including the initial generation), or
the problem has been solved. As tournament sizes 2, 4, and 7 are used, the
population size is set to 504 in order to have zero remainder at the end of a
round of tournaments in the round-replacement tournament selection.

We ran experiments comparing the two GP systems using the standard and
the round-replacement tournament selections respectively for each of the three
problems. In each experiment, we repeated the whole evolutionary process 500
times independently. In each pair of the 500 runs, an initial population is gen-
erated randomly and is provided to both GP systems in order to reduce the
performance variance caused by different initial populations.

Because of the nature of the tasks, EvePar and SymReg did not need a
separate test set. For BinCla, we split the whole original data set randomly and
equally into a training data set, a validation data set, and a test data set, ensuring
that the class labellings were evenly split into the three data sets. It is possible
that GP runs on BinCla subject to overfitting. Therefore, we let runs terminate
according to the predefined termination criteria, then the performance of each
run is the test fitness value of the recorded program with the best validation
fitness.

8 Experimental Results and Analysis

Table 1 compares the performances of GP systems using the two tournament
selection schemes. The measure for EvePar is the completion rate, measuring
the fraction of runs that successfully returned the ideal solution. The best value
is 100%. The measures for SymReg and BinCla are the averages of the RMS
error and the classification error rate on test data over 500 runs respectively,
thus the smaller the value, the better the performance. Note that the standard
deviation follows the ± sign.

Table 1. Performance comparison.

Tournament Selection EvePar SymReg BinCla

Scheme Size Completion (%) RMS Error Test Error Rate (%)

2 0 48.2 ± 5.2 9.3 ± 2.9
standard 4 19.4 37.6 ± 8.3 8.8 ± 2.8

7 17.6 40.9 ± 11.3 8.9 ± 2.8

2 0.4 47.4 ± 5.3 8.6 ± 2.8
round-replacement 4 20.6 38.3 ± 8.0 8.8 ± 2.7

7 22.4 40.6 ± 11.4 8.9 ± 2.8

The results demonstrate that the round-replacement tournament selection
has some advantages. In order to provide statistically sound comparison results,
we calculated the confidence intervals at 95% and 99% levels (two-sided) for the



differences in completion rates, in RMS errors, and in error rates for EvePar,
SymReg and BinCla respectively. For EvePar, we used the formula P̂1 − P̂2 ±

Z

√

P̂1(1 − P̂1)/500 + P̂2(1 − P̂2)/500, where P̂1 is the completion rate using the

round-replacement tournament selection, P̂2 is the completion rate using the
standard tournament selection, and Z is 1.96 for 95% confidence and 2.58 for
99% confidence. For SymReg and BinCla, we firstly calculated the difference of
the measures between a pair of runs using the same initial population for each of
the 500 pairs of runs, then used the formula x̄±Z s√

500
to calculate the confidence

interval, where x̄ is the average difference over 500 values and s is the standard
deviation. If zero is not included in the confidence interval, then the difference
is statistically significant.

Table 2 only shows the confidence intervals at 95% level as the statistical
analysis results from the two levels are consistent.

Table 2. Confidence intervals at 95% level.

Tournament size EvePar SymReg BinCla

2 (-0.15, 0.95) (-1.48, -0.24) (-0.99, -0.36)

4 (-3.76, 6.16) (-0.22, 1.57) (-0.34, 0.24)

7 (-0.15, 9.75) (-1.47, 0.85) (-0.21, 0.37)

From the table, the round-replacement tournament selection is only statisti-
cally significantly better than the standard tournament selection (shown in bold)
when the tournament size is 2 for SymReg and BinCla. However, practically the
differences are small. For BinCla, when the tournament size is 2, although the
mean test error rate 8.6% in the round-replacement tournament selection is bet-
ter than 9.3% in the standard one, such a performance is still insignificantly
different from 8.8%, which is obtained by using the standard tournament selec-
tion with tournament size 4 (the 95% confidence interval of the difference is from
-0.52% to 0.10%).

The insignificant differences observed for tournament sizes 4 and 7 are not
surprising because there is no observable reduction on the loss of program diver-
sity correspondingly. The results show that there exists little impact from the
slight differences on the selection probability of the top ranked programs.

Therefore, the theoretical and experimental analyses results show that al-
though the not-sampled issue is solved, overall the different selection behaviour
in the round-replacement tournament selection appears not to be able to signif-
icantly improve a GP system for the given tasks.

9 Conclusions and Future Work

The standard tournament selection samples individuals with replacement. It has
the not-sampled issue when using smaller tournament sizes. The not-sampled
issue aggravates the loss of program diversity. This paper proposed the round-
replacement tournament selection that solved the issue and effectively minimised



the loss of program diversity for smaller tournament sizes. Theoretical analyses il-
lustrated some different selection behaviour in the selection scheme. However, the
experimental results showed that when common tournament sizes are used for
the given tasks, the different parent selection behaviour in the round-replacement
tournament selection did not usually significantly improve the performance of a
GP system. The results suggested that the not-sampled issue does not seriously
affect the selection performance in the standard tournament selection. Instead,
the not-sampled programs can be utilised to save the computational cost [4].

The reduced loss of program diversity through the round-replacement tour-
nament selection appears not to be able to significantly improve the GP per-
formance. Other mechanisms need to be investigated to further reduce the loss
of program diversity. Further, in order to significantly improve the standard
tournament selection scheme, making it be able to well understand the dynam-
ics along evolution, other more important aspects, including the impacts of the
fitness distribution, should be considered in the future.
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