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Hyper-heuristics comprise a set of approaches that are motivated (at least in part) by the goal of automating the 

design of heuristic methods to solve hard computational search problems. An underlying strategic research challenge is to 

develop more generally applicable search methodologies. The term hyper-heuristic is relatively new; it was first used 

in 2000 to describe heuristics to choose heuristics in the context of combinatorial optimisation. However, the idea of 

automating the design of heuristics is not new; it can be traced back to the 1960s. The definition of hyper-heuristics has 

been recently extended to refer to a search method or learning mechanism for selecting or generating heuristics to solve 

computational search problems. Two main hyper-heuristic categories can be considered: heuristic selection and heuristic 

generation. The distinguishing feature of hyper-heuristics is that they operate on a search space of heuristics (or 

heuristic components) rather than directly on the search space of solutions to the underlying problem that is being 

addressed. This paper presents a critical discussion of the scientific literature on hyper-heuristics including their origin 

and intellectual roots, a detailed account of the main types of approaches, and an overview of some related areas. 

Current research trends and directions for future research are also discussed. 
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1. Introduction 

Despite the success of heuristic methods and other search 

techniques in solving real-world computational search 

problems, there are still some difficulties in terms of easily 

applying them to newly encountered problems, or even new 

instances of similar problems. These difficulties arise mainly 

from the significant range of parameter or algorithm choices 

involved when using this type of approach and the lack of 

guidance as to how to select them. In addition, the scientific 

community’s level of understanding of why different 

heuristics work effectively (or not) in different situations 

does not facilitate simple choices of which approach to use 

in which situation. Another drawback of current techniques 

is that state-of-the-art approaches for real-world problems 

tend to represent bespoke problem-specific methods which 

are expensive to develop and maintain. A key motivating 

goal for this area (but by no means the only one) is the 

challenge of automating the design and tuning of heuristic 

methods to solve hard computational search problems 

(Burke et al, 2003a, 2009; Ross, 2005). The main idea is to 

develop algorithms that are more generally applicable than 

many of the current implementations of search methodol-

ogies. When using hyper-heuristics, we are attempting to 

find the right method or sequence of heuristics in a given 

situation rather than trying to solve the problem directly. 

Hyper-heuristics could be regarded as ‘off-the-peg’ methods 

as opposed to ‘made-to-measure’ techniques. Therefore, an 

important goal is to design generic methods, which should 

produce solutions of acceptable quality, based on a set of 

easy-to-implement low-level heuristics. A hyper-heuristic 

can be seen as a (high-level) methodology which, when a 

particular problem instance or class of instances, and a 

number of low-level heuristics (or its components),  
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produces an adequate combination of the provided 

components to effectively solve the given problem(s). The 

overall goal of this paper is to analyse and discuss the 

hyper-heuristic literature to date. 

The term hyper-heuristics was first used in a peer-

reviewed conference paper in 2001 (Cowling et al, 2000). 

The ideas in this first paper were further developed and 

applied to scheduling problems in Cowling et al (2001, 

2002a, b, c). In these publications, a hyper-heuristic
1
 was 

considered to be a high-level approach that, given a 

particular problem instance and a number of low-level 

heuristics, can select and apply an appropriate low-level 

heuristic at each decision point. An earlier single appear-

ance of the term can be found in a technical report 

(Denzinger et al, 1996), where it was used in a different 

context, to describe an approach that combines a range of 

Artificial Intelligence algorithms for automated theorem 

proving. This report only uses the term once and does not 

propose a definition of hyper-heuristics. The basic idea of 

automating the design and/or selection of heuristics is, 

however, much older. It can be traced right back to the 

early 1960s, as we will discuss in Section 2. 

A number of introductory tutorial and review book 

chapters on hyper-heuristics have been published over the 

last few years. The first one appeared in 2003 (Burke et al, 

2003a), where the authors discussed the idea of hyper-

heuristics and stressed one of the key objectives; namely, to 

raise the level of generality at which optimisation systems 

can operate. The chapter also gives a brief history of the 

area and discusses in detail some representative examples 

published at the time. A tutorial article was later published 

by Ross (2005), which not only gives useful guidelines 

for implementing a hyper-heuristic approach, but it also 

discusses a number of relevant research issues and identifies 

promising application domains. A more recent publication 
1In these first appearances, the term was often written without a 

hyphen (ie hyperheuristics). Throughout this article, we have chosen to 

use the most widely used spelling of the term (with the hyphen).  
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(Chakhlevitch and Cowling, 2008) provides a classification 

and discussion of recent developments in hyper-heuristics, 

with an emphasis on real-world complex applications. The 

chapter presents three useful criteria as a definition of these 

approaches, which we rephrase here: a hyper-heuristic is (i) 

a higher level heuristic that manages a set of low-level 

heuristics, (ii) it searches for a good method to solve the 

problem rather than for a good solution, and (iii) it uses 

only limited problem-specific information. The authors 

regard the last criteria as the most crucial one. A recent 

overview and tutorial chapter (Burke et al, 2009) discusses 

methodologies to generate new heuristics from a set of 

potential heuristic components, in which Genetic Program-

ming plays a prominent role. The chapter includes a 

detailed description of the steps needed to apply this 

approach, some representative case studies, a brief literature 

review of related work, and a discussion of relevant issues 

of this class of hyper-heuristic. Finally, Burke et al (2010d) 

present an overview of previous categorisations of hyper-

heuristics and provide a unified classification and definition 

that captures the work that is being undertaken in this field. 

A hyper-heuristic is defined, there, as ‘a search method or 

learning mechanism for selecting or generating heuristics to 

solve computational search problems’. 

The next section discusses the intellectual roots and early 

hyper-heuristic approaches. Section 3 discusses our propo-

sal for classifying hyper-heuristics (Burke et al, 2010d). 

Following this classification, we then provide a critical 

discussion of the scientific literature covering heuristic 

selection methodologies (Section 4), and heuristic generation 

methodologies (Section 5). Section 6 briefly overviews 

some related approaches that also seek to automate 

the design and tuning of search algorithms. Finally, Section 

7 highlights the main research trends in hyper-heuristics and 

suggests some potentially interesting future research direc-

tions. 

2. Origins and early approaches 

The ideas behind hyper-heuristics are not new. They can 

be traced back to the early 1960s, and can be found 

across Operational Research, Computer Science and 

Artificial Intelligence. We describe below some relevant 

intellectual roots and early approaches developed before 

2000. We have identified the following four types of early 

approach: 

2.1. Automated heuristic sequencing 

Fisher and Thompson (1963) and Crowston et al (1963) 

hypothesised that combining scheduling rules (also known 

as priority or dispatching rules) in production scheduling 

would be superior to using any of the rules separately. 

This pioneering work should be credited with laying the 

foundations of the current body of research into hyper-

heuristic methods. The proposition was for a method of 

combining scheduling rules using ‘probabilistic learning’. 

The main conclusions from this study are the following: ‘(1) 

an unbiased random combination of scheduling rules is 

better than any of them taken separately; (2) learning is 

possible’ (Fisher and Thompson, 1963). 

In the 1990s, these ideas were revisited: Storer et al 

(1992, 1995) clearly stated the problem of designing a 

good combination of problem-specific (fast) heuristics in 

job-shop scheduling as a search problem, and defined 

neighbourhoods within the heuristic space. The approach 

discussed in Fang et al (1993, 1994) employed a genetic 

algorithm to search a space of sequences of heuristic 

choices in the context of open-shop scheduling. Later on, 

Hart and Ross (1998) applied a variant of this idea to 

dynamic job-shop scheduling problems. Hart et al (1998) 

used a genetic algorithm-based approach to solve a real-

world scheduling and delivery problem. The approach 

combined two genetic algorithms that evolved heuristic 

choices, one to manage the assignment of orders, and the 

second to schedule the arrival of deliveries. The approaches 

discussed above were all ‘online’. That is, directed to find 

good sequences of heuristics to solve a given instance of a 

problem. In contrast, the work by Drechsler and Becker 

(1995); Drechsler et al (1996) in the domain of electronic 

chip design used an evolutionary algorithm to learn 

(from a set of previous examples) successful heuristics that 

can be applied to instances from a given problem after 

a learning phase. 

2.2. Automated planning systems 

Another body of work that inspired the concept of hyper-

heuristics came from the Artificial Intelligence 

community. In particular, from work on automated 

planning systems and the problem of learning control 

knowledge. In Gratch et al (1993), Gratch and Chien 

(1996), the so-called COMPOSER system was used for 

controlling satellite communication schedules. The system 

can be characterised as a hill-climbing search in the space 

of possible control strategies. The approach is off-line in that 

a large supply of representative training problems are 

required in order to have an adequate estimate of the 

expected utility for various control strategies. This 

methodology employed domain-specific knowledge, and 

thus differs from modern hyper-heuristic approaches. 

Moreover, a planning problem differs from the general 

formulation of optimisation problems: the objective in 

planning is to find a prescription for actions to change the 

initial state into one that satisfies the goal. 

2.3. Automated parameter control in evolutionary 

algorithms 

Some early approaches to automatically set the parameters 



 

of evolutionary algorithms can also be considered as 

antecedents of hyper-heuristics. Several mechanisms for 

modifying parameters during the run in an ‘informed’, 

adaptive way were proposed early in the history of evo-

lutionary algorithms (Eiben et al, 1999). Another idea is that 

of using an evolutionary algorithm to tune an evolutionary 

algorithm. This can be done using two evolutionary 

algorithms: one for problem solving and another one 

(so-called meta-evolutionary algorithm) to tune the first 

one (Grefenstette, 1986; Freisleben and Härtfelder, 1993). It 

can also be done by using a single evolutionary algorithm 

that tunes itself to a given problem while solving it. The 

notion of ‘self-adaptation’, first introduced within evolution 

strategies for varying the mutation parameters (Rechenberg, 

1973; Schwefel, 1977), is an example in this category. Self-

adaptation in evolutionary algorithms means that some 

parameters are varied during a run in a specific manner: the 

parameters are included in the chromosomes and co-evolve 

with the solutions. These approaches are related to the idea 

of searching over a space of possible algorithm configura-

tions, and are, therefore, related to hyper-heuristics. For an 

overview and classification of approaches to parameter 

control in evolutionary algorithms, the reader is referred to 

Eiben et al (1999, 2007). 

2.4. Automated learning of heuristic methods 

An early approach to the automated generation of heu-

ristic computer programs can be found in the domain of 

constraint satisfaction problems (Minton, 1996). In parti-

cular, the pioneering work of Minton (1996) presents a 

system for generating reusable heuristics for Minimum 

Maximal Matching Problem. The system modifies given 

elements of algorithm ‘schema’, which are templates of 

generic algorithms. The general idea is to automatically 

synthesise problem-specific versions of constraint satisfac-

tion algorithms. The user provides a set of training 

instances that the system can experiment with during the 

configuration processes, and thus adapt to the particular 

instance distribution represented by the training instances. 

This study is unique in the literature, as the automated 

approach is compared against those produced by three 

NASA programmers, producing competitive results, and 

even often outperforming the human programmers. An-

other interesting learning approach in the mid-1990s was 

termed ‘Teacher’ (Wah et al, 1995; Wah and Ieumwana-

nonthachai, 1999) (an acronym for TEchniques for the 

Automated Creation of HEuRistics), which was designed 

as a system for learning and generalising heuristics used in 

problem solving. The objective was to find improved 

heuristic methods as compared with existing ones, in 

applications with little or non-existent domain knowledge. 

The Teacher system employed a genetic-based machine 

learning approach, and was successfully applied to several 

domains such as: process mapping, load balancing on a 

network of workstations, circuit placement, and routing 

and testing. 

3. A classification of hyper-heuristic approaches 

As a framework for structuring this survey paper, we use the 

classification of hyper-heuristic approaches proposed in 

Burke et al (2010d) (Figure 1). This figure is reproduced 

here for completeness. This classification considers two 

dimensions: (i) the nature of the heuristics’ search space, and 

(ii) the different sources of feedback information. According 

to the nature of the search space, we have (i) heuristic 

selection: methodologies for choosing or selecting existing 

heuristics, and (ii) heuristic generation: methodologies for 

generating new heuristics from the components of existing 

ones. A second level in this dimension corresponds to the 

distinction between constructive and perturbative search 

paradigms (Hoos and Stu¨ tzle, 2004). Perturbative meth-

ods work by considering complete candidate solutions 

and changing them by modifying one or more of their 

solution components, while constructive methods work 

by considering partial candidate solutions, in which one 

or more solution components are missing, and iteratively 

extending them. 

 

 
Figure 1 A classification of hyper-heuristic approaches, 

according to two dimensions: (i) the nature of the heuristic 

search space, and (ii) the source of feedback during learning 

(Burke et al, 2010d). 

