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Automated Design of Production Scheduling Heuristics:
A Review

Jürgen Branke, Member, IEEE, Su Nguyen, Member, IEEE
Christoph Pickardt and Mengjie Zhang, Senior Member, IEEE

Abstract—Hyper-heuristics have recently emerged as a power-
ful approach to automate the design of heuristics for a number
of different problems. Production scheduling is a particularly
popular application area for which a number of different hyper-
heuristics have been developed and shown to be effective, efficient,
easy to implement, and reusable in different shop conditions.
In particular, they seem a promising way to tackle highly
dynamic and stochastic scheduling problems, an aspect that is
specifically emphasised in this survey. Despite their success and
the substantial number of papers in this area, there is currently
no systematic discussion of the design choices and critical issues
involved in the process of developing such approaches. This
review strives to fill this gap by summarising the state of
the art, suggesting a taxonomy, and providing the interested
researchers and practitioners with guidelines for the design
of hyper-heuristics in production scheduling. This paper also
identifies challenges and open questions and highlights various
directions for future work.

Index Terms—scheduling, evolutionary design, hyper-heuristic,
genetic programming

I. INTRODUCTION

SCHEDULING is concerned with the allocation of limited
resources to tasks over time, with the basic aim to ensure

an effective and efficient use of the available resources. A clas-
sic problem area is the scheduling of manufacturing systems,
where machines (the resources) have to be allocated to jobs
(the tasks) in the best possible way (minimising or maximising
some objective function). Some of the costs that are typically
affected by a production schedule are the holding costs of
in-process inventory, contractual penalties for late deliveries,
setup costs, and the costs of scrap and rework, which illustrate
the importance of production scheduling to manufacturers in
their endeavour to become and remain competitive.

A number of exact solution methods that solve deterministic
scheduling problems optimally have been proposed in the
literature (see, e.g. [1]). However, due to the high complexity
of most scheduling problems of interest, exact methods are
usually unable to solve large instances within a reasonable
computational time. Moreover, many problems are stochastic
and dynamic, i.e. they are subject to change over time due to
random, stochastic events such as new job arrivals, stochastic
processing times or machine breakdowns. Consequently, many
researchers and practitioners have turned to heuristics, which
deliver acceptable, but not necessarily optimal solutions in a
short computational time.

Jürgen Branke and Christoph Pickardt are with Warwick Business School,
The University of Warwick, Coventry CV4 7AL, UK. Su Nguyen and Mengjie
Zhang are with the Evolutionary Computation Research Group at Victoria
University of Wellington, PO Box 600, Wellington, New Zealand.

In general, heuristics are problem-specific solution methods
and have to be designed for the problem at hand. Unfor-
tunately, the design of sophisticated heuristics is usually a
tedious trial-and-error process, with candidate heuristics tested
on some instances of the considered problem, modified and
retested until they meet the demands for actual implementa-
tion, which requires a significant amount of expertise, time and
coding-effort. To handle this issue, various methods to (par-
tially) automate the design of heuristics have been proposed
in the literature, also known as hyper-heuristics.

In [2], hyper-heuristics are defined as “an automated
methodology for selecting or generating heuristics to solve
hard computational search problems”. In other words, hyper-
heuristics explore a search space of heuristics to discover those
that work effectively. In this survey, we use fitness to denote
the effectiveness of heuristics (discussed in Section III-E),
whereas the objective value or function denotes the quality
of a schedule.

Burke et al. [2] classify hyper-heuristics with respect to the
nature of their process, i.e. whether they select or generate
heuristics. Moreover, they distinguish hyper-heuristics that
learn online, i.e. while solving a problem instance, from those
that learn offline, i.e. that gather reusable knowledge from a
set of training instances. Burke et al. [3] provide a general
overview of the state of the art of hyper-heuristic design,
covering all categories of hyper-heuristics. The scope of this
survey is on (offline) hyper-heuristics for the generation of a
reusable heuristic, which can be applied to quickly solve new
problem instances once it has been generated. We deliberately
do not cover hyper-heuristics that select a heuristic for every
decision point of a particular problem instance (see, e.g. [4],
[5], [6]), as the generated sequence of heuristics can generally
not be reused, nor do we cover hyper-heuristics that learn to
select heuristics for a given problem instance (see, e.g. [7],
[8], [9]), as this is problem classification rather than heuristic
generation. Hyper-heuristics for the generation of heuristics
have also been developed for other problem areas, including
bin packing [10], [11], [12], vehicle routing [13], [14], [15],
timetabling [16], [17], air traffic control [18], [19], and project
scheduling [20].

This paper presents a comprehensive review of the literature
on hyper-heuristics for the design of construction heuristics in
production scheduling with the aim to guide the interested
researcher and practitioner through the key issues in devel-
oping such hyper-heuristics. The remainder of the paper is
organised as follows. Section II describes the scheduling prob-
lems addressed and heuristics generated by means of hyper-
heuristics. Section III reviews the design of hyper-heuristics,
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with a particular focus on the representation and evaluation
of candidate heuristics. Some potential issues and challenges
with specific suggestions for future work are discussed in
Section IV, followed by a short summary of the paper and
a more general outlook on future research.

II. SCHEDULING ENVIRONMENTS AND HEURISTICS

In general, heuristics are designed to be effective for a
specific problem or class of problems. Production scheduling
problems can be categorised by various properties, two im-
portant ones being the shop configuration and the objective.
The simplest “shop” configuration is a single machine that
is responsible for processing all jobs. If there is more than
one machine available to process a job, this is called a
parallel machine environment. Multi-stage problems, which
are generally NP-hard [69], are characterised by jobs that
consist of a number of processing steps, or operations, that
need to be performed on distinct machines in a specified order.
Depending on whether all jobs share the same processing order
or not, the configuration is called a flow shop or job shop. Flow
shops and job shops are further called flexible, if they contain
at least one work centre that consists of parallel machines
[1, Ch. 2]. Objectives can be broadly classified as completion
time-based, with a focus on the efficiency of the manufacturing
system, and due date-based, with a focus on adherence to
promised delivery dates. Table I provides a summary of the
scheduling problems that have been addressed in the literature
by means of a hyper-heuristic.