A hyper-heuristic is a learning algorithm when it uses 

some feedback from the search process. According to the 

source of the feedback during learning, we can distinguish 

between online and offline learning. In online learning 

hyper-heuristics, the learning takes place while the algo-

rithm is solving an instance of a problem, whereas in offline 

learning hyper-heuristics, the idea is to gather knowledge in 

the form of rules or programs, from a set of training 

instances, that will hopefully generalise to solving unseen 

instances. 

These categories reflect current research trends. How-

ever, there are methodologies that can cut across 

categories. For example, we can see hybrid methodologies 

that combine constructive with perturbation heuristics (see 

eg Garrido and Riff, 2010), or heuristic selection with 

heuristic generation (Krasnogor and Gustafson, 2004; 



 

Maturana et al, 2010; Remde et al, 2012). 

4. Heuristic selection methodologies 

4.1. Approaches based on constructive low-level heuristics 

These approaches build a solution incrementally. Starting 

with an empty solution, they intelligently select and use 

constructive heuristics to gradually build a complete 

solution. The hyper-heuristic framework is provided with 

a set of pre-existing (generally problem specific) construc-

tive heuristics and the challenge is to select the heuristic 

that is somehow the most suitable for the current prob-

lem state. This process continues until the final state 

(a complete solution) has been reached. Notice that there is 

a natural ending to the construction process when a 

complete solution is reached. Therefore, the sequence of 

heuristic choices is finite and determined by the size of the 

underlying combinatorial problem. Furthermore, there is 

the interesting possibility of learning associations between 

partial solution stages and adequate heuristics for those 

stages. 

Several approaches have recently been proposed to 

generate efficient hybridisations of existing constructive 

heuristics in domains such as timetabling, cutting and 

packing, production scheduling, constraint satisfaction, 

and vehicle routing problems (see Table 1). Both online 

and offline approaches, and different high-level strategies, 

or learning mechanisms have been investigated. The 

following subsections survey the approaches according to 

the application domain. 

4.1.1. Educational timetabling. There is a well-known 

analogy between a basic version of a timetabling prob-

lem and the graph colouring problem. Nodes can 

represent events and edges represent conflicts between 

events. Using this analogy, some timetabling algorithms 

in the literature are based upon graph colouring 

heuristics. These heuristics are criteria to select the next 

node to colour. Early approaches using evolutionary 

algorithms to evolve instructions for constructing an 

examination timetable rather than inducing the actual 

timetable were proposed in Ross et al (1997) and 

Terashima-Marı´n et al (1999). The idea was to use a 

non-direct chromosome representation based on evolving 

the configuration of constraint satisfaction methods for 

examination timetabling problems. 

Ahmadi et al (2003) use a variable neighbourhood search 

algorithm to find good combinations of parameterised 

heuristics in examination timetabling. Several constructive 

heuristics are proposed based on a weighted decision 

function and the basic graph colouring heuristics. Low-

level heuristics are used for exam selection, period 

selection, and room selection. The approach is used to 

solve real-world instance from the University of Notting-

ham, UK. A follow-up paper (Cheng et al, 2003) proposed 

a mixed-initiative approach to integrating human expertise, 

which supports the usefulness of hyper-heuristics in real-

world problem-solving scenarios. 

 
Table 1 Application domains of heuristic selection 

methodologies based on constructive low-level heuristics 

Application domain Reference(s) 

Production scheduling Fisher and Thompson (1963) 

Storer et al (1992, 1995) 

Dorndorf and Pesch (1995) 

Fang et al (1993, 1994) 

Norenkov and Goodman (1997) 

Hart and Ross (1998); Hart et al 

(1998) 

Vázquez-Rodriguez et al (2007a, b) 

Ochoa et al (2009b) Vázquez-

Rodriguez and Petrovic (2010) 

Cano-Belmán et al (2010) 

Garcia-Villoria et al (2011) 

Educational timetabling Terashima-Marin et al (1999) 

Ahmadi et al (2003) 

Cheng et al (2003); Asmuni et al 

(2005) 

Ross et al (2004); Ross and Marı´n-

Blázquez (2005) 

Burke et al (2005a, 2006b) 

Burke et al (2007c); Qu and Burke 

(2009) 

Ochoa et al (2009a) 

Li et al (2011) 

Pillay and Banzhaf (2007); Pillay 

(2008) 

Sabar et al (2011) 

1D Packing Ross et al (2002, 2003) 

Marin-Blázquez and Schulenburg 

(2007) 

2D cutting and packing Terashima-Marin et al (2006, 2007, 

2009) 

Garrido and Riff (2007a, b) 

Lopez-Camacho et al (2010 

Workforce scheduling Remde et al (2007, 2009, 2012) 

Constraint satisfaction Terashima-Marin et al (2008) 

Ortiz-Bayliss et al (2010) 

Vehicle routing Garrido and Castro (2009); 

Garrido and Riff (2010) 

 

Asmuni et al (2005) investigate the use of a fuzzy system 

in solving course timetabling problems. The events 

(courses) to be scheduled are ordered by combining graph 

colouring heuristics. The fuzzy weight of an event is used to 

represent how difficult it is to schedule. A restricted form of 

exhaustive search is used to find the most appropriate 

shape for the fuzzy membership functions. The algorithm 

was tested on benchmark data sets with encouraging 

results. 

Burke et al (2007c) propose a hyper-heuristic framework 

that implements commonly used graph colouring heuristics 



 

coupled with a random ordering heuristic. Tabu search is 

employed as the high-level search method for producing 

good sequences of the low-level heuristics. Each heuristic 

list produced by the tabu search algorithm is evaluated by 

sequentially using the individual heuristics to order the 

unscheduled events, and thus construct a complete time-

table. This work also highlights the existence of two search 

spaces: the heuristic space and the problem solution space. 

The approach was tested on both course and exam 

timetabling benchmark instances with competitive results. 

A follow-up paper (Qu and Burke, 2009) compares the 

performance of several metaheuristics that operate on the 

search space of heuristics. Iterative techniques such as 

iterated local search and variable neighbourhood search 

were found to be more effective for traversing the heuristic 

search space. The study also implemented hybridisations of 

the hyper-heuristic framework with standard local search 

operating on the solution space, which was found to 

improve the performance of the overall system, making it 

competitive with state-of-the-art approaches on the studied 

benchmark instances. A further study (Ochoa et al, 2009a) 

uses the notion of fitness landscapes to analyse the search 

space of graph colouring heuristics. These landscapes are 

found to have a high level of neutrality (ie, the presence of 

plateaus). Furthermore, although rugged, they have the 

encouraging feature of a globally convex or big valley 

structure, which indicates that an optimal solution would 

not be isolated but surrounded by many local minima. 

Li et al (2011) investigate two data mining techniques, 

artificial neural networks and binary logistic regression to 

find global patterns hidden in large data sets of heuristic 

sequences. With the trained classification rules, the 

performance of a resulting solution during the hyper-

heuristic search can be predicted without the need to 

undertake the computationally expensive determination 

of the solution and calculation of the objective function. 

The approach was tested on the graph-colouring hyper-

heuristic discussed above (Burke et al, 2007c), producing 

significant speed ups of the search process. 

Pillay and Banzhaf (2007) and Pillay (2008) study the 

performance of evolutionary algorithms on a similar search 

space as that discussed above, namely, the space of 

combinations of graph colouring heuristics for examina-

tion timetabling. In the initial study (Pillay and Banzhaf, 

2007), each element of the population is a variable length 

string, where each character represents a heuristic. The 

approach produced feasible examination timetables with 

soft constraints within the range of other search methods 

employed for this purpose, and outperformed previous 

hyper-heuristics on a number of the tested instances. 

Ross et al (2004) and Ross and Marı´n-Blázquez (2005) 

apply a messy genetic algorithm (Goldberg et al, 1990) 

hyper-heuristic based on graph colouring heuristics to both 

class and exam timetabling problems. The idea is to learn 

associations between problem states and adequate heur-

istics for timetabling. Specifically, the system tries to 

discover a set of labelled points in the space of the problem 

states. Each label refers to a heuristic, and the algorithm 

works by repeatedly finding the nearest labelled point to 

the current condition and applies its label until a complete 

solution is built. Various different forms of problem-state 

description and methods of measuring the fitness were 

studied. The approach was able to generate fast and simple 

problem-solving algorithms that offer good performance 

over a range of exam and class timetabling problems. 

Burke et al (2005a, 2006b) use a knowledge discovery 

technique, case-based reasoning (Leake, 1996), as a 

heuristic selector for solving both course and exam 

timetabling problems. A set of graph colouring heuristics 

and a hill-climbing procedure were selected as low-level 

heuristics. In Burke et al (2006b), tabu search is employed 

to discover the most relevant features used in evaluating 

the similarity between problem-solving situations. The 

objective was to choose the best heuristics from the most 

similar previous problem-solving situation to construct 

good solutions for the problem in hand. 

Sabar et al (2011) utilise hierarchical hybridisations of 

four low-level graph colouring heuristics for producing 

even orderings. A combined difficulty index is calculated 

by considering all the orderings and events are scheduled 

according to this index. The approach produced competi-

tive result on the studied benchmark instances. 

4.1.2. Production scheduling. Dispatching rules are 

among the most frequently applied heuristics in produc-

tion scheduling due to their ease of implementation and 

low time complexity. Whenever a machine is available, a 

dispatching rule inspects the waiting jobs and selects the 

job with the highest priority to be processed next. 

Dispatching rules differ from each other in the way that 

they calculate priorities. As discussed in Section 2, many 

early hyper-heuristic approaches were based on dis-

patching rules. More recently, Vázquez-Rodrı´guez et al 

(2007a) considered combinations of over a dozen 

different despatching rules to solve a multi-machine 

cardboard box shop scheduling problem. A standard 

genetic algorithm was employed as the high-level search 

strategy with successful results. A multi-objective job 

shop problem was studied in Vázquez-Rodrı´guez and 

Petrovic (2010) with a similar approach. Solutions are 

represented as sequences of dispatching rules that are 

called one at a time and used to sequence a number of 

operations onto machines. The approach simultaneously 

searches for the best sequence of rules, and the number 

of operations to be handled by each rule. On different 

variants of the multi-objective job shop, the method 

obtained better results on all the studied instances when 

compared with a previous hyper-heuristic based on 

dispatching rules, and a conventional genetic algorithm 



 

using a permutation representation. 

A study of the search space composed by sequences of 

dispatching rules is presented in Vázquez-Rodrı´guez et al 

(2007b), where a formal definition and some properties of 

these spaces are discussed. The notion of a decision block is 

also introduced to refer to a set of decisions that are treated 

as a single unit (ie processed by a single heuristic). A 

further study (Ochoa et al, 2009b) conducts a landscape 

analysis of the dispatching rules search space. Two 

different objective functions and several hyper-heuristic 

representation sizes (with different block sizes) are 

considered. The study confirms the suitability of these 

heuristic search spaces for evolving solutions to production 

scheduling problems. Moreover, similarities between this 

search space and the space of sequences of graph-colouring 

heuristics for timetabling were found. 

Cano-Belmán et al (2010) propose a hyper-heuristic 

embedded within a scatter search (Laguna and Martı´, 

2003) framework. The approach is applied to the problem 

of sequencing products (mixed-model) on a paced assembly 

line, and considers a set of 20 priority rules as low-level 

heuristics. These priority rules are used to select a product 

among a set of candidates, and are based on product and 

work station features such as demand, processing time, idle 

time, work overload, etc. Following the scatter search 

methodology, the so-called reference set contains sequences 

of priority rules, whose combination is based on a rule 

frequency matrix. The approach was tested over a wide 

range of instances from the literature. The solutions 

obtained were, in many cases, of better quality than those 

found by previous state-of-the art approaches. 

4.1.3. Bin packing. Ross et al (2002) used an accuracy-

based classifier system (Wilson, 1995), in the domain of 

one-dimensional bin-packing, to learn a set of rules that 

associate characteristics of the current state of a problem 

with different low-level constructive heuristics. A simpli-

fied description of the current state of the problem is 

proposed, which considers the number of items remaining 

to be packed and their size ranges. For the learning 

process, a large set of benchmark instances from the 

literature were used. The trained system showed good 

generalisation to unseen problems. Another study using a 

different type of classifier systems was also successfully 

applied to solve 1D bin-packing problems (Marı´n-

Blázquez and Schulenburg, 2007). Ross et al (2003) use 

the messy genetic algorithm hyper-heuristic (described 

above in the context of timetabling) for learning associa-

tions between problem states and adequate heuristics for 

bin-packing. The approach is applied to the 1D bin-

packing problem and overall the results were found a little 

better than those obtained with the classifier system, and 

on a larger set of benchmark problems. 

Terashima-Marı´n et al (2006) applied the messy genetic 

algorithm hyper-heuristic to solve 2D regular cutting stock 

problems. For a 2D problem, two types of heuristics are 

required: for selecting the figures and objects, and for 

placing the figures into the objects. The state of the 

problem is described by the percentage of pieces that 

remain to be packed. The approach produced general 

heuristic-combination rules that efficiently solved unseen 

instances often with better performance than the best single 

heuristic for each instance. 

A more extensive investigation of the messy genetic 

algorithm approach on 2D regular instances is presented in 

Terashima-Marı´n et al (2009). The study also extended the 

hyper-heuristic system to handle 2D irregular (convex 

polygonal) bin packing problems. Very encouraging results 

are reported for both types of problems. A recent study 

applies machine learning techniques to extract relevant 

features and improve the problem state representation of 

irregular packing problems (Lopez-Camacho et al, 2010). 

Garrido and Riff (2007a, b) propose a genetic algorithm-

based hyper-heuristic for solving the 2D strip packing 

problems. In this case, the system is online, that is solution 

methods are evolved for solving a single problem instance. 

The approach uses a variable length representation that 

considers a categorisation of the low-level heuristics 

according to their functionality: greedy, ordering and 

rotational. Very good results are reported that even 

outperform some specialised algorithms for the problem 

and benchmark instances studied. 

4.1.4. Workforce scheduling problem. Remde et al (2007) 

propose a hybrid hyper-heuristic method to solve a 

complex real-world scheduling problem. The approach 

decomposes the problem into smaller parts solving each 

part using exact enumerative methods. Constructive 

heuristics are used and combined to first select a task, 

and then select potential resources such as time for the 

task. This combination produces a large number of low-

level heuristics (over 200) that need to be handled by the 

hyper-heuristic. Variable neighbourhood search and other 

simple hyper-heuristics were successfully used for deciding 

the order in which to solve the sub-problems. In Remde 

et al (2009) a tabu search-based hyper-heuristic dynami-

cally adapting the tabu tenures is applied to the same 

problem and framework. A comprehensive study on this 

framework is presented in Remde et al (2012), where 

several hyper-heuristics are compared against a Variable 

Neighbourhood and a Greedy Selection method with 

favourable results. The best performing hyper-heuristics 

depend on the allotted CPU time. When low to medium 

CPU time is available, hyper-heuristics based on ranking 

methods using adaptive reinforcement of low-level 

heuristics perform well. For medium to high CPU time, 

it is the adaptive tabu tenure hyper-heuristic approach 

(Remde et al, 2009) producing the best results. 

4.1.5. Constraint satisfaction. Terashima-Marı´n et al 

(2008) use the messy genetic algorithms hyper-heuristic 



 

framework for solving the dynamic variable ordering 

problem within a constraint satisfaction framework. The 

proposed framework produces combinations of condi-

tion-action rules, after going through a learning process. 

The evolved rules produced encouraging results when 

tested with a large set of randomly generated benchmark 

problems. Ortiz-Bayliss et al (2010), explore patterns of 

regularities in the relative effectiveness of two heuristics 

for constraint satisfaction. The approach works in two 

stages. In a training stage information about the perfor-

mance of the heuristics in different scenarios is gathered; 

and in the second stage, this information is used to 

generate a hyper-heuristic that decides which heuristic to 

apply in the constructive process to produce a solution. 

Ortiz-Bayliss et al (2012) describe a model for choosing 

the right variable ordering heuristics while solving a 

constraint satisfaction instance. A hyper-heuristic is repre-

sented as a set of vectors that maps instance features to 

low-level heuristics, and a local search algorithm is used to 

search for such vectors. 

4.1.6. Vehicle routing. Garrido and Castro (2009) use a 

hill-climbing-based hyper-heuristic to solve the capaci-

tated vehicle routing problem. The approach incorporates 

both constructive and perturbative heuristics. Specifically, 

it searches the space of sequences of constructive -

perturbative pairs of low-level heuristics. These sequences 

are applied in order to construct and improve partial 

solutions. The approach was tested using some standard 

state-of-the-art benchmarks and compared against several 

well-known methods proposed in the literature, with 

competitive results. In a follow-up paper, the authors use 

an evolutionary hyper-heuristic for solving the dynamic 

vehicle routing problem (Garrido and Riff, 2010). The 

framework includes three types of low-level heuristics: 

constructive, perturbative, and noise heuristics, and evolves 

a sequence of combinations of them, which are applied in 

order to construct and improve partial solutions. The 

approach is evaluated on a large set of instances with 

different topologies and degrees of dynamism, and pro-

duced competitive results when compared with some well-

known methods proposed in the literature. 

4.1.7. Summary and discussion. From the very early 

studies in production scheduling (see Section 2), it can be 

inferred that a combination or sequencing of several rules 

or constructive heuristics is advantageous over using just 

a single one. This fact has been recently confirmed within 

different domains, such as educational timetabling, bin 

packing and others. Approaches in the literature have 

used both online and offline machine learning. In the 

online approaches, the idea is to search (learn) for a good 

sequence of heuristics that learn while solving a single 

instance of the problem at hand. A feature of this type of 

approach is the clear existence of two search spaces, the 

space of sequences of heuristics, and the space of solutions 

to the underlying problems. An important research 

question is, then, to study the structure of these new 

heuristic search spaces; and the relationship between the 

two spaces. An analysis of the landscapes of heuristic 

sequences on both educational timetabling and produc-

tion scheduling has revealed common features, such as the 

existence of plateaus (neutrality): many different local 

optima are located at the same level in the search (ie have 

the same value). These common landscape features can, in 

principle, be exploited by high-level search strategies. 

With respect to the mapping between the two spaces, the 

heuristic search space is generally smaller and covers 

only a subset of the solution search space (but well-

distributed areas). The role of the high-level heuristic 

appears to be to search within the limited areas quickly 

and to explore as widely as possible the solution space by 

re-starting from different heuristic sequences within a 

limited computational time. This clearly invites the 

hybridisation of hyper-heuristics with standard local 

search techniques in the problem solution space. In other 

words, search can be simultaneously conducted over the 

two search spaces. 

The offline machine learning approaches proposed so far 

have been based on learning classifier systems and messy 

genetic algorithms and have been mainly applied to several 

bin-backing problems. One fundamental research issue in 

this type of approach is the determination of a simplified, 

yet accurate, representation of the state space in the 

construction process, since the learning process is directed 

to link state-space descriptions to useful low-level heur-

istics. Other fundamental issues are the sensitivity of 

results in relation to the particular choice of low-level 

heuristics, and whether the use of randomised heuristics is 

advisable. The determination of efficient learning or search 

techniques to be used as high-level strategies also 

deserves further study. 

Finally, the exploration of additional domains, in which 

constructive heuristics are available, is another worthwhile 

research direction. 

4.2. Approaches based on perturbative low-level heuristics 

These approaches aim to improve a candidate solution 

through a process of automatically selecting and applying a 

heuristic. Online and offline machine learning techniques 

are valuable to the heuristic selection strategies in order to 

make informed decisions regarding which heuristic to 

employ at a given step. Hyper-heuristic methodologies 

based on perturbative heuristics have been applied to a 

wide variety of combinatorial optimisation problems as 

summarised in Table 2. 

There are a few studies on the hyper-heuristic meth-

odologies to select perturbative heuristics that perform 

multi-point search (processing multiple solutions). The 

majority of previously proposed approaches conduct a 



 

single point search. In a single point search-based hyper-

heuristic framework, an initial candidate solution goes 

through a set of successive stages repeatedly until termina-

tion. First, a heuristic (or a subset of heuristics) is selected 

from a set of low-level perturbative heuristics and then 

applied to a single candidate solution. Finally, a decision is 

made about whether to accept or reject the new solution. 

Table 2 Most studied application domains of methodologies 

to choose perturbative heuristics 

Application domain References 

Personnel scheduling Cowling et al (2000, 2002b, c) 

Cowling and Chakhlevitch 

(2003) 

Han and Kendall (2003) 

Burke et al (2003b) Bai et al 

(2012) Mısır et al (2010) 

Educational timetabling Cowling et al (2000, 2002c) 

Burke et al (2003b, 2005b) 

Bilgin et al (2006) 

Chen et al (2007) 

Bai et al (2012, 2007) 

Ozcan et al (2009, 2010) 

Demeester et al (2012) 

Space allocation Burke et al (2005c) 

Bai and Kendall (2005); 

Bai et al (2008) 

Cutting and packing Dowsland et al (2007) 

Bai et al (2012) 

Vehicle routing Pisinger and Ropke (2007) 

Meignan et al (2010) 

Mısır et al (2011) 

Sports scheduling Mısır et al (2009) 

Gibbs et al (2010) 

Cross-domain (HyFlex) Burke et al (2010b, 2011a) 

Ochoa et al, 2012a,b) 

Ozcan and Kheiri (2011) 

Walker et al (2012) 

Drake et al (2012) 

Mısır et al (2012) 

Ping-Che et al (2012) 

Chan et al (2012) 

Gaspero and Urli (2012) 

 

A hyper-heuristic to select perturbative heuristics 

performing single-point search combines two separate 

components: (i) heuristic selection method and (ii) move 

acceptance method as identified in Bilgin et al (2006) 

and Ozcan et al (2008). This component decomposition 

presents a high level of modularity, indicating that either 

one of these components can be replaced by another 

method generating a new hyper-heuristic. An instance of a 

single-point search-based hyper-heuristic will be denoted as 

Heuristic Selection—Move Acceptance from this point 

forward. Different combinations of heuristic selection 

and move acceptance methods have been explored within 

the context of hyper-heuristics. 

4.2.1. Learning selection in hyper-heuristics performing 

single point search. The heuristic selection that does not 

use any type of learning mechanism is based on either a 

random or an exhaustive process. A learning mechanism 

can be introduced into the heuristic selection process to 

improve the decision-making process over a set of 

possible neighbourhoods. Thabtah and Cowling (2008) 

discuss an offline learning strategy to detect a rule from 

seen problem instances to choose a low-level heuristic at a 

given decision point for solving unseen problem instances. 

The majority of the heuristic selection methods used 

within the single point search-based hyper-heuristic 

framework generate online score(s) for each heuristic 

based on their performances. Then these values are 

processed and/or combined in a systematic manner to 

select the heuristic to be applied to the candidate solution 

at each step. All score-based heuristic selection techniques 

require five main components to be implemented:  

(i) initial scoring, (ii) memory length adjustment, 

strategy for heuristic selection based on the scores, and 

(v) score update rules in case of improvement and worsening, 

respectively. All low-level heuristics are assigned an 

initial score. Depending on the mechanism used, these 

scores might affect the performance of a hyper-

heuristic. In general, initial scores are set to the same 

value, typically zero. Memory length determines the effect 

of the previous performance of a heuristic while making 

the heuristic selection at a decision point. Given a set of 

scores, heuristic selection can be performed in many 

different ways. For example, max strategy selects the 

heuristic with the maximal score. On the other hand, 

Roulette-wheel (score proportionate) strategy associates a 

probability with each heuristic that is computed by 

dividing each individual score by the total score. 

Then, a heuristic is selected randomly based on these 

probabilities. A high score generates a higher probability of 

being selected. 

One of the commonly used methods in hyper-heuristics is 

reinforcement learning, see Kaelbling et al (1996) and 

Sutton and Barto (1998) for more details. A reinforcement 

learning system interacts with the environment (or a 

model of the environment) and given a state, takes an 

action based on a policy. By trial and error, the system 

attempts to learn which actions to perform by evaluating 

state and action pairs through accumulated rewards. In 

the context of hyper-heuristics, rewarding and punishing 

each heuristic depending on their individual performance 

during the search is a scoring mechanism. If a low-level 

heuristic improves a solution, then it is rewarded and its 

score gets updated positively, while a worsening move 

causes punishment of a heuristic by decreasing its score. 

Different combination of operators can be designed for 

reward and punishment. 

The acceptance strategy is an important component of 



 

any local search heuristic (operating on any search space). 

Two different types of acceptance strategies can be 

identified in the literature: deterministic or non-determi-

nistic. Deterministic methods make the same decision for 

acceptance regardless of the decision point during the 

search using given current and new candidate solu-

tions(s). A non-deterministic approach might generate a 

different decision for the same input. The decision 

process in almost all non-deterministic move acceptance 

methods requires additional parameters, such as the time 

(or current iteration). 

Single point search-based hyper-heuristics will be cov-

ered in four distinct subsections considering the nature of 

their components as follows: (i) Hyper-heuristics using 

deterministic move acceptance, (ii) Hyper-heuristics using 

heuristic selection methods with no learning and non-

deterministic move acceptance, (iii) Hyper-heuristics using 

heuristic selection methods with learning and non-determi-

nistic move acceptance, and (iv) Comparison studies. 

Section 4.2.5 presents an overview of multi-point search-

based hyper-heuristics. Finally, Section 4.2.7 provides a 

summary and discussion. 

4.2.2. Hyper-heuristics using deterministic move accep-

tance. In Cowling et al (2000, 2002c), the authors proposed 

and compared a variety of the hyper-heuristic compo-

nents on two real-world scheduling problems: a sales 

summit and a project presentation problem, respectively. 