In most cases, the heuristics generated by the respective
hyper-heuristic belong to the class of dispatching rules. Dis-
patching rules are a particularly simple type of scheduling
heuristic, which progressively construct solutions by schedul-
ing one operation at a time. Whenever a machine is available
and there are jobs waiting to be processed on that machine,
dispatching rules compute a priority index for each eligible job
as a function of some job attributes (e.g. its processing time
or due date), and shop attributes (e.g. the average processing
time in the queue of the considered work centre), and schedule
only the imminent operation of the job with the highest pri-
ority. Due to their locally restricted horizon, dispatching rules
have very low computational and information requirements,
irrespective of the complexity of the overall problem. More-
over, because each scheduling decision is made at the latest
possible moment, i.e. immediately before its implementation,
dispatching rules naturally possess the ability to quickly react
to unexpected changes, which makes them particularly suited
for stochastic and dynamic scheduling problems (for a list of
papers explicitly addressing stochastic dynamic environments
see Table I). These properties, together with their simple
and intuitive nature, their ease of implementation and their
flexibility to incorporate domain knowledge and expertise [70]
explain the wide usage of dispatching rules in practice [71]
and the ongoing research on the development of new, more
effective dispatching rules (see, e.g. [72], [73], [74]).

While dispatching rules that have been trained on a set of
static, deterministic problem instances could, in principle, be
applied to dynamic, stochastic problems, [44] and [49] show

that this does not necessarily lead to good results, and that it is
better to use dynamic, stochastic problems also during training.
In terms of hyper-heuristic design, there are some minor
differences between using deterministic or stochastic problems
for training, which will be discussed in the corresponding
sections. In particular, other attributes may be needed (Section
III-B), and the fitness function becomes stochastic (Section
III-E), which in turn raises issues such as the determination of
an appropriate run length of the simulation (Section III-E2).
Moreover, the definition of stochastic benchmark problems is
also more difficult (Section IV-D).

In the literature, dispatching rules are typically designed for
and tested on a (flexible) job shop problem, which is reflected
in Table I by the relatively large number of studies dealing with
this shop configuration. In general, hyper-heuristics have been
used to evolve dispatching rules for a variety of scheduling
problems with various objective functions and processing
characteristics. Also, some recent work has focussed on the
development of hyper-heuristics that can evolve a set of
Pareto-optimal dispatching rules for multi-objective problems.
A general conclusion of these studies is that hyper-heuristics
are able to generate dispatching rules that outperform manually
designed benchmark rules.

A few researchers have used hyper-heuristics for the gen-
eration of other types of scheduling heuristics. Yin et al. [23]
evolve so-called predictive heuristics, which aim to construct
schedules that are robust to unpredictable breakdowns of
machines and are shown to outperform a benchmark heuristic
from the literature. Vazquez-Rodriguez and Ochoa [66] evolve
variants of the iterative Nawaz, Enscore and Ham (NEH)
heuristic [75] for a number of permutation flow shop problems,
which are significantly better than the original NEH heuristic
and a randomised version. Mascia et al. [67] also generate iter-
ative heuristics for a permutation flow shop problem. Nguyen
et al. [33], [50] employ a hyper-heuristic for the generation
of iterative dispatching rules and variants of a size limited
beam search heuristic. These iterative scheduling heuristics
evaluate (partial) candidate solutions, and are thus restricted
to static, deterministic problems. As in the case of dispatching
rules, a key component of the above scheduling heuristics is
their priority function (or index), which is generally the part
that is evolved by the hyper-heuristic. Hence, the subsequent
discussion will focus on the evolution of dispatching rules,
and priority functions in particular.

III. HYPER-HEURISTIC DESIGN CHOICES

Figure 1 shows a simplified outline of the procedure of
a hyper-heuristic for the generation of heuristics. The main
components in the design of such a hyper-heuristic concern
the encoding or representation of candidate heuristics, which
defines the search space, the optimisation algorithm to explore
this search space, and the fitness function to determine the
quality of candidate heuristics. In this survey, we classify the
existing hyper-heuristics according to the learning method they
adopt (supervised or unsupervised) and their representation of
candidate heuristics (parametric or grammar-based), as shown
in Table II.
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TABLE I
SCHEDULING PROBLEMS ADDRESSED BY HEURISTIC GENERATION HYPER-HEURISTICS.

Problem class References

Shop configuration Single machine [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]
Parallel machines [34]
Job shop [26], [31], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47],

[48], [49], [50], [51], [52], [53], [54], [55], [56]
Flexible job shop [57], [58], [59], [60], [61], [62], [63], [64], [65]
Flow shop [25], [66], [67]

Special processing Sequence-dependent setups [28], [31], [32], [33], [34], [59], [61], [63], [65]
characteristic Job precedence constraints [31]

Batch processing [27], [65]
Machine eligibility restrictions [60], [61], [62], [64]
Dynamic/stochastic environment [23], [35], [36], [38], [40], [41], [44], [47], [51], [52], [53], [54], [55], [56], [57],

[58], [65]

Objective Completion time-based [23], [24], [25], [27], [28], [29], [31], [34], [36], [37], [39], [42], [44], [45], [46],
[48], [49], [50], [52], [53], [55], [57], [61], [64], [66]

Due date-based [22], [23], [25], [26], [27], [29], [30], [31], [33], [34], [35], [36], [38], [40], [41],
[43], [47], [48], [49], [50], [54], [55], [58], [59], [60], [62], [63], [66], [64], [65],
[67]

Multi-objective [32], [51], [56]

SET OF TRAINING INSTANCES 

Evaluation of heuristics 

OPTIMISATION ALGORITHM 

Exploration of search space 

Initial (randomly generated) 

candidate heuristic(s) 

Fitness values 
New candidate 

heuristic(s) 

Start 

Stopping criterion 

satisfied 

End 

Best candidate heuristic 

Fig. 1. Basic procedure of a hyper-heuristic for the generation of heuristics.

TABLE II
CLASSIFICATION OF HYPER-HEURISTICS FOR THE GENERATION OF PRODUCTION SCHEDULING HEURISTICS BY LEARNING METHOD AND

REPRESENTATION.

Supervised learning Unsupervised learning

Parametric representation [21], [38], [42], [46] [35], [36], [41], [45], [47],
[52], [57], [58], [59], [67]

Grammar-based representation

[24], [30], [39] [22], [23], [25], [26], [27],
[28], [29], [31], [32], [33],
[34], [37], [40], [43], [44],
[48], [49], [50], [51], [52],
[53], [54], [55], [56], [60],
[61], [62], [63], [64], [65],
[66]

The next section (III-A) discusses the two types of learning
methods used within hyper-heuristics, followed by a discussion
of the selection of attributes to be provided to the hyper-
heuristic in Section III-B. The different representations of
priority functions are presented in Section III-C together with
suitable optimisation algorithms as they are closely tied to the

chosen representation. Section III-D discusses the definition
of the eligible job set, and Section III-E discusses appropriate
fitness functions for the evaluation of candidate heuristics.
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A. Learning method

All hyper-heuristics generate new heuristics by learning
from a set of training instances. This learning can be su-
pervised or unsupervised. The basic idea of hyper-heuristics
using supervised learning in scheduling is to supply the hyper-
heuristic with a number of very good (preferably optimal)
schedules that it uses to derive a priority function that repro-
duces these schedules as closely as possible. These priority
functions can then be used as part of a heuristic, e.g. a
dispatching rule, to solve other problem instances.

A variety of such supervised hyper-heuristics have been
proposed in the literature. El-Bouri et al. [21] and Eguchi et
al. [38] develop hyper-heuristics that operate on a neural net-
work representation and use a back-propagation optimisation
algorithm to learn from optimal schedules. Ingimundardottir
and Runarsson [46] follow the same approach but use logistic
regression. Weckman et al. [42] also propose a neural network
hyper-heuristic, based on a variant of the back-propagation
algorithm, but learn from solutions generated by an evolu-
tionary algorithm (EA) instead of optimal solutions. Similarly,
Koonce and Tsai [39] employ attribute-oriented induction to
derive decision rules that reproduce the sequences generated
by an EA. Li and Olafsson [24], [30] develop a hyper-heuristic
that generates priority functions in the form of decision trees.
However, they only learn from solutions obtained by some
simple dispatching rules, which often generate solutions far
from optimal.

While some of the above studies report promising results,
a major drawback of the supervised learning approach is
that good global schedules can only be obtained for static
problems of relatively small size and low complexity, which
limits the applicability of these hyper-heuristics. In contrast,
hyper-heuristics using unsupervised learning generate effective
scheduling heuristics by simply applying candidate heuristics
to a set of problem instances (the training instances), measur-
ing their performance, and using this feedback to guide the
search towards promising areas of the search space. Hence,
unsupervised hyper-heuristics can be applied with relative
ease to any scheduling problem that can be simulated, which
makes them more practical in general. This is also reflected by
the fact that most studies in the area of production schedul-
ing develop hyper-heuristics that are based on unsupervised
learning (see Table II), and the subsequent discussion hence
concentrates on those.

B. Attributes

Irrespective of the representation used, an important design
decision concerns the selection of adequate job and shop
attributes that form the components of the priority functions
that can be evolved. To distinguish jobs from each other and
be able to prioritise one over another, it is obviously necessary
to include some job attributes, whereas the inclusion of shop
attributes allows for the generation of rules that can adapt to
changing shop conditions. Moreover, in the special case of
evolving iterative scheduling heuristics that make use of the
characteristics of candidate solutions in solving a problem,
as proposed by Nguyen et al. [33], [50], the hyper-heuristic

has to be provided with some attributes related to the current
candidate solution, e.g. the realised completion time of a
job. In general, the challenge is to select all the relevant
attributes while keeping the search space as small as possible.
Table III lists a number of promising attributes that have been
commonly used in the development of effective dispatching
rules in the literature, where shop attributes are divided into
attributes that concern the work centre for which a dispatching
decision is being made and global attributes. Attributes should
be carefully chosen in consideration of the given scheduling
problem, e.g. there is no benefit in providing the hyper-
heuristic with due date attributes when the objective function
is not due date-based (see, e.g. [44]), and certain attributes do
not make sense in a dynamic scheduling environment with new
jobs arriving all the time (e.g., sum of all processing times).

An important question regarding the selection of attributes
is whether to include attributes in their most basic or in some
aggregate form. To illustrate, a number of researchers provide
their hyper-heuristic with the job due date dj and the current
time t as separate attributes [23], [25], [31], [32], [40], [62],
[64]. However, it could be argued that due dates are more
meaningful if they are expressed relative to the current time,
i.e. dj − t, and that integrating the absolute due date with
other job attributes directly will often lead to rules that change
their behaviour over time, which is generally questionable and
particularly unsuitable for long dynamic scheduling problems.
In fact, the term dj − t appears in many effective manually
developed dispatching rules [76], [77], [78] and several studies
on hyper-heuristics have resorted to including due dates (and
also release dates and arrival times) in the set of attributes in
their relative form [35], [36], [44], [65]. It may make sense
to aggregate attributes even further, e.g. to define the non-
negative slack max(dj − t − pr

j , 0) [29], [31], [41] or the
non-negative time to arrival max(ri

j − t, 0) [29], [31] as one
attribute to distinguish jobs on schedule from late jobs and
jobs arriving in the future from waiting jobs, respectively,
where ri

j denotes the arrival time of job j to the work centre
required for its imminent operation. Kuczapski et al. [45] and
Baek and Yoon [58] select a number of composite priority
indices of dispatching rules from the literature as attributes
for their hyper-heuristic. However, these priority indices may
integrate attributes in a suboptimal manner and restrict the
hyper-heuristic in its search for a better priority function.
Overall, it appears that it is best to provide a hyper-heuristic
with attributes in their most basic form and let the hyper-
heuristic search for good combinations unless there is a good
theoretical foundation for an aggregate attribute, as in the cases
above.

Another question related to the selection of attributes is
whether or not to normalise them to a similar scale. In some
cases this may be necessary to fit a certain representation, e.g.
the grammar-based representation by Nguyen et al. [49] or the
neural network representation by Branke et al. [52]. Hershauer
and Ebert [35], Eguchi et al. [41], and Baek and Yoon [58] also
scale the attributes to a similar range. In a recent study, Branke
et al. [52] test two hyper-heuristics for the generation of
dispatching rules (one operating on a parametric, the other on
a grammar-based representation of priority functions) with and
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TABLE III
PROMISING ATTRIBUTES FOR THE GENERATION OF PRIORITY FUNCTIONS.

Type Attribute References

Job (Imminent) operation processing time [21], [22], [23], [24], [25], [26], [27], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [43], [44], [45], [46], [47], [48],
[49], [50], [51], [52], [53], [54], [55], [56], [58],
[59], [60], [62], [64], [65]

Processing time of subsequent operation(s) [25], [36], [37], [44], [49], [51], [52], [53], [54]
Sum of processing times of remaining operations [25], [26], [31], [35], [37], [38], [39], [40], [41],

[42], [43], [44], [45], [46], [47], [48], [49], [50],
[51], [52], [53], [54], [55], [56], [57], [58], [60],
[61], [62], [63], [64], [65], [66], [67]

Weighted (linearly decreasing) sum of processing times of remaining operations [66]
Number of remaining operations [26], [31], [35], [38], [39], [40], [41], [42], [43],

[44], [45], [47], [48], [49], [50], [51], [52], [53],
[54], [55], [56], [59], [63], [64], [65]

Release date [23], [24], [25], [26], [27], [29], [30], [31], [32],
[33], [34], [44], [48], [51], [52], [53], [56], [60],
[61], [62], [64], [66]