A Simple Random heuristic selection method chooses a 

low-level heuristic at random at each step. Random 

Gradient is a variant of Simple Random, a randomly 

selected heuristic is repeatedly applied until no improve-

ment is achieved. The same affect of Random Gradient 

can be achieved by modifying the operation of each 

heuristic as discussed and employing Simple Random. 

Random Permutation generates a random ordering of the 

low-level heuristics and at each step successively applies a 

low-level heuristic in the provided order. Random 

Permutation Gradient is a variant of Random Permuta-

tion that proceeds in the same manner as Random 

Gradient without changing the order of heuristics until no 

improvement is achieved. Berberog˘ lu and Uyar (2010) 

showed that the Random Permutation Gradient-based 

hyper-heuristic performs better than some other meta-

heuristics for solving the unit commitment problem. 

Greedy exhaustively applies all low-level heuristics to a 

candidate solution and selects the one that generates the 

best improved solution. Greedy is a learning heuristic 

selection method with the shortest memory length. The 

heuristic that makes the best improvement as a feedback 

is used for the heuristic selection and then this informa-

tion is discarded in the following step. Although Random 

Gradient and Random Permutation Gradient heuristic 

selection methods make use of a random component, they 

can still be considered as intelligent heuristic selection 

mechanisms that embed a reinforcement learning mechan-

ism. Initial scores of all heuristics are set to 0, which is 

also the lower bound for the scores. The upper bound is 

set to 1. As a score update rule, score of an improving 

heuristic is increased by one (additive), otherwise it is 

punished by decreasing its score by 1 (subtractive). The 

scores are kept within the bounds; hence, the memory 

length is set to the shortest possible value for such a 

reinforcement learning scheme. This type of strategy can 

be useful if the search landscape is highly rugged and 

there are not many plateaus. With the exception of 

Greedy, the other heuristic selection methods execute fast. 

The Choice Function heuristic selection method intro-

duced in Cowling et al (2000) is a score-based learning 

approach. This method adaptively ranks each low-level 

heuristic with respect to a combined score based on the 

following: how well it has performed individually, how well 

its performance is as a successor of previously invoked 

heuristic and the elapsed time since it was last called. The 

first two components intensify recent performance, while 

the third provides an element of diversification. For 

implementing the heuristic selection, max and roulette 

wheel strategies were tested, with the former approach 

producing better performance. As the acceptance criteria, 

two deterministic approaches were considered: All Moves 

(AM) and Only Improvements (OI). The experimental 

results in Cowling et al (2000) show that the Choice 

Function—All Moves hyper-heuristic is promising. The 

best parameter set is obtained through a manual tuning 

process. Cowling et al (2001) introduce a parameter-less 

Choice Function. In Cowling et al (2002c), this variant was 

found to outperform the simple ones over the problems 

studied, and produced improved results when compared 

with a manually produced solution and a constructive 

approach. The design of this hyper-heuristic is further 

extended in Rattadilok et al (2005) by proposing a model 

for general-purpose low-level-heuristics and exploiting 

parallel computing frameworks for the hyper-heuristics. 

Nareyek (2003) used Reinforcement Learning (RL) as a 

heuristic selection method attempting to learn how to select 

the promising heuristic at each decision point. The learning 

process is based on scores (weights) as described pre-

viously. Each heuristic starts with the same score and they 

are updated by a predetermined scheme during the move 

acceptance process. All Moves is used as an acceptance 

criterion. The approach is evaluated on the Orc Quest 

problem (Nareyek, 2001), and in a modified Logistics 

Domain, well known to the action-planning community. 

The results of the study suggest that combining a low rate 

of adaptation (additive update) for rewarding an improve-

ment with a strong (root update) rate of adaptation for 

punishing a deterioration is a good choice. Moreover, 

choosing a heuristic with a max strategy at each step often 

generates better results when compared with choosing a 

heuristic with a roulette wheel scheme. 



 

Burke et al (2003b) presented the Reinforcement 

Learning with Tabu Search heuristic selection method. In 

a similar way to the previous study of Nareyek (2003), the 

low-level heuristics are selected according to learned scores 

(ranks). The proposed hyper-heuristic also incorporates a 

dynamic tabu list of low-level heuristics that are tempora-

rily excluded from the available heuristics in certain 

situations. This hyper-heuristic is evaluated on various 

instances of two distinct timetabling problems: university 

course timetabling and nurse rostering. The results were 

competitive with respect to those obtained using the state-

of-the art problem-specific techniques. Burke et al (2005c) 

extended this methodology with a fixed size tabu list to be 

used in multi-objective optimisation. The hyper-heuristic 

maintains the scores of low-level heuristics for each 

objective separately. The results show that the proposed 

multi-objective hyper-heuristic framework guides the 

search towards the promising areas of the trade-off front 

over a set of space allocation and timetabling problems. 

In Cowling and Chakhlevitch (2003), a range of hyper-

heuristics were studied based on Simple Random and 

Greedy heuristic selection methods. According to the 

description of the Greedy method in Cowling et al 

(2000), worsening moves are never accepted. On the other 

hand, it is possible that all heuristics might worsen the 

quality of a candidate solution when the Greedy approach 

is used. In Cowling and Chakhlevitch (2003), such 

situations are allowed. This is a more general approach 

that allows the move acceptance component to deal with 

worsening moves, enriching the generation of different 

hyper-heuristics embedding different acceptance mechan-

isms. In this study, Peckish heuristic selection strategies 

(Corne and Ross, 1996) that use a Greedy method after 

reducing the number of low-level heuristics are also 

investigated along with four different Tabu Search based 

move acceptance strategies. These strategies accept an 

improving move and the related heuristic is removed from 

the tabu list if it is there. A non-improving move is 

accepted only if the employed heuristic is not in the tabu 

list. The hyper-heuristics utilise Only Improving, All 

Moves and a variant of All Moves that discards moves 

generating the same objective value as the current solution 

as move acceptance criterion. The approaches were 

evaluated on a real-world personnel scheduling problem 

with 95 low-level heuristics yielding promising results. 

However, the process for selecting a low-level heuristic to 

apply at each decision point is slow since it involves 

examining all heuristics from a large set. Therefore, in 

Chakhlevitch and Cowling (2005), two learning strategies 

were investigated for choosing the subset of the fittest low-

level heuristics. At each step, the changes in the quality of a 

solution are compiled to reflect the total improvement due 

to a heuristic. Greedy—Tabu Search (event-based tabu list) 

that linearly reduces the number of the fittest low-level 

heuristics turned out to be the most promising hyper-

heuristic. 

Garcia-Villoria et al (2011) applied a number of different 

hyper-heuristic methods to an NP-hard scheduling pro-

blem, namely, response time variability problem. The 

authors experimented with constructive and dual stage 

improvement hyper-heuristics. The improvement hyper-

heuristic evaluates the performance of each low-level 

heuristic during a learning stage and improves a solution 

based on the performance indicators for each heuristic 

obtained from the previous stage. Mixing local search 

heuristics using a roulette wheel heuristic selection strategy 

based on objective values generated by each heuristic 

during the learning stage performed better than a naive 

iterative selection strategy. The local search heuristics were 

then replaced by a set of metaheuristics within the frame-

work. The cooperation of metaheuristics via the hyper-

heuristic framework works better than the use of each 

individual metaheuristic for solving the problem. 

McClymont and Keedwell (2011) applied a heuristic 

selection method modelled as a Markov chain to a well-

known multi-objective continuous optimisation bench-

mark DTLZ. This is one of the rare studies on the 

application of selection hyper-heuristics for continuous 

optimisation (Kiraz et al, 2011; Köle et al, 2012) handling 

multi-objectives. The proposed approach is based on a 

Reinforcement Learning scheme, which maintains a set of 

weighted edges representing probabilities of transitioning 

from one heuristic to another. After each invocation, the 

edge weights are updated based on the performance of a 

heuristic. Given a set of four low-level heuristics, this 

selection method was incorporated into a Evolution 

Strategy framework and compared with Simple Random 

and a roulette wheel heuristic selection method using a 

tabu list, referred to as ‘TSRoulWheel’ in Burke et al 

(2005c). The Markov chain hyper-heuristic accepted non-

dominated solutions yielding a matching performance to 

the best heuristic on the benchmark instances. 

4.2.3. Hyper-heuristics using heuristic selection with no 

learning and non-deterministic move acceptance. In Ayob 

and Kendall (2003), a set of Monte Carlo-based non-

deterministic move acceptance strategies which accept all 

improving moves and some non-improving moves with a 

certain probability was proposed. The authors explored a 

Linear (LMC), an Exponential probability function 

(EMC), and included their most sophisticated formula-

tion based on the computation time and a counter of 

consecutive non-improvement iterations (EMCQ). The 

EMCQ formulation is similar to that of a simulated 

annealing approach (Kirkpatrick et al, 1983; Cerny, 1985). 

The difference is that it does not include a temperature 

parameter and thus a cooling schedule. Hyper-heuristics 

combining Simple Random and {Linear, Exponential, 

EMCQ} are applied to scheduling of electronic component 

placement on a printed circuit board. Their performances 



 

are compared with the combination of {Simple Random, 

Choice Function} and {All Move, Only Improving} hyper-

heuristics. Simple Random-EMCQ delivered a superior 

performance as compared with the hyper-heuristics using 

deterministic acceptance with and without learning for the 

given problem instances. Although it appears as if no 

parameter tuning is necessary for Monte Carlo-based hyper-

heuristics, more instructions will be executed in a unit time 

on a faster machine compared with a slower machine; 

hence, Monte Carlo-based hyper-heuristics will be produ-

cing different results given the same number of iterations. 

In Kendall and Mohamad (2004a), a variant of the Great 

Deluge acceptance criteria (Dueck, 1993) was incorporated 

within a hyper-heuristic framework. In this acceptance 

strategy, at each iteration, any configuration is accepted 

which is not much worse than an expected objective value, 

referred to as level, which changes at a linear rate every step 

from an initial towards a target objective value within 

given number of iterations. Simple Random—Great 

Deluge generated competitive results as compared with a 

constructive heuristic and a genetic algorithm for solving 

channel assignment benchmark problems, a real–world 

problem from the mobile communications industry. 

In another study, Kendall and Mohamad (2004b) 

extended the Record-to-Record Travel acceptance criteria 

of Dueck (1993) to be used in a hyper-heuristic. Any new 

candidate solution is accepted which is not much worse 

than the current one within a given fixed limit. A Simple 

Random—Record-to-Record Travel hyper-heuristic is also 

applied to benchmark instances of a channel assignment 

problem. The empirical results suggest that this hyper-

heuristic is superior to using All Move, Only Improving and 

EMCQ move acceptance strategies, performing comparable 

to a constructive heuristic and a genetic algorithm. 

A Simulated Annealing acceptance method in hyper-

heuristics was investigated in Bai and Kendall (2005). The 

approach is studied on a shelf space allocation problem. In 

Simulated Annealing, the improving solutions are always 

accepted, and worsening moves are accepted according to 

the Metropolis criterion (Kirkpatrick et al, 1983). The 

temperature is decreased during the algorithm run using a 

cooling schedule. The authors discuss how to compute the 

relevant Simulated Annealing parameters automatically. 

Different approaches are allowed to improve an initial 

candidate solution that is generated by a greedy heuristic. 

The results show that the Simple Random—Simulated 

Annealing hyper-heuristics outperform Simple Random— 

Only Improving, Simple Random—All Moves, Greedy— 

Only Improving, Choice Function—All Moves, two con-

ventional simulated annealing approaches each using a 

different single neighbourhood operator in all problem 

instances tested. Two strategies to decide the initial 

temperature are compared. One of them computes the 

initial temperature as a factor of the initial objective value, 

while the other one samples a set of random solutions and 

makes the computation based on the largest objective 

difference. The former scheme performs slightly better than 

the latter one. 

Antunes et al (2009) described a multi-objective Simple 

Random—Simulated Annealing hyper-heuristic for solving 

a power compensation problem in electricity distribution 

networks. Deciding the location of network nodes and the 

size of capacitors to be installed for reactive power 

compensation requires two conflicting objectives to be 

achieved, namely, cost and power loss. Six low-level 

heuristics are designed to make a move from one feasible 

solution to another. Simulated Annealing makes its 

acceptance decision based on the dominance between the 

new solution and the archived solutions. The weighted sum 

of two objective values is used in the acceptance probability 

function whenever needed. The results indicate that this 

hyper-heuristic performs slightly worse than a multi-

objective genetic algorithm. 

Late Acceptance method (Burke and Bykov, 2008) is a 

memory-based technique that maintains the history of 

objective values from the previous solutions in a list of 

given size, L. The new solution is compared with a previous 

solution obtained at the Lth step and the acceptance 

decision is made accordingly. Demeester et al (2012) used 

Simple Random-based hyper-heuristics focusing on different 

move acceptance method for examination timetabling. 