Arrival time at considered work centre [26], [31], [40], [44], [45], [46], [47], [48], [49],
[50], [51], [52], [53], [54], [55], [56], [57], [61],
[64]

Due date of job [21], [22], [23], [24], [25], [26], [27], [29], [30],
[31], [32], [33], [34], [35], [36], [38], [40], [41],
[43], [44], [45], [47], [48], [49], [50], [51], [54],
[55], [56], [58], [59], [60], [61], [62], [63], [64],
[65], [66], [67]

Due date of imminent operation [44], [65]
Weight [21], [24], [26], [30], [31], [32], [33], [34], [38],

[40], [41], [45], [49], [50], [54], [55], [56], [65],
[66], [67]

Setup time (given the current setup) [31], [32], [33], [34], [63], [65]
Number of machines that can process (imminent) operation [59], [61], [63]
Number of successor operations in precedence graph [31]
Level of (imminent) operation in precedence graph [31]

Work Sum of (imminent) operation processing times of all waiting jobs [25], [27], [38], [41], [49], [56]
centre Average (imminent) operation processing time of all waiting jobs [25], [27], [51], [58], [65]

Minimum processing time of (imminent) operations of waiting jobs [25], [27], [49], [56]
Maximum processing time of (imminent) operations of waiting jobs [25], [27], [38], [41], [49], [56]
Maximum sum of processing times of remaining operations of waiting jobs [38], [41]
Number of waiting jobs [25], [26], [27], [38], [41], [47], [54], [55], [63]
Minimum due date of waiting jobs [25], [27]
Maximum due date of waiting jobs [25], [27], [38], [41]
Maximum weight of waiting jobs [38], [41]
Average setup time of waiting jobs (given the current setup) [65]
Maximum saving in setup time if (imminent) operation is processed on parallel machine [65]
Number of waiting jobs of same family [27], [65]
Fullness of batch (using currently waiting jobs) [65]
Speed of considered machine [34]
Sum of speeds of all parallel machines [34]

Global Sum of processing times of remaining operations of all jobs requiring considered work centre [23], [26], [31], [34], [49], [56]
Number of remaining operations of all jobs requiring considered work centre [23], [26], [31], [34]
WINQ = Sum of (imminent) operation processing times (adjusted for number of parallel [36], [38], [41], [44], [48], [51], [52], [53], [57],
machines) of jobs waiting at next work centre (required for subsequent operation of a job) [58]
NINQ = Number of jobs waiting at next work centre [36], [37], [38], [41], [54]
Maximum WINQ of waiting jobs [38], [41]
Maximum NINQ of waiting jobs [38], [41]
Average waiting time of jobs last processed across all work centre in the shop [54]
Sum of processing times of remaining operations of all jobs requiring next work centre [37]
Sum of (imminent) operation processing times of jobs waiting at critical work centre [49], [56]
(the one with the greatest sum of processing times of all remaining operations)
Sum of processing times of remaining operations of all jobs requiring critical work centre [49], [56]
Sum of (imminent) operation processing times of jobs waiting at considered work centre [49], [56]
that still have to visit critical work centre
Sum of (imminent) operation processing times of jobs waiting at work centre that [49], [56]
still have to visit the work centre with currently largest queue (measured in processing time)
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without normalised attributes. They find that normalising the
attributes improves the performance of both hyper-heuristics,
especially when the original attributes differ largely in scale.
The following sections describe different representations of
priority functions used within hyper-heuristics to combine the
individual attributes.

C. Representations of priority functions

The choice of representation is very important as it deter-
mines the range and complexity of the priority functions (or
indices) that can be generated by the hyper-heuristic. For ease
of presentation, priority indices in this paper are defined so that
a higher index Ij corresponds to a higher priority of a job j.
To illustrate, the priority index of the well-known Minimum
Slack (MS) rule is given by

IMS
j = −(dj − t− pr

j) (1)

where dj denotes the due date of job j, pr
j the processing

time of the remaining operations of job j, and t refers to the
current time. Sections III-C1 and III-C2 discuss parametric and
grammar-based representations of priority functions, respec-
tively. Examples of these two representations are compared
empirically in [52].

1) Fixed-length parametric representations: One approach
to encoding priority functions is to predefine their basic
format and parameterise it. Then, a priority function can be
represented by a vector of (real-valued) parameter values. A
simple and commonly used format is that of the weighted sum
[35], [36], [45], [57], i.e.

Ij =

a∑
y=1

wyxy,j (2)

where xy,j denotes one of the a attributes of job j provided to
the hyper-heuristic, and wy refers to the corresponding weight.
To illustrate, if the weighted sum were used as the predefined
format of priority functions and x1,j = dj , x2,j = t and x3,j =
pr
j , the priority function of the MS rule would be encoded by

the parameter vector w = (−1,+1,+1). Other simple formats
based on if-then-else rules have also been proposed in the
literature [47], [59].

Clearly, a representation based on a simple format such as
the weighted sum is often too restrictive to allow for the dis-
covery of the most effective priority functions (see, e.g. [52]),
which motivates the use of more complex representations,
e.g. based on artificial neural networks [41], [52]. On the
other hand, such representations lead to a significantly larger
search space, and also to priority functions that are so complex
that they defy interpretation. The challenge is to choose a
format that is as simple as possible without compromising
the ability of the hyper-heuristic to generate effective priority
functions, which is difficult as the complexity required for a
given problem is normally unknown in advance. One study that
examines the impact of the flexibility of the representation on
the results is [52].

One advantage of a parametric representation is that search
spaces of real-valued vectors are relatively common, im-
plying the availability of a number of suitable optimisation

algorithms. In fact, Hooke-Jeeves pattern search [35], [36],
simulated annealing [41], and EAs [45], [47], [52], [58],
[59] have all been successfully used for the generation of
scheduling heuristics based on parametric representations.

2) Variable-length grammar-based representations: An al-
ternative way of defining the search space of priority functions
is by means of a grammar that specifies how the individual
components can be assembled to yield a valid priority function.
Figure 2 gives an example of a grammar for the generation
of priority functions, where the expressions on the left-hand
side can be replaced by any of the expressions on the right-
hand side (alternative options are separated by the ‘|’ symbol).
A specific priority function can then be represented by an ex-
pression tree, which is a popular representation in the literature
(see, e.g. [27], [29], [31], [37]). Expression trees are composed
of leaf nodes, representing terminals such as the attributes
in this case, and internal nodes, representing the functions
to combine the terminals with each other. Figure 3 shows
an expression tree that could be generated with the grammar
from Figure 2, which encodes the MS priority function, where
expression trees are decoded recursively, starting from the root
node, and from left to right.

<start> ::= <node> 

<node> ::= <function> <node> <node> | <terminal> 

<function> ::=      |      |      | 

<terminal> ::=      |      |   

  /

jd r

jp t

Fig. 2. A simple grammar for the construction of priority functions.

MSr

jjj Idtp 
r

jp



t



jd



Fig. 3. Expression tree representing the priority function of the MS rule.

The main reason for the popularity of grammar-based repre-
sentations is that they allow for the generation of priority func-
tions of variable format and length without the requirement
to define a basic format in advance. Apart from the attribute
(terminal) set, the only input that has to be provided to the
hyper-heuristic is a set of suitable functions that it can use to
combine the attributes.

Table IV lists the functions that have been used within
hyper-heuristics. It shows that the four basic arithmetic oper-
ators are included in the function set in every of the reviewed
papers, with the division either implemented as protected
(returns 1 if divisor is 0) or unprotected (returns a very
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TABLE IV
FUNCTIONS USED WITHIN HYPER-HEURISTICS OPERATING ON A GRAMMAR-BASED REPRESENTATION OF PRIORITY FUNCTIONS.

Type Functions References

Arithmetic +, −, ×, / [22], [23], [25], [26], [27], [29], [31], [32], [33], [34], [37], [40], [44], [43], [48], [49], [50], [51], [52], [53],
[54], [55], [56], [60], [61], [62], [63], [64], [65], [66]

Logical ifte (ternary) [32], [33], [44], [43], [49], [50], [51], [52], [53], [54], [55], [56], [61], [63], [65]
ifte (quaternary) [25], [26], [27], [40]
> [23], [43], [61], [63]
≥ [61]
≡ [43], [61]
∧, ∨, ¬ [43], [63]

Mathematical max [23], [25], [27], [33], [44], [50], [51], [52], [53], [54], [56], [65]
min [23], [25], [27], [33], [50], [51], [54], [56], [65]
avg [63]
sgn [61]
pos [26], [31], [34]
abs [50], [51], [56]
neg [25], [27], [49]
sin, cos [43], [61]
exp [25], [27], [43], [61], [63]
log [43], [61], [63]
pow [25], [27], [43], [61]
sqrt [26], [43], [61]

large number if divisor is 0). These operators allow for the
reconstruction of many priority functions of the most effective
manually designed rules, which justifies their selection. The
function set is further often supplemented with a ternary or
quaternary if-then-else (ifte) operator, defined as

ifte(x1, x2, x3) =

{
x2 if x1 ≥ 0,

x3 otherwise,
(3)

and

ifte(x1, x2, x3, x4) =

{
x3 if x1 ≥ x2,

x4 otherwise,
(4)

and/or some common mathematical functions such as max
or min. As in the case of the attribute set, a larger function
set increases the size of the search space and the aim should
thus be to select only the most relevant functions. Against this
background, the value of including more complex functions
such as cos, sin, exp, log, pow, or sqrt that generally do
not occur in priority functions of effective rules from the
literature, and for which there is no theoretical justification, is
questionable. Moreover, some of the above functions can be
expressed by means of other functions, e.g. max(x1, x2) =
ifte(x1 − x2, x1, x2), min(x1, x2) = ifte(x2 − x1, x1, x2),
neg(x1) = 0 − x1, abs(x1) = max(x1,neg(x1)), raising
the question of whether those functions should be directly
provided or whether it should be left to the hyper-heuristic
to reconstruct them in case they are beneficial.

Although one advantage of the grammar-based representa-
tion is that the complexity of the resulting priority indices
is potentially unbounded, in practice many researchers have
bounded the complexity and search space by limiting the
maximum tree depth. Unfortunately, there are no theoretical
guidelines on the determination of an adequate maximum tree
depth for the evolution of priority functions. If it is chosen too
small, some high quality heuristics might not be representable
and thus the quality of the solutions the algorithm can find is

limited. On the other hand, if it is chosen too large, the hyper-
heuristic may get lost in the vast search space. The depth used
in previous studies varies between 6 and 17 [22], [34], [40],
[48], [49], [62], [65]. Jakobovic and Marasovic [31] test their
hyper-heuristic with values ranging from 9 to 17 and find that
a maximum tree depth of 14 leads to the best results. However,
the best value is likely to depend on the given problem as well
as the employed optimisation algorithm in general.

In addition to job and shop attributes, many researchers have
included some (random) constants in the terminal set of their
hyper-heuristic [23], [25], [33], [37], [44], [56], [65], [66].
This enables the hyper-heuristic to weigh attributes differently,
especially since the latter have different units and can be of
different magnitude.

Search spaces of expression trees are typically explored
by means of genetic programming (GP), which is also the
predominant optimisation algorithm employed in the literature
for the evolution of scheduling heuristics (see, e.g. [25], [49]).
An exception is the work by Nie et al. [29], [48], [64], who
use gene expression programming (GEP) instead. In [29], they
compare their GEP hyper-heuristic to a GP hyper-heuristic
and report that the former generates slightly better priority
functions in most cases, and in much less time. Moreover, the
priority functions evolved by GEP are shown to be relatively
simple and easy to understand, whereas GP has the tendency to
evolve unnecessarily large expression trees (see, e.g. [22], [44],
[51], [61]). This phenomenon, also referred to as bloating, is
generally undesired as it increases the runtime of GP and leads
to priority functions that are more complex but not necessarily
more effective.

D. Set of eligible jobs

In general, a dispatching rule does not only specify a priority
function but also the eligible job set, i.e. the jobs from which
the next job to be scheduled can be selected. Most dispatching
rules only consider jobs eligible for scheduling that are already
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waiting at the given work centre. This implies that a machine
is never left idle if there are jobs waiting to be scheduled,
which is also referred to as non-delay scheduling. While non-
delay scheduling is generally effective, as it minimises delays
due to idle times, it is not necessarily optimal. In fact, it
can be beneficial to leave a machine idle in some situations,
e.g. in anticipation of a high priority job arriving in the near
future that should be processed without delay. In order for
dispatching rules to be able to take such a decision, the eligible
job set has to be extended to include also jobs arriving in the
future.

In most of the hyper-heuristics designed to evolve dispatch-
ing rules the eligible job set is restricted to waiting jobs [25],
[35], [36], [40], [41], [51], [62], [65]. Another common setting
is to also include future jobs that are expected to arrive before
the shortest operation of waiting jobs can be completed [29],
[31], [37], [45], which is in the spirit of the Giffler-Thompson
algorithm [79]. Hildebrandt et al. [44] test their hyper-heuristic
with and without inclusion of future jobs in the set of eligible
jobs and find that the best rule evolved with the extended job
set outperforms the best evolved non-delay rule. On the other
hand, the performance of the hyper-heuristic is shown to vary
a lot from run to run with the extended job set, which indicates
that it is more difficult to generate effective dispatching rules
that take future jobs into account and allow for decisions to
leave a machine idle.