Improving or Equal, Great Deluge, Simulated Annealing, 

Late Acceptance and its variant, referred to as Steepest 

Descent Late Acceptance, were used as move acceptance 

criteria. Steepest Descent Late Acceptance first acts the 

same as Only Improving for a given solution and the 

incumbent solution before applying the generic Late 

Acceptance. The Simple Random—Simulated Annealing 

hyper-heuristic improved on a number of best results from 

the literature over the Toronto benchmark data set and 

performed well over another data set provided by the 

authors. 

Mısır et al (2011) proposed a move acceptance method 

that adaptively sets the threshold value based on history. 

Simple random combined with the new acceptance 

method, referred to as Adaptive Iteration Limited List-

based Threshold Acceptance (AILLA), is tested on a ready-

mixed concrete delivery problem. The performance com-

parison of AILLA, Late Acceptance, Simulated Annealing, 

Great Deluge and Improving and Equal acceptance criteria 

showed that AILLA and Late acceptance outperform the 

rest if Simple Random is used for heuristic selection. It is 

observed that if the execution time is increased, then 

Simple Random—AILLA starts to outperform Simple 

Random—Late Acceptance. 

4.2.4. Hyper-heuristics using heuristic selection with online 

learning and non-deterministic move acceptance . In 

Dowsland et al (2007), a variant of Reinforcement 



 

Learning with Tabu Search (RLTS) was hybridised with 

a Simulated Annealing with Reheating move acceptance 

strategy. In particular, RLTS is modified to employ a 

batch learning mechanism updating the performance of a 

heuristic based on the best objective value obtained after a 

number of iterations at each decision point. In addition, 

an undulating cooling schedule based on a geometric 

function is proposed as a means to deal with the effects of 

having different neighbourhood sizes (given by the pool 

of low-level heuristics used). 

A reheating scheme is employed after a rejected move 

and the required acceptance rate is reduced periodically as 

discussed in Thompson and Dowsland (1996) at every 

given number of iterations. In a way, the updates of scores 

for low-level heuristics in Reinforcement Learning with 

Tabu Search and reductions of the acceptance rate in 

Simulated Annealing with Reheating are performed 

together. The proposed hyper-heuristic is applied to a 

packing problem of determining shipper sizes for storage 

and transportation. Real-world data from a cosmetics 

company are used as a base for generating experimental 

data. The Reinforcement Learning with Tabu Search— 

Simulated Annealing with Reheating hyper-heuristic is 

superior in performance than a simpler local search strategy 

(random descent). Bai et al (2012) presented a different 

hyper-heuristic scheme that was possibly inspired from the 

studies provided in Burke et al (2003b), Bai and Kendall 

(2005), Dowsland et al (2007). The proposed hyper-

heuristic uses a reinforcement learning mechanism with a 

short-term memory as a heuristic selection component. 

Each heuristic receives a weight (score) that is updated 

periodically. In this study, a different Simulated Anneal-

ing with Reheating scheme is used as a move acceptance 

method which executes switching between annealing and 

reheating phases during the search. The proposed hyper-

heuristic is tested on nurse rostering, course timetabling 

and bin packing problems and comparisons to pre-

viously proposed approaches show that it is competitive. 

On the other hand, Burke et al (2010a) show that this 

hyper-heuristic does not perform better than the hyper-

heuristics using {Simple Random, Greedy, Choice 

Function} heuristic selection methods for examination 

timetabling. This study also shows that the hyper-

heuristics based on Simulated Annealing and its reheat-

ing variant perform significantly better than the ones 

based on EMCQ move acceptance. 

In Pisinger and Ropke (2007), a competent unified 

methodology was presented for solving different vehicle 

routing problems. The proposed approach extended 

the large neighbourhood search framework presented 

in Shaw (1998) with an adaptive layer. This layer 

adaptively chooses among a number of insertion and 

removal heuristics to intensify and diversify the search, 

according to scores for each heuristic accumulated 

during the iterations. The hyper-heuristic combines the 

adaptive heuristic selection mechanism with a standard 

Simulated Annealing acceptance strategy based on a 

linear cooling rate. A large number of tests were 

performed on standard benchmarks from the literature 

covering five variants of the vehicle routing problem. 

The results proved highly promising, as the methodol-

ogy was able to improve on the best known solutions on 

some instances. 

Ozcan et al (2009) investigated different heuristic 

selection methods that would perform the best in 

combination with the Late Acceptance method. The 

results show that Simple Random performs the best when 

combined with Late Acceptance as compared with other 

hyper-heuristic approaches involving online learning. 

The delay within the acceptance strategy seems to 

deceive the learning mechanisms. 

Bhanu and Gopalan (2008) combined a genetic algo-

rithm, and a set of its hybrids with simulated annealing, 

tabu search and hill climbing, respectively under a 

Greedy—Great Deluge hyper-heuristic to schedule jobs 

in a grid environment. The hyper-heuristic performs better 

than each individual low-level metaheuristic over a small 

set of problems. Ozcan et al (2010) showed that  

Reinforcement Learning—Great-Deluge and Simple Ran-

dom—Late Acceptance were promising hyper-heuristics 

for solving the Toronto and Yeditepe examination time-

tabling problems. 

Mısır et al (2009) introduced a hyper-heuristic 

combining a simple heuristic selection method based 

on a learning automaton. This method updates the 

probabilities of each low-level heuristic being chosen in 

an online manner and utilises a new move acceptance 

method, namely; Iteration Limited Threshold Accepting 

(ILTA). The experiments over a set of Traveling 

Tournament Problem instances from the US National 

League Baseball and the Super 14 Rugby League 

delivered promising performance. A two-phase hyper-

heuristic based on ILTA was applied to the Eternity II 

puzzle yielding successful results (Vancroonenburg 

et al, 2010). 

Mısır et al (2010) describe a tabu-based learning strategy 

to reduce the number of low-level heuristics for a 

number of phases using a quality index (QI) for each 

low-level heuristic (where 1 QI number-of-heuristics). 

QI reflects the quality of a heuristic at a phase and helps 

to compare performance differences and a low-level 

heuristic is selected randomly from the reduced set. The 

authors also introduce an adaptive variant of ILTA as a 

new move acceptance strategy. The resultant hyper-

heuristic managing six perturbative heuristics performs 

better than Simple Random—Improving and Equal for 

home care scheduling. 

Blazewicz et al (2011) studied Choice Function and 



 

Reinforcement Learning-based selection hyper-heuristics 

and their variants to predict DNA sequences. A set of low-

level heuristics were defined that manipulate a given DNA 

sequence via insertion, deletion, swap and shift operations. 

Simulated Annealing and Accept All Moves were used as 

the move acceptance criteria. Using a base set of six low-

level heuristics, Roulette Wheel-based Selection—Simu-

lated Annealing outperformed all other hyper-heuristics. 

The tests were performed using different sets of low-level 

heuristics. The learning hyper-heuristics delivered similar 

performance to bespoke metaheuristics from the literature 

for DNA sequencing. 4.2.5. Other studies on selection 

hyper-heuristics. There are an increasing number of 

comparison studies on hyper-heuristics illustrating their 

success on different problem domains. After 

experimenting with 35 hyper-heuristics, Bilgin et al 

(2006) reported that although none of the hyper-

heuristics dominated the others for benchmark function 

optimisation. According to the empirical results, Choice 

Function—Improving and Equal produces a slightly 

better mean performance. Moreover, Choice Function—

Simulated Annealing and Simple Random— Great Deluge 

produce better quality solutions for exam timetabling. 

Ozcan et al (2006) investigated the performance of 

different hyper-heuristic frameworks over a set of 

benchmark functions. The low-level heuristics are 

classified as either a hill climber (meme) that aims to 

generate an improved solution or a mutational heuristic 

that perturbs a candidate solution without considering 

whether the resulting solution will be improved or not. In 

this study, three alternative iterated local search inspired 

hyper-heuristic frameworks to the standard framework 

are proposed, which separate and enforce the hill-

climbing process explicitly and deliver promising perfor-

mances. The success of a hyper-heuristic based on a 

framework distinguishing between mutational and hill 

climbing heuristics is also confirmed across different 

problem domains in later studies (Burke et al, 2010b; 

Berberoglu and Uyar, 2010). Ozcan et al (2008) extended 

the studies in Bilgin et al (2006) and Ozcan et al (2006) 

and illustrated that the choice of hill climber affected the 

performances of the relevant frameworks. Choice Func-

tion—Improving and Equal based on a general iterated 

local search framework with multiple perturbative neigh-

bourhood operators and a prefixed hill climber performs 

well and its performance is similar to a generic memetic 

algorithm. The experimental results show that a memetic 

algorithm embedding a Simple Random—Improving and 

Equal hyper-heuristic, which is categorised as a static 

external-level adaptation mechanism in Ong et al (2006), 

also delivers a good performance. More on memetic 

algorithms utilising hyper-heuristics to choose hill clim-

bers can be found in Ersoy et al (2007). Bai et al (2008) 

studied the performance of a set of fast approaches for 

solving a fresh produce inventory and shelf space 

allocation problem and compares against a variety of 

approaches (Bai and Kendall, 2008). The empirical results 

show that the Simulated Annealing-based hyper-heuris-

tics perform better than Reinforcement Learning with 

Tabu Search—All Moves and they deliver a similar 

performance to a generic simulated annealing approach 

and GRASP (Feo and Resende, 1995). Gibbs et al (2010) 

reported that Reinforcement learning heuristic selection 

performed well in combination with Great Deluge and 

Simulated Annealing for producing a football fixture 

schedule for the holiday periods. On the other hand, 

Berberoglu and Uyar (2011) compared the performance 

of 24 learning and non-learning selection hyper-heuristics 

managing seven mutational and hill-climbing heuristics 

on a short-term electrical power generation scheduling 

problem. Random Permutation Descent—Only Improv-

ing performed the best on this problem. 

In order to generate better learning schemes that will 

improve the decision-making process during heuristic 

selection, one should always remember that a learning 

process involves memory. Memory length can be handled 

in different ways. For example, the scores for low-level 

heuristics are updated based on the entire historical 

information in Burke et al (2003b) and Dowsland et al 

(2007). On the other hand, the minimum and maximum 

scores are bounded in Nareyek (2003). This approach 

serves as some type of a forgetting mechanism for 

successive improving or non-improving moves. The 

empirical study carried out in Bai et al (2007) on university 

course timetabling shows that hyper-heuristics using a 

short-term memory produce better results than both an 

algorithm without memory and an algorithm with infinite 

memory. The memory length is found to be sensitive to 

different problem instances. 

There is a growing number of studies on multi-point 

(population)-based hyper-heuristics. These hyper-heuristics 

are either existing metaheuristics or used in/for cooperative 

search. In Cowling et al (2002b), an indirect genetic 

algorithm for solving a personnel scheduling problem was 

proposed. The approach can be regarded as a hyper-

heuristic that uses a GA as the heuristic selection 

mechanism. Han and Kendall (2003) extend this study 

with adaptive length chromosomes and guided operators, 

producing promising results on the trainer scheduling 

problem when compared with both a direct encoding 

genetic algorithm and a memetic algorithm. 

The ant colony algorithm was used as a hyper-heuristic 

in Burke et al (2005b) and Chen et al (2007) to address a 

personnel scheduling and a sports timetabling problem, 

respectively, with promising results. Similarly, Ren et al 

(2010) discussed an ant-based hyper-heuristic for solving 

the p-median problem. Different type of frameworks have 

been proposed to enable the use of multi-point-based 

search methods. For example, Vrugt and Robinson (2007) 

introduced the AMALGAM approach for continuous 



 

multi-objective optimisation that manages a set of popula-

tion-based multi-objective approaches while producing a 

new population of solutions yielding an improved perfor-

mance, eventually. The number of new solutions produced 

by each low-level approach is decided proportional to the 

percentage of previously created individuals that remains 

in the working population at each stage. 

Cobos et al (2011) mixed different variants of evolu-

tionary approaches for document clustering and tested 

different heuristic selection and move acceptance methods 

under a multi-point-based search framework. One of the 

initial studies hybridising generation and selection of 

heuristics was provided by Kampouridis et al (2012). 

In this study, a genetic programming approach is used 

to create decision trees for financial forecasting in order 

to make decisions whether to buy or not. During the 

multi-stage evolutionary process, the candidate solu-

tions are improved through a reinforcement learning-

based hyper-heuristic that manage a set of perturbative 

low-level heuristics. 

Grobler et al (2012) mixed a set of metaheuristics 

including a genetic algorithm, particle swarm optimisation 

variants, CMA-ES and variants of differential evolution 

under a hyper-heuristic framework. The authors investi-

gated different ways of employing local search in 

combination with those low-level heuristics over a set of 

benchmark functions. 

Tsai et al (2012) presented a simple random-based hyper-

heuristic framework which is able to mix single and multi-

point-based metaheuristics for data clustering. 

Crainic and Toulouse (2003) classified cooperative search 

methods as type 3 parallel strategies that allowed multiple 

search methodologies to guide the search process via 

information sharing in a multi-thread environment. These 

strategies can be thought of as parallel/distributed hyper-

heuristics which have been increasingly used to combine 

multiple low-level (meta-)heuristics. 

Biazzini et al (2009) combine several algorithms for 

numerical optimisation such as differential evolution and 

random search in a distributed framework in an island 

model. 

Meignan et al (2010) presented a self-adaptive and 

distributed approach based on agents and hyper-heuristics. 

Several agents concurrently explore the search space using 

a set of operators. The approach is applied to vehicle 

routing. 

Ouelhadj and Petrovic (2010) proposed an agent-based 

cooperative hyper-heuristic framework composed of a 

population of heuristic agents and a cooperative hyper-

heuristic agent. Computational experiments on a set of 

permutation flow shop benchmark instances illustrated the 

superior performance of the cooperative hyper-heuristic 

framework over sequential hyper-heuristics. 

Dynamic environment problems represent a challenging 

set of problems in which the environment changes over 

time during the search process. Successful approaches 

are highly adaptive and can react rapidly whenever a 

change occurs (Branke, 2002; Cruz et al, 2011). Kiraz 

and Topcuoglu (2010) hybridised an evolutionary algo-

rithm with a selection hyper-heuristic for solving 

dynamic generalised assignment problem. Kiraz et al 

(2011) experimented with hyper-heuristics using different 

heuristic selection methods on moving peaks benchmark. 

Choice Function—Improving and Equal performed the 

best managing seven parameterised Gaussian-based 

mutation operators across a variety of change scenarios. 

Köle et al (2012) showed that Simple Random choice is a 

viable strategy if the environment changes fast and there 

is noise on The Open Racing Car Simulator (TORCS). 

Uludag et al (2012) presented a framework hybridising 

Estimation Distribution Algorithms and hyper-heuristics 

for solving discrete dynamic environment problems. This 

approach uses multi-population combining offline and 

online learning to deal with random as well as cyclic 

dynamic environments. 

4.2.6. The HyFlex benchmark framework and the Cross 

Domain Heuristic Challenge (CHeSC) 2011 . HyFlex 

(Hyper-heuristic Flexible framework) (Ochoa et al, 

2012a) is a software framework for the development of 

hyper-heuristics and cross-domain search methodologies. 

The framework features a common software interface 

for dealing with different combinatorial optimisation 

problems, and provides the algorithm components that 

are problem specific. In this way, the algorithm designer 

does not require a detailed knowledge of the problem 

domains, and thus can concentrate his/her efforts on 

designing adaptive general-purpose optimisation 

algorithms. In an initial implementation, HyFlex 

provided four combinatorial problems implemented in 

Java, namely: boolean satisfiability, one-dimensional bin 

packing, permutation flow shop and personnel 

scheduling, including for each problem a set of 

heuristic/search operators, initialisation routines. These 

four domains represented the training benchmark that 

supported an international research competition: the 

first Cross-Domain Heuristic Search Challenge (Ochoa 

and Hyde, 2011) that attracted significant international 

attention. The challenge is analogous to the athletics 

Decathlon event, where the goal is not to excel in one 

event at the expense of others, but to have a good general 

performance on each. Competitors submitted one Java 

class file using HyFlex representing their hyper-heuristic 

or high-level search strategy. This ensures that the 

competition is fair, because all of the competitors must 

use the same problem representation and search 

operators. Moreover, due to the common interface, the 

competition considered not only hidden instances, but 



 

also two hidden domains. Two additional domains were 

later implemented, namely: the travelling salesman and 

vehicle routing problems. The competing algorithms 

were compared (on both the training and hidden 

domains) and ranked using a simple point mechanism 

inspired by the Formula 1 scoring system. More details 

about the competition scoring system, experimental 

setting, and best performing algorithms can be found in 

Ochoa et al (2012a). 

We give here a brief overview of publications so far 

based on the HyFlex framework and using the CHeSC 

2011 benchmark software. The first article implementing 

hyper-heuristics using HyFlex was published in 2010 

(Burke et al, 2010b), where several hyper-heuristics 

combining two heuristic selection mechanism and three 

acceptance criteria were compared. A multiple neighbour-

hood iterated local search was also implemented and found 

to outperform the other approaches as a general optimiser. 

This iterated local search hyper-heuristic contains a 

perturbation stage, during which a neighborhood move is 

selected uniformly at random (from the available pool of 

mutation and ruin-recreate heuristics) and applied to the 

incumbent solution, followed by a greedy improvement 

stage (using all the local search heuristics). The approach is 

extended in Burke et al (2011a) by substituting the uniform 

random selection of neighbourhoods in the perturbation 

stage by online learning strategies, significantly improving 

the performance. This implementation was the best 

performing hyper-heuristic before the competition started. 

Ozcan and Kheiri (2011) implemented a multi-stage 

hyper-heuristic, combining a greedy stage with a random 

descent stage, followed by a simple solution acceptance 

mechanism. This relatively simple approach produces very 

good results when compared with previous HyFlex hyper-

heuristics (before the competition). 

Walker et al (2012) describe in detail the design of one of 

the CHeSC 2011 hidden domains, namely the vehicle 

routing problem with time windows. The article also 

implements a new multiple neighbourhood iterated local 

search algorithm that includes adaptive mechanisms for 

both the perturbation and improvement stages. This 

implementation outperformed all the CHeSC competitors 

in the vehicle routing domain. 

Drake et al (2012) describe a variant of the choice 

function heuristic selection with a simple new initialisation 

and update scheme for the weights of diversification and 

intensification.This approach ranks the 20th while its 

modified version ranks the 12th among the hyper-heuristics 

proposed by the CHeSC competitors (emphasising the 

importance of tuning). 

Mısır et al (2012) implement an approach including 

two stages: heuristic selection and solution acceptance. 

Heuristic selection is done by learning dynamic heuristic 

sets, and effective pairs of heuristics. The algorithm also 

incorporates adaptation of the heuristic parameters, and an 

adaptive threshold acceptance. This approach was the 

winner of the CHeSC competition. 

Ping-Che et al (2012) implement a variable neighbour-

hood search algorithm that orders perturbation heuristics 

according to strength. It includes two stages: diversification 

and intensification and incorporates adaptive techniques to 

adjust the strength of the local search heuristics. This 

approach obtained the second place in the competition. 

Chan et al (2012) implement a hyper-heuristic that can 

assemble different iterated local search algorithms. The 

authors use the metaphor of pearl hunting; there is a 

diversification stage (surface and change target area) and 

an intensification stage (dive and find pearl oysters). The 

algorithm also uses offline learning to identify search 

modes. This approach obtained the fourth place in the 

competition, and, interestingly, was able to find new best-

known solutions for the personnel scheduling problem 

(Ochoa et al, 2012a). 

Gaspero and Urli (2012) used reinforcement learning for 

heuristic selection and explored several variants for the 

rewards, policy and learning functions. Different ways of 

modelling the agents’ states and actions were also explored. 

Ochoa et al (2012b) present a number of extensions to 

the HyFlex framework that enable the design of more 

effective adaptive heuristics. The article also demonstrates 

that adaptive evolutionary algorithms can be implemented 

within the framework, and that the use of crossover and a 

diversity metric produced improved results, including a 

new best-known solution on the studied vehicle routing 

problem. 

Another software framework, Hyperion, was proposed 

in Swan et al (2011) that provides a general recursive 

framework supporting the development of any type of 

(meta-)heuristic, selection hyper-heuristic and their 

hybrids. 

4.2.7. Summary and discussion. Most of the existing 

hyper-heuristics to select perturbative heuristics are 

designed based on a single point search framework. 

Initial studies concentrate on utilising different mechan-

isms to manage a set of low-level heuristics. As hyper-

heuristics were initially defined as ‘heuristics to choose 

heuristics’, almost no emphasis is given to the acceptance 

mechanisms during these initial studies. Later, it has been 

observed that by using more sophisticated move accep-

tance criteria, the performance can be improved substan-

tially. After the initial studies, there has been a rapid 

growth in the usage of well-known acceptance methods in 

different hyper-heuristic frameworks. A range of heuristic 

selection methods have been investigated such as the 

Choice Function (Cowling et al, 2000, 2002c) and 

reinforcement learning variants (Nareyek, 2003; Burke 



 

et al, 2003b; Dowsland et al, 2007; Gibbs et al, 2010; 

My  ̀sy  ̀r et al, 2010). Simulated annealing (Bai and Kendall, 

2005; Bilgin et al, 2006; Dowsland et al, 2007; Bai et al, 

2012), late acceptance (Ozcan et al, 2009; Demeester et al, 

2012) and variants of threshold acceptance (Kendall and 

Mohamad, 2004a; Bilgin et al, 2006; Mısır et al, 2009; 

Ozcan et al, 2009; Mısır et al, 2011) turn out to be 

appropriate choices as move acceptance components to be 

used within hyper-heuristics to select perturbative heur-

istics. It appears that the choice of move acceptance 

component is slightly more important than the choice of 

heuristic selection. 

In order to observe how well the proposed hyper-

heuristics generalise, they need to be applied to several 

problem domains. We can expect more comparative 

studies in the future. One of the goals of hyper-heuristic 

research is raising the level of generality. In this context, it 

is often the case that a hyper-heuristic does not aim to 

outperform a custom-made solver for a given problem. 

In such an environment, applicability over a wide range 

of problem domains is more crucial. For this reason, 

comparison measures across different problems are of 

interest. Selection hyper-heuristics are highly adaptive 

search methodologies. There is strong empirical evidence 

that they can handle not only static optimisation problems, 

but also dynamic environments (Kiraz and Topcuoglu, 

2010; Kiraz et al, 2011; Uludag et al, 2012). There is a vast 

literature on dynamic environments. Both communities 

can benefit from interaction. The current studies attempt to 

bring hyper-heuristics into dynamic environments, while 

the use of existing techniques in the field of dynamic 

environments would also be beneficial in the development 

of adaptive selection hyper-heuristics. 

The theoretical study on selection hyper-heuristics is 

extremely limited. In a recent study by He et al (2012), a 

theoretical comparison was performed between a pure 

strategy using a single mutation operator and a mixed 

strategy using multiple mutation operators within the 

framework of (1 þ 1) EA based on a performance measure, 

referred to as asymptotic hitting time. The authors showed 

that the asymptotic hitting time of the (1 þ1) EA with a 

mixed strategy using a set of mutation operators based on 

a prefixed distribution is not worse than the (1 þ 1) EA 

with the worst pure strategy using a single operator from 

that set. This type of studies is important for bridging the 

gap between theory and practice. It is crucial to have 

theoretical support motivating the development of selec-

tion hyper-heuristics. 

CHeSC 2011 set an interesting benchmark for selection 

hyper-heuristics. We expect that there will be more studies 

on hyper-heuristics extending the features of the interface 

and even introducing new benchmarks based on HyFlex 

(Ochoa et al, 2012a) and Hyperion (Swan et al, 2011). 

5. Heuristic generation methodologies 

The previous section covered heuristic selection methodol-

ogies. In contrast, this section will review another class of 

hyper-heuristics: heuristic generation methodologies. The 

defining feature of this class is that the hyper-heuristic 

searches a space of heuristics constructed from components 

rather than a space of complete, pre-defined, heuristics. 

While both classes output a solution at the end of a run, a 

heuristic generator also outputs the new heuristic that 

produced the solution, and this heuristic can be potentially 

reused on new problem instances. 

Genetic programming (Koza, 1992; Koza and Poli, 2005) 

is an evolutionary computation technique that evolves a 

population of computer programs, and is the most common 

methodology used in the literature to automatically 

generate heuristics. In the case that the evolved programs 

are heuristics, genetic programming can be viewed as a 

hyper-heuristic to generate heuristics. However, genetic 

programming is not inherently a hyper-heuristic, as the 

evolved programs can also directly represent problem 

solutions. For example, in symbolic regression, the solution 

is a formula, and the ‘programs’ in the population are 

candidate formulas, which are not used as heuristics. As 

another example, genetic programming can be employed to 

evolve programs which construct the design of artefacts 

such as bridges, circuits, and lenses. These programs are not 

heuristics, but a series of deterministic instructions. 

Automatically generated heuristics may be ‘disposable’ 

in the sense that they are created for just one problem, and 

are not intended for use on unseen problems. This 

terminology was first used by Bader-El-Den and Poli 

(2007). Alternatively, the heuristic may be created for the 

purpose of reusing it on new unseen problems of a certain 

class. It is generally the case that all heuristics generated 

by a hyper-heuristic can technically be defined as reusable, 

as they can be applied to a new instance to produce a legal 

solution. However, they may not perform well on new 

instances if the particular hyper-heuristic methodology has 

not been designed with reusability in mind. For a generated 

heuristic to be successful when reused, the hyper-heuristic 

would usually train it offline, on a set of representative 

problem instances. 