Instead of providing a hyper-heuristic with a fixed definition
of the eligible job set, the latter can also be optimised by
the hyper-heuristic itself. Nguyen et al. [49] let their hyper-
heuristic optimise a parameter called the non-delay factor that
controls the extent to which future jobs are included in the
eligible job set. In another paper, Nguyen et al. [50] design a
hyper-heuristic that evolves a separate function (of some shop
attributes) for the non-delay factor, which can then adapt to
changing shop conditions.

E. Evaluation of candidate heuristics

In order to know whether a candidate heuristic is effective or
not, unsupervised hyper-heuristics need to obtain an estimate
of the performance of that heuristic by applying it to some
training instances. The quality of the solutions generated by
the heuristic for these instances then determines its fitness,
which in turn governs the search behaviour of the hyper-
heuristic. Hence, in evaluating candidate heuristics, two im-
portant decisions to be made concern the selection of training
instances and the definition of the fitness function, which are
discussed in Sections III-E1 and III-E2, respectively.

1) Training instances: For reasons of simplicity, a training
instance is defined in this paper as an instance that provides
a measure of performance for a given heuristic. This includes
static problem instances as well as runs of a stochastic sim-
ulation. Clearly, whether to use static instances or stochastic
simulation for the evaluation of candidate heuristics depends
on which problems the heuristic is supposed to solve once
it has been generated. This is illustrated by Hildebrandt et
al. [44], who test the dispatching rules from Tay and Ho [62],
which have been trained on and shown to be effective for

static instances, in a long-term simulation with dynamic job
arrivals and find that they perform poorly. Nguyen et al. [49]
also examine the effectiveness of dispatching rules that have
been evolved using static instances in a long-term simulation.
They report that the evolved rules perform well if the shop
utilisation is equal or less than 80% but become worse than
some benchmark rules as utilisation increases beyond that
value. They attribute this to the fact that static instances reflect
conditions of low utilisation, in which few new jobs arrive
over time. Furthermore, the relative performance of evolved
scheduling heuristics has been shown to deteriorate with an
increasing deviation between the test and training instances in
terms of job processing orders [37], number of jobs [22], and
due date setting [32], [33], [65]. These results emphasise the
importance of using a set of training instances that reflect the
problems the heuristics are likely to encounter in their future
use.

Another important factor with regard to the training set is its
size, i.e. the number of training instances. If a small training
set is chosen, the evolved heuristics are likely to overfit the
training instances and not perform well on the unseen test
instances, which implies that their reusability is very limited.
On the other hand, a larger training set increases the runtime
of the hyper-heuristic, without necessarily leading to better
heuristics. Geiger and Uzsoy [27] report that the performance
of their hyper-heuristic improves as the number of training
instances approaches 10 but does not improve further with a
larger training set. In contrast, Jakobovic and Marasovic [31]
find that their hyper-heuristic performs best with the largest
of the tested settings (100 training instances), which indicates
that the best training set size is highly problem-specific and
has to be determined through pilot experiments.

Some researchers have argued that a hyper-heuristic can
either be used to generate a heuristic that performs reasonably
well for a number of related problems or one that is very
effective for the specific problem it has been tailored to, and
ineffective otherwise [66], [80]. This argument cannot be sup-
ported from a theoretical perspective, as there is no reason why
two specialised heuristics could not be combined by a hyper-
heuristic into one heuristic that analyses the characteristics of
a given problem and applies the (specialised) heuristic that is
most suitable for it. On the other hand, the generation of more
sophisticated heuristics certainly poses a challenge to hyper-
heuristics up to an extent where the underlying relations are
merely too complex to be discovered by the hyper-heuristic.
In any case, the generation of heuristics that are supposed to
perform well on a wider range of problems certainly requires
a larger and more heterogeneous training set that covers this
problem range, which in turn increases the runtime of the
hyper-heuristic.

Note that if the set of problem instances is very large or
randomly generated (as is usually the case if a stochastic
simulation is used for evaluating a dynamic problem) then
computational limitations make it necessary to restrict evalu-
ation to a subset (sample) of all possible training instances.
Effectively, due to the sampling, the fitness function then
becomes stochastic. In such cases, to reduce the sampling
variance, it has been recommended to evaluate all solutions



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 9

competing for survival within a generation by the same
subset of problem instances, while changing the subset from
iteration to iteration to make sure individuals that survive
several generations are tested on a large variety of problem
instances [23], [44], [65]. Furthermore, if the problem used for
evaluation consists of a sequence of random jobs dynamically
generated over time, at least in principle there are two ways to
improve the accuracy of evaluation: by increasing the number
of problem instances tested, or the number of jobs considered
in each problem instance. In such cases, to get a proper
estimate of the steady-state behaviour of a solution, it is also
necessary to discard the first jobs as warm-up period.

2) Fitness function: The application of a scheduling heuris-
tic H to a number of training instances T = {1, 2, . . . , |T |}
results in performance measures zi(H), the objective value
reached by the heuristic on instance i. These measures have to
be integrated by means of a fitness function f(.) to determine
the overall fitness of the heuristic. The following fitness
functions have been proposed in the literature:

• Sum [or average] of objective values [22], [23], [31], [32],
[41], [48], [52]
f(H) = [ 1

|T | ]
∑|T |

i=1 zi(H)
• Average relative objective value [44]

f(H) = 1
|T |

∑|T |
i=1

zi(H)
zi(ref)

• Sum [or average] of relative deviations [33], [49], [66]
f(H) = [ 1

|T | ]
∑|T |

i=1
zi(H)−zi(ref)

zi(ref)

where zi(ref) denotes a reference objective value for instance
i, obtained by some other solution method. Which fitness
aggregation is most desirable depends very much on the
intentions of the designer of the algorithm.

The sum (or average) of objective values concentrates on
performing well on problem instances with a large potential
for improvement. To illustrate this, consider a problem where
the objective is to minimise the mean tardiness of all jobs
so that the fitness is computed as the sum of mean tardiness
values obtained from all training instances. If there is one
training instance in the set with a very tight due date setting,
the tardiness of this instance will be much higher than that
of other training instances and therefore strongly correlate
with the fitness value. In consequence, the hyper-heuristic will
focus its search on heuristics that can solve well this particular
instance while largely ignoring their performance on other
instances.