There are a number of potential advantages of 

automatically generating heuristics. The characteristics of 

problem instances vary, and obtaining the best possible 

result for an instance would ideally require a new heuristic 

specialised to that instance, or a specialised variation of a 

previously created heuristic. It is inefficient for a human 

analyst to specialise heuristics on a per-instance basis. As 

such, human created heuristics are rarely successful on only 

one problem instance; they are usually designed to be 

effective on a given class of problems. In contrast, an 

automated heuristic design process makes it potentially 



 

feasible and cost effective to design a heuristic for each 

problem instance. As the process is automated, it is less 

demanding on human resources and time. As it is more 

specialised, a generated heuristic could even produce a 

better solution than that which can be obtained by any 

current human-created heuristic, and many such examples 

are discussed in this section. 

For example, ‘best-fit’ is a human-created heuristic for 

one-dimensional bin packing, which performs well on a 

wide range of bin packing instances. It was created as a 

general heuristic for all bin packing problems, and no 

heuristic is superior in both the average and worst case 

(Kenyon, 1996). However, over a narrower set of bin 

packing problems with piece sizes defined over a certain 

distribution, best-fit can be outperformed by automatically 

generated heuristics which are ‘tailored’ to the distribution 

of piece sizes (Burke et al, 2007b). 

Table 3 presents a summary of papers that involve the 

automatic generation of heuristics. The rest of the 

section is organised by application area as follows: 

production scheduling (Section 5.1), cutting and packing 

(Section 5.2), SAT (Section 5.3), the travelling salesman 

problem (Section 5.4), and timetabling and scheduling 

(Section 5.5). These are the domains most widely studied 

in the literature. A summarising discussion is provided in 

Section 5.6. 

Dimopoulos and Zalzala (2001) evolve priority dispatch-

ing rules for the single machine scheduling problem to 

minimise the total tardiness of jobs. The component set is 

based on the human designed ‘Montagne’ dispatching rule, 

and contains five elements, representing both global and 

local job information. While the component sets are 

relatively simple, the system evolves heuristics superior to 

the Montagne, ADD, and SPT heuristics. 

Geiger et al (2006) also employ genetic programming to 

evolve dispatching rules for single machine problems. The 

component sets are expanded from that presented by Ho 

and Tay (2005) and Dimopoulos and Zalzala (2001). 

Human competitive heuristics are produced under a variety 

of scheduling conditions, often replicating the human-

created heuristics for the problems. The system also 

obtains human-competitive results on a two-machine flow-

shop problem, where a unique dispatching rule is evolved 

for each machine simultaneously. 

5.2. Cutting and packing 

Burke et al (2006a, 2007a, b) employ a genetic program-

ming hyper-heuristic methodology to generate heuristics 

for one-dimensional bin packing. The heuristics generated 

by this system are functions consisting of arithmetic 

operators and properties of the pieces and bins. The 

heuristics operate within a fixed framework that packs the 

pieces of an instance one at a time. For each piece in turn, 

the framework iterates through all of the bins, executing 

the heuristic function once for each. The heuristic returns a 

value for each bin. The bin that receives the highest value is 

the one into which the piece is placed (Burke et al, 2007b). 

These heuristics maintain their performance on new 

instances much larger than the training set in Burke et al 

(2007a). This work shows that there is a trade-off between 

the time taken to evolve a heuristic on larger instances, and 

the heuristic’s scalability. Burke et al (2010c) extend this 

work by adding a memory component to the genetic 

programming system. It maintains a record of the pieces 

that have been seen so far during the packing process. The 

results show that the GP evolves heuristics which use this 

component, and that those heuristics perform better 

because of it. 

Table 3 Application domains of heuristic generation 

methodologies 

Application domain References 

Production scheduling Jakobovic et al (2007) 

Ho and Tay (2005) 

Tay and Ho (2008) 

Dimopoulos and Zalzala (2001) 

Geiger et al (2006) 

Cutting and packing Burke et al (2006a, 2007a, b) 

Poli et al (2007) 

Kumar et al (2008) 

Allen et al (2009) 

Burke et al (2010c, e, 2011b) 

O  ̈zcan and Parkes (2011) 

Burke et al (2012) 

Sim et al (2012) 

Satisfiability Fukunaga (2002, 2004, 2008) 

Bader-El-Den and Poli 

(2007, 2008) 

Lokketangen and Olsson (2010) 

Travelling salesman problem Keller and Poli (2007a,b, 

2008a, b, c) 

Oltean and Dumitrescu (2004) 

Runka (2009) 

Function optimisation Oltean (2005) 

Oltean and Grosan (2003) 

Tavares et al (2004) 

Timetabling and scheduling   Pillay (2009) 

Bader-El-Den et al (2009) 

Additional domains Drechsler and Becker (1995) 

Drechsler et al (1996) 

Minton (1996) 

Schmiedle et al (2002) 

Stephenson et al (2003) 

Oltean and Grosan (2003) 

Tavares et al (2004) 

Oltean (2005) 

DiGaspero and Schaerf (2007) 

Kumar et al (2009) 

Pappa and Freitas (2009) 

Nguyen et al (2011) 

Elyasaf et al (2012) 

van Lon et al (2012) 



 

Poli et al (2007) also employ genetic programming to 

evolve heuristics for one-dimensional bin packing. The 

structure within which their heuristics operate is based on 

matching the piece size histogram to the bin gap histogram, 

and is motivated by the observation that space is wasted if, 

when placing a piece into a bin, the remaining space is 

smaller than the size of the smallest piece still to be packed. 

Constructive heuristics for the two-dimensional strip 

packing problem have been evolved with genetic program-

ming in Burke et al (2010e), which are competitive with the 

best human-created constructive heuristic in the literature. 

In contrast to their previous work on one-dimensional bin 

packing, the heuristics operate on the offline problem. The 

heuristics choose the most appropriate piece to pack next, 

and where to place it in the solution. 

Allen et al (2009) evolve heuristics for three-dimensional 

knapsack packing. Their performance is compared with the 

human-created best-fit heuristic and a simulated annealing 

methodology. While the evolved heuristics are worse than 

best-fit on most instances, they are competitive with the 

simulated annealing method. Burke et al (2011b) extend 

this work by representing one- and two-dimensional 

packing problems as three-dimensional problems, and 

therefore creating a system which can evolve heuristics 

for packing problems of all dimensions. It remains an open 

question as to how to automatically generate 3D packing 

heuristics which maintain their performance on new 

problems. The literature shows that it is often the case 

that automatically designed heuristics can only be relied 

upon to maintain their performance on new instances of 

the same problem class as they were evolved on. Therefore, 

a possible reason for the difficulties in the 3D packing 

domain could be that it is more difficult to define classes of 

instances, as problem instances are generally very diverse. 

Benchmark classes of instances exist, but within each class 

the instances may not share characteristics which allow one 

heuristic to specialise on that class. 

Hyper-heuristics that generate heuristics for combina-

torial optimisation problems often generate constructive 

heuristics. This is by far the most common format, 

especially for cutting and packing problems. The other 

alternative is to generate local search heuristics, which start 

with a complete solution and iteratively improve it. There 

are many choices to make when designing a local search 

algorithm, and among the most important is the neigh-

bourhood move operator. The work of Burke et al (2012) 

shows that the space of neighbourhood move operators 

can be specified by a grammar, and high-quality operators 

can be evolved using a grammatical evolution technique. 

Recent work by Kumar et al (2008) presents a genetic 

programming system that evolves heuristics for the 

biobjective knapsack problem. This is the first paper in 

which heuristics for a multiobjective problem have been 

automatically generated with a hyper-heuristic. To pack a 

knapsack instance, an evolved heuristic iterates through 

the list of pieces still to be packed, and is evaluated on 

each, using the profit and weight of the piece as inputs. 

When an evaluation returns a value of greater than or 

equal to one, then the iteration stops and that piece is 

packed. This is similar to the bin packing methodology of 

Burke et al (2006a), as it uses a threshold to make a 

decision, before all of the options have been evaluated. 

Ozcan and Parkes (2011) introduce a matrix representa-

tion of policies (heuristics). An offline learning genetic 

algorithm using this efficient representation created con-

structive heuristics that outperformed human designed 

heuristics for online bin packing. 

Sim et al (2012) present a methodology to generate a 

selection hyper-heuristic (See section 4.1) for the one-

dimensional bin packing problem. The idea is to auto-

matically design a selection mechanism which will choose 

the correct heuristic for the characteristics of a given 

problem instance. An evolutionary algorithm is employed 

to evolve combinations of problem characteristics which 

are similar to those used previously by Ross et al (2002). 

The advantage of automatic generation in this case is to 

evolve characteristics that are actually relevant to the 

performance of the heuristics, and the results corroborate 

other studies which show that selecting from a set of 

heuristics produces better results than any one heuristic 

used in isolation. 

5.3. Boolean satisfiability (SAT) 

Fukunaga presents ‘CLASS’ (Composite Learned Algo-

rithms for SAT Search), an automated heuristic discovery 

system for the SAT problem. Earlier papers by Fukunaga 

(2002, 2004) represent the initial work, while much more 

analysis is given in Fukunaga (2008). SAT is a domain 

where the most successful heuristics from the literature 

have a similar structure. Indeed, better heuristics have been 

created simply by adding a ‘random walk’ element to an 

existing heuristic. Fukunaga has broken this structure 

down into component parts, and the CLASS system is a 

genetic programming methodology used to evolve human 

competitive heuristics consisting of these components. 

Among others, there are some components which supply 

a set of variables, some of which select a variable from such 

a set, and some which make use of conditions to decide 

which subset of components to execute. Fukunaga (2008) 

shows that certain human-created heuristics from the 

literature, such as GWSAT and WalkSAT, can be 

represented with this component set. Fukunaga states that, 

because of the number of possibilities involved, the task of 

combining the components to create effective new heur-

istics is difficult for humans, but well suited for an 

automated system. 

Fukunaga (2002, 2004, 2008) does not employ the 

genetic programming operators of crossover and mutation 



 

in their standard form. Instead of standard crossover, 

individuals are combined with a conditional operator, 

which keeps the original individuals intact and ‘blends’ 

their behaviour. If the condition is met, one individual is 

executed, else the other is executed. 

Bader-El-Den and Poli (2007) observe that this results in 

heuristics consisting of other nested heuristics. The 

heuristics are composites of those in early generations, 

and are therefore relatively slow to execute. Bader-El-Den 

and Poli present a different heuristic generation methodol-

ogy for SAT, which makes use of traditional crossover and 

mutation operators to produce heuristics which are more 

parsimonious, and faster to execute. A grammar is defined, 

which can express four existing human-created heuristics, 

and allows significant flexibility to create completely new 

heuristics. 

ADATE is a methodology that generates code in a 

subset of the functional programming language ML. 

Lokketangen and Olsson (2010) show how this technique 

can be utilised to automatically generate metaheuristic 

code. They apply the methodology to the boolean 

optimisation problem (BOOP). They begin with an ML 

implementation of a tabu-search metaheuristic from the 

literature, and ADATE modifies the section of the code 

that decides which variable to flip next. This is an example 

of a common methodology to begin with an existing 

algorithm as a template, and allow the automatic code 

generator to modify the ‘heuristic’ sections of the algorithm 

which make the decisions during a search. 

5.4. Travelling salesman problem 

Keller and Poli (2007b) present a linear genetic program-

ming hyper-heuristic for the travelling salesman problem. 

The hyper-heuristic evolves programs that represent the 

repeated application of a number of simple local search 

operations. The programs are sentences of a language 

defined by a grammar, and the grammar is progressively 

made more complex over a series of papers, including 

conditional components and loops (Keller and Poli, 2007a, 

2008a,b,c). 

Also for the travelling salesman problem, Oltean and 

Dumitrescu (2004) evolve constructive heuristics, as 

opposed to the local search heuristics evolved by Keller 

and Poli (2007b). They use multi-expression programming 

to evolve functions that decide which node of the graph to 

add to the tour. This is another example of the common 

technique of evolving a scoring function which operates 

within a fixed iterative framework (such examples have 

been discussed in Sections 5.1, 5.2, and 5.3). The decision-

maker is evolved, but the context within which the decision 

is made remains fixed. In general, at each decision point, 

the function is evaluated on all available options to obtain 

a score for each. The option with the highest score is the 

one that is actually performed on the partial solution. In 

this case, Oltean and Dumitrescu (2004) apply the 

candidate function to all of the cities that are not yet 

included in the partial tour, and the one which receives the 

highest score from the function is added to the tour. 

One general methodology for automatically generating 

heuristics is to evolve a fundamental part of an existing 

metaheuristic search algorithm. This has the potential to 

produce a much better variation of the original human-

designed algorithm. Runka (2009) presents such a system 

for evolving the edge selection formula of an ant colony 

optimisation algorithm. While the evolved formulae were 

tested on only two unseen travelling salesman problem 

instances, the results were better than the original human-

designed formula. 

5.5. Timetabling and scheduling 

A grammar-based genetic programming system is pre-

sented by Bader-El-Den et al (2009) for the exam 

timetabling problem. The grammar contains elements of 

graph colouring heuristics and slot allocation heuristics, 

and a sentence in this grammar represents a new heuristic 

for constructing a timetable. The results returned by the 

evolved heuristics are comparable with a range of human-

created search methodologies from the literature. The 

system is presented as an online learning methodology, as it 

is not shown whether these evolved heuristics are successful 

when reused on new problem instances. 

The exam timetabling approach of Pillay (2009) 

evolves a heuristic to order exams. A sorting algorithm, 

such as quicksort, has a comparator which decides if one 

element should be ahead of another in the list, and then it 

is applied to as many pairs of elements as is necessary to 

create the ordering based on that comparator. Pillay uses 

strongly typed genetic programming to evolve the 

comparator of two elements, which in this case are 

exams. The comparator has a tree structure consisting of 

standard graph colouring indicators such as largest 

weighted degree and saturation degree of the two exams, 

and logic operators such as ‘less than’ and ‘not equal to’. 

After sorting, the exam that appears at the head of the 

queue is scheduled next. 

5.6. Summary and discussion 

This section presents a summary of the literature on 

heuristic generation methodologies. Investigations have been 

undertaken on a wide variety of optimisation problems, 

which have relied on human-generated heuristics thus far. 

The literature shows that, typically, evolutionary computa-

tion methods are employed to automatically generate 

heuristics, which are reusable on new problem instances. 

A heuristic generation process is often computationally 

expensive when compared with a methodology that 



 

operates directly on the solution space. However, this is 

only a disadvantage in the short term, when results will not 

be required for future problems. Consider the application 

of an evolutionary algorithm directly to the problem space. 

The output is just the solution to the instance, and the 

entire evolutionary algorithm must be run again if a 

solution is required for future problems. If the evolutionary 

process is employed instead as a hyper-heuristic, to 

generate a quick reusable heuristic, then only one run of 

the evolution is required. The evolved heuristic can then 

obtain a comparable result on the future problems, much 

more quickly than the application of an evolutionary 

algorithm. This is one of the main benefits of searching for 

a solution method rather than just searching for a solution. 

While the evolution process is computationally expen-

sive, it is often quicker than manual heuristic generation. 

For example, Geiger et al (2006) state that production 

scheduling heuristics from the literature are the result of 

years of scheduling research, and the identical evolved 

heuristic rules are generated within a fraction of this time. 

This illustrates one of the main motivations for auto-

matically generating heuristics. 

However, the potential components of the evolved 

heuristics must still be defined by humans, and the consensus 

from current research seems to be that the set of components 

will be different for each problem domain. Research in this 

new area of automatic heuristic generation shows that it is 

not yet able to completely replace human ingenuity, as it can 

be argued that successful sets of components are inspired by 

the literature on human-created heuristics. As Fukunaga 

(2008) states, humans are able to invent good building 

blocks, and the literature does show that hyper-heuristic 

methodologies have been able to successfully combine these 

human-defined building blocks in superior ways. 

6. Related areas 

Heuristic search is widely studied in Operational Research, 

Computer Science and Artificial Intelligence. A promising 

direction for developing improved search techniques is to 

integrate learning components that can adaptively guide 

the search. Many techniques have independently arisen in 

recent years that exploit either some form of learning, or 

search on a configuration space, to improve problem-

solving and decision-making. We briefly overview some of 

these approaches below, categorising them between offline 

and online approaches. 

6.1. Offline approaches 

Algorithm configuration: Is concerned with determining the 

appropriate values for algorithm parameters. It is com-

monly treated as an optimisation problem (and therefore 

as a search problem in a configuration space), where the 

objective function captures performance on a fixed set of 

benchmark instances (Hutter et al, 2007). Depending on 

the number and type of parameters, the methods used to 

solve this optimisation problem include exhaustive enu-

meration, beam search (Minton, 1996), experimental 

design (Ridge and Kudenko, 2007), the application of 

racing algorithms (Birattar, 2005), combinations of frac-

tional experimental design and local search (Adenso-Diaz 

and Laguna, 2006), and iterated local search (Hutter et al, 

2009). 

Meta-learning for algorithm selection: The algorithmic 

selection problem was formulated by Rice (1976) as: Which 

algorithm is likely to perform best for my problem? 

Recognising this problem as a learning task, the machine 

learning community developed meta-learning approaches 

mainly to learn about classification. The generalisation of 

meta-learning concepts to constraint satisfaction and 

optimisation as discussed in Smith-Miles (2008b) is closely 

related to hyper-heuristic research. Examples of these 

generalisations can be found in Operational Research 

(Smith-Miles, 2008a) and Artificial Intelligence (Horvitz 

et al, 2001). 

6.2. Online approaches 

Parameter control in evolutionary algorithms: A different 

approach to algorithm configuration, also called para-

meter control, is the idea of tuning algorithm parameters 

online at execution time. These approaches were already 

discussed in Section 2. In Eiben et al (1999), a useful and 

widely accepted classification of mechanisms for para-

meter control is proposed, together with a detailed 

literature survey of work to date in this topic within 

evolutionary algorithms. More recent surveys and over-

views of the state-of-the-art can be found in Eiben et al 

(2007) and Lobo et al (2007). 

Adaptive memetic algorithms: Another approach closely 

related to heuristic selection based on perturbative 

heuristics is that of adaptive memetic algorithms, a breed 

of hybrid evolutionary algorithms, in which several memes 

(or local searchers) are available and adaptively selected 

(or generated altogether) during the search (Krasnogor and 

Smith, 2000; Krasnogor and Gustafson, 2004; Ong and 

Keane, 2004; Jakob, 2006; Ong et al, 2006). Ong et al 

(2006) present a useful classification of memes 

adaptation in memetic algorithms based on the widely 

accepted terminology proposed in Eiben et al (1999). As 

discussed in Smith (2008), self-adaptation ideas have been 

applied to memetic algorithms in two ways: (i) for self-

adapting the choice of local search operators (Krasnogor 

and Smith, 2000), and (ii) for self-adapting the definition 

of local search algorithms (Smith, 2002; Krasnogor and 

Gustafson, 2004). This distinction is analogous to our main 

classification of hyper-heuristics into heuristic 

selection and heuristic generation methodologies (see 



 

Section 3). 

Adaptive operator selection: A related recent research 

direction, again within evolutionary algorithms, has been 

termed adaptive operator selection. Its goal is to design 

online strategies able to autonomously select between 

different variation operators. As discussed in Maturana et 

al (2009), adaptive operator selection approaches contain 

two main mechanisms: credit assignment, which defines the 

reward to be assigned to an operator (according to its 

quality) after it has been applied, and operator selection 

that selects one operator to be applied according to 

previously computed operator qualities. Several ap-

proaches for implementing these two mechanisms have 

been proposed (Fialho et al, 2008; Maturana et al, 2009, 

2010; Candan et al, 2012; Veerapen et al, 2012). 

Reactive search: is an online methodology that advocates 

the integration of sub-symbolic machine learning techni-

ques into search heuristics for solving complex optimisa-

tion problems (Battiti, 1996; Battiti et al, 2009). The 

machine learning component acts on top of the search 

heuristic, in order to let the algorithm self-tune its 

operating parameters during the search operation. The 

learning component is implemented as a reactive feedback 

scheme that uses the past history of the search to increase 

its efficiency and efficacy. These ideas have been mainly 

applied to the tabu search meta-heuristic. 

Variable neighbourhood search: Although generally not 

including an adaptive mechanism, Variable Neighbour-

hood search (VNS) (Mladenovic and Hansen, 1997) is 

related to heuristic selection based on perturbative 

heuristics in that such a method exploits the search power 

of multiple neighbourhoods. VNS systematically switches 

neighbourhoods in a predefined sequence so that the search 

can explore increasingly distant neighbourhoods of the 

current solution. Therefore, we can say that VNS is a high-

level heuristic that coordinates the behaviour of several 

neighbourhood structures. 

Algorithm Portfolios: First proposed in Huberman et al 

(1997), algorithm portfolios represent an alternative way of 

automating the design of search techniques. They are 

designed following the standard practice in economics to 

obtain different return-risk profiles in the stock market 

by combining different stocks. An algorithm portfolio 

would run different algorithms concurrently in a time-

sharing manner, by allocating a fraction of the total 

CPU cycles to each of them. The first algorithm to finish 

reports the solution and determines the completion time 

of the portfolio, while the other algorithms are im-

mediately stopped. Dynamic portfolios, that include 

online learning, have been considered in Gagliolo and 

Schmidhuber (2006). 

7. Discussion and future work 

The defining feature of hyper-heuristics is that they operate 

on a search space of heuristics rather than directly on a 

search space of problem solutions. This feature provides the 

potential for increasing the level of generality of search 

methodologies. There have been several independent 

realisations of this idea over the years (since the early 

1960s) within Operational Research, Computer Science and 

Artificial Intelligence; however, the term hyper-heuristic is 

relatively new. We identified two main broad classes of 

approaches to the challenge of automating the design of 

heuristics; namely: heuristic selection and heuristic genera-

tion. This article has covered both the intellectual roots and 

the state of-the-art of these methodologies up until the end 

of 2010. 

Heuristic generation methodologies offer more scope 

for greater levels of generalisation. However, they can 

be more difficult to implement, when compared with 

their counterpart (heuristic selection methodologies) 

since they require the decomposition of existing 

heuristics, and the design of an appropriate framework. 

These issues are balanced by the potential benefits of the 

approach. One of the strengths of heuristic generation 

methodologies is that they can automatically 

specialise a heuristic to a given class of problem 

instances. This process of specialisation and tuning is 

usually the time-consuming and expensive part of the 

implementation of a heuristic, and so hyper-heuristics 

have the potential to save a significant amount of effort. 

In turn this could reduce the cost barriers that prevent 

smaller organisations from taking advantage of modern 

search technologies. 

An additional criterion for classifying hyper-heuristics is 

the source of the feedback during the learning process, 

which can be either one instance (online approaches) or 

many instances of the underlying problem (offline ap-

proaches). Both online and offline approaches are poten-

tially useful and therefore worth investigating. Although 

having a reusable method will increase the speed of solving 

new instances of a given problem, using online methods can 

have other advantages. In particular, searching over a space 

of heuristics may be more effective than directly searching 

the underlying problem space, as heuristics may provide an 

advantageous search space structure (Storer et al, 1995; 

Ochoa et al, 2009b; Vázquez-Rodrı´guez and Petrovic, 

2010). Moreover, in newly encountered problems there 

may not be a set of related instances on which to train 

offline hyper-heuristic methods. 

Hyper-heuristics can be used for solving complex real-

world problems. Since the search strategy components of a 

hyper-heuristic process only problem domain independent 

information, they can be readily applied in a different 

problem domain (provided that the problem-specific 

algorithm components are available to the practitioner). 

The studies on parallel and distributed processing strategies 



 

can benefit from hyper-heuristic research and vice versa. 

Hyper-heuristic methodologies can handle both single and 

multi-objective problems. The empirical investigations up 

to now show that hyper-heuristics are fast techniques that 

produce solutions with reasonable quality in a reasonable 

time. Moreover, their performance is often comparable 

with bespoke systems. 

The further development of hyper-heuristic frameworks 

such as HyFlex (Ochoa et al, 2012b) and Hyperion (Swan 

et al, 2011) may help to promote research and thus 

improve hyper-heuristic methods. It is still an open 

problem how to easily apply these software frameworks 

in practice for new domains. 

Thus far, little progress has been made to enhance our 

theoretical understanding of hyper-heuristic approaches. 

Initial efforts have been devoted to understanding the 

structure of heuristic search spaces (Vázquez-Rodrı´guez 

et al, 2007b; Qu and Burke, 2009; Ochoa et al, 2009a; 

Maden et al, 2009), and the implications to the Non-Free-

Lunch theorem (Poli and Graff, 2009). Further research in 

this direction, including run time analysis and other 

foundational studies, would be relevant to both enhancing 

our understanding and designing efficient and general 

hyper-heuristics. 

As it was discussed in Section 6 several communities 

have been working in related research themes and 

sharing common goals. However, there is still little 

interaction between them. Much is to be gained from a 

greater awareness of the achievements in various cross-

disciplinary approaches; opportunities would open for 

extension to both new problem domains and new 

methodologies through cross-fertilisation of these ideas. 

Hyper-heuristic research has the potential of bringing 

together promising ideas in the fields of meta-heuristics 

and machine learning, with knowledge (in the form of 

problem-specific heuristics) accumulated over the years 

in the field of operational research. The overall aim is to 

solve complex real-life combinatorial optimisation 

problems in a more general fashion, and produce 

reusable technologies to facilitate systems which can 

work with users to home in on high-quality solutions to 

problems. 
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