Alternatively, one can use the average relative objective
value or the sum (or average) of relative deviations as the
fitness function, which are equivalent for hyper-heuristics
that operate on the ranks of fitness values rather than the
values itself. These fitness functions reduce the weight of
difficult training instances by relating the objective value of
each instance to a reference value before combining them.
Their disadvantage is that they require good reference values,
which are generally only available for well-studied benchmark
instances from the literature for which (near)-optimal solutions
are known. In all other cases, reference values have to be
obtained, typically by applying some benchmark heuristic(s)
to the problem [44], [49], [66], which may or may not yield
good results.

Another issue that arises only if candidate heuristics are
evaluated with long simulation runs is that some heuristics,
which may be present particularly at the start of the run of
the hyper-heuristic, can lead to an unstable system, i.e. the
number of jobs in the shop grows steadily. The fitness of these
inferior heuristics may then be never obtained and excessive
time wasted in the attempt. To prevent this from happening,
Hildebrandt et al. [44] propose to monitor the number of jobs
in the shop during a simulation run and abort the run if a preset
threshold value for the number of jobs is exceeded. The fitness
of these heuristics is then largely reduced by a penalty, which
ensures that they are quickly discarded. In a follow-up paper,
Branke et al. [52] show that this measure reliably detects the
inferior heuristics without prematurely stopping the evaluation
of good heuristics.

IV. ISSUES AND CHALLENGES

The research on hyper-heuristics for the automated design of
scheduling heuristics is still in an early stage and there remain
a number of open questions and challenges. The following
sections discuss some of the main issues that future work
should focus on.

A. Evolving sets of heuristics

A common theme of the existing studies on hyper-heuristics
is that they predominantly address simple scheduling envi-
ronments and/or employ a hyper-heuristic to evolve a single
scheduling heuristic. However, in more complex scheduling
environments, there may be a number of interrelated decision
problems that have to be resolved, e.g. the formation and
scheduling of batches in the presence of batch processing
machines, the assignment of operations to machines and
scheduling of these machines in parallel machine environ-
ments, or the coordination of resources in environments with
multiple resource constraints. This raises the question of how
to best deal with such more complex scenarios.

The most straightforward approach seems to be to design
a set of heuristics, one for each decision, and to simply
encode the set of heuristics as one individual. This approach
is followed by Nie et al. [64], who develop a hyper-heuristic
for flexible job shop problems that operates on a search
space in which each individual consists of two functions, one
for routing, i.e. assigning operations to machines, the other
for sequencing, i.e. scheduling the machines. Their results
show that this hyper-heuristic can evolve sets of heuristics
that outperform the single sequencing heuristics evolved by a
conventional hyper-heuristic (and combined with some bench-
mark routing heuristic). On the other hand, the drawback of
encoding multiple heuristics as one individual is that the search
space of the hyper-heuristic grows exponentially in the number
of heuristics, which limits the approach to the generation of
small sets of heuristics.

One possible solution to overcome the issue of search space
size may be the use of coevolution, which implies a division
of the search space into several sub-spaces handled separately
by different subpopulations. Nguyen et al. [56] design a
coevolutionary hyper-heuristic, in which a subpopulation of
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priority functions used for dispatching is coevolved with a
separate subpopulation of functions for due date assignment.
The hyper-heuristic is shown to be very competitive to some
other hyper-heuristics, in which the two functions are repre-
sented by a single individual. Another option is to generate
heuristics sequentially, in a similar way as proposed in [57].
However, such hyper-heuristics implicitly assume that the rela-
tive effectiveness of candidate heuristics at one stage is more or
less independent of the heuristics to be evolved in subsequent
stages, and thus cannot be expected to perform very well if
there are strong interdependencies between the subproblems.
On the other hand, it may be sufficient to resolve several
subproblems using the same heuristic in some situations. To
illustrate, Park et al. [33] address an order acceptance and
scheduling problem with a hyper-heuristic that evolves two
separate functions for the acceptance and dispatching of jobs.
They compare its performance to a hyper-heuristic evolving a
single function to handle both decisions and find that the latter
is more effective, indicating that there is no need for a separate
heuristic to deal with the acceptance of jobs, possibly due to
the strong correlation underlying the two decisions. Hence, it
is important to carefully assess the interrelations between the
subproblems to be solved prior to designing a hyper-heuristic.

In multi-machine problems, it has been found beneficial to
use different dispatching rules at different machines if the latter
vary with respect to their position in the shop [81], [82], [83],
[84] and/or workload [85], [86], [87]. Consequently, some
researchers have developed hyper-heuristics that generate sets
of machine-specific rules by selecting a (potentially) different
rule for each work centre from a number of given rules [65],
[88], [89] or by evolving several composite rules, where each
rule is tailored to a certain work centre [25], [55], [57], [58].
The search space then grows exponentially in the number
of work centres or machines, which can be very large in
shops of realistic size, requiring some specific measures in
addition to the above techniques to deal with this problem.
Miyashita [40] proposes a hyper-heuristic that is based on
a predetermined classification of machines into bottlenecks
and non-bottlenecks and evolves one rule for each class of
machines. Similarly, Jakobović and Budin [26] design a hyper-
heuristic that optimises the classification of machines while
searching for good dispatching rules for each class. More
specifically, each individual consists of three functions, where
one of them is a discriminating function of attributes relating
to the workload of a machine that determines which of the
two dispatching rules, encoded by the other two (priority)
functions, to apply. The best rule sets evolved by these hyper-
heuristics are generally shown to outperform single benchmark
rules. However, the results of the study by Nguyen et al. [50],
who examine the performance of the three-function hyper-
heuristic by Jakobović and Budin more closely, show that the
effectiveness among the evolved rule sets varies a lot more
than that among the single rules evolved by a conventional
hyper-heuristic. This indicates that the former struggles with
the more complex search space. In summary, there appears
to be some potential for future work on intelligent designs of
hyper-heuristics for more complex scheduling environments.

B. Attribute selection and construction

As discussed in Section III-B, a main challenge in designing
an effective hyper-heuristic is to provide it with all the relevant
problem attributes while excluding any redundant or irrelevant
attributes. Otherwise, the search space could be either too
restrictive or unnecessarily large, which both hinders the
hyper-heuristic in its ability to generate effective heuristics.

A few studies have performed some analysis of the best
evolved heuristics in order to identify important attributes.
Branke et al. [52] leave out each of the attributes present in
the priority functions of their evolved dispatching rules one by
one and examine the performance of these rules without the
respective attribute. Their analysis shows that some attributes,
specifically those that also appear in the most effective rules
from the literature, are substantially more important for the
performance of the evolved rules than others. Eguchi et al. [41]
examine the first-order correlation between attribute values
and priority values (applying the best evolved dispatching
rule) to determine the relevance of attributes, and eliminate
ineffective attributes in this way. Nguyen et al. [49] conduct
a high-level analysis of the occurrence frequency of attributes
in the priority functions of the best dispatching rules evolved.
They find that the relevance of attributes is problem-specific to
some extent though some seem to be generally more important
than others. This highlights a major drawback of any post-
generation analysis, which is that the gained insights may
only be applicable to the given problem (class), for which an
effective heuristic has already been generated, and therefore
be of limited value. Instead, future hyper-heuristics should be
designed to perform the tasks of selecting and constructing
suitable attributes automatically and simultaneously to the
optimisation.

C. Interpretability and trust

The interpretability of evolved heuristics is a crucial aspect
to gain the trust of users, i.e. operators or managers, particu-
larly since hyper-heuristics are black box optimisers. Unfortu-
nately, there is some evidence that more complex scheduling
environments (for which the use of hyper-heuristics is most
promising) often require heuristics of a certain complexity so
that simply choosing an easy-to-interpret representation will
result in heuristics of comparatively low quality [52]. On
the other hand, it may be possible to allow for open-ended
evolution and still search for the simplest representation of a
well-performing heuristic, or to generate good trade-offs be-
tween quality and interpretability, by means of multi-objective
methods, with heuristic complexity being one objective to be
minimised. Online rule simplification techniques [90], [91],
[92] can also be applied to improve the readability of evolved
heuristics.

In many cases, it may be possible to simplify heuristics after
they have been generated without significantly compromising
their performance. This is particularly true for heuristics
evolved on the basis of a grammar-based representation,
which typically contain redundant components, e.g. if-then-
else operators where the condition is always true or false.
Following simplication, these heuristics may then be analysed
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manually and linked to some human-designed heuristics to
facilitate interpretation [25], [27], [49], [56], [66]. However,
fully understanding evolved heuristics is still a challenging
task, especially when dealing with complex environments,
which stresses the need for some methodological support.

In the literature, a few tools and methods to understand
the behaviour of scheduling heuristics, specifically dispatching
rules, have been developed and used. Branke et al. [52]
analyse dispatching rules by visualising their priority indices
as functions of the attributes they incorporate. Clearly, such
a visualisation is only possible for a very limited number
of attributes. Branke and Pickardt [93] propose a method
that identifies weaknesses in the decision logic of a given
dispatching rule. All in all, future research on hyper-heuristics
should place more emphasis on the issue of interpretability of
heuristics and controlling or reducing their complexity.

D. Comparison of algorithms

In order to give recommendations on when it is beneficial
to use a hyper-heuristic and how to design it, extensive and
meaningful performance comparisons of evolved heuristics
with more sophisticated (global) solution algorithms as well
as between different hyper-heuristics are needed. So far, such
comparisons have been rather limited (see [28], [32], [33],
[45], [49], [56] and [29], [43], [45], [49], [52], respec-
tively). Intuitively, hyper-heuristic approaches have strengths
compared to global optimisation approaches in particular in
dynamic and stochastic environments where a quick reaction
is important. But as observed in [94], they also become more
competitive as the problem size (and thus the search space for
the global optimiser) increases.

One reason for the limited number of comparisons may be
that hyper-heuristics possess several properties that make a fair
comparison particularly difficult. For example, not only are the
hyper-heuristics stochastic algorithms with many parameters
to tune, but also is the evaluation function often a stochastic
simulation, resulting in stochastic fitness values. Also, the
running time for the simulations can be quite substantial, and,
to make things worse, the running time to evaluate a particular
dispatching rule strongly depends on the rule itself, as the
time to calculate the priority value and the number of jobs
in the system depend on the rule itself. This implies that a
comparison of hyper-heuristics based on the same number of
function evaluations has limited validity.

Irrespective of the challenges faced, an important prereq-
uisite for systematic algorithm comparisons is the availability
of suitable benchmark problems and algorithms. For reusable
heuristics, it is further important to clearly distinguish between
training and test problem instances — the hyper-heuristic
may use the training instances during optimisation, while the
generated heuristics have to be tested on a separate, previously
unseen set of test instances. While libraries exist for static, de-
terministic scheduling problem instances, e.g. the OR-Library
[95] (which has also been used to test hyper-heuristics [33],
[50]), the most promising applications for hyper-heuristics
seem to be in the area of dynamic, stochastic problems, which
are much more difficult to define. A possible benchmark

are the dynamic job shop and flow shop problems designed
by Holthaus and Rajendran [96], [97] for the purpose of
comparing dispatching rules from the literature. We have used
these problems in several hyper-heuristic studies [44], [51],
[52], [53], and have published some results online [98]. Still,
especially for more complex dynamic scheduling problems,
the publication of entire simulators (see, e.g. jasima [98])
would greatly help replicability and facilitate fair comparisons.
Also, the generated heuristics should be published in addition
to the obtained results, ideally in a format that can be directly
plugged into a simulator.

E. Computational time

A major drawback of hyper-heuristics based on unsuper-
vised learning is their high computational requirements. Even
though the obtained heuristics typically can be executed very
fast, a run of the hyper-heuristic itself can last many hours,
especially if the evaluation of the many candidate heuristics,
evolved during the search, involves extensive simulation runs.
Measures to reduce the computational time of unsupervised
hyper-heuristics should consequently focus on the fitness eval-
uations, which usually take up the most time by far.

Some approaches have been proposed to reduce the time
spent on evaluations. Hildebrandt et al. [44], [52], [65] equip
their hyper-heuristic with a mechanism that monitors the
number of jobs in the shop to detect heuristics that cause
an unstable system (see Section III-E2) and terminates the
evaluation of heuristics once a preset threshold value is
exceeded. This idea could be extended to save time on the
evaluation of other inferior candidate heuristics by monitoring
similar values, e.g. the objective value after a predefined
number of completed jobs. Branke et al. [52] suggest a
duplicate detection technique to avoid evaluating the same
candidate heuristic twice. Thereby, two priority functions are
considered equivalent if they provide the same ranking on a
set of randomly generated “dummy” operations. Hildebrandt et
al. [53] investigate the use of surrogate models to approximate
the fitness of candidate heuristics, i.e. dispatching rules, in a
GP hyper-heuristic. By employing a distance measure based on
the behaviours of rules, the proposed surrogate-supported GP
hyper-heuristic can reduce the computational cost and improve
the convergence speed, which indicates that the development
of surrogate models is a promising direction for future work.

As previously discussed, another aspect that influences the
computational time is the complexity of candidate heuristics.
It is well known that optimisation algorithms that operate on
a variable-length grammar-based representation, such as GP,
are liable to bloating [99], i.e. they gradually evolve larger
and more complex individuals that are not necessarily better,
but require more time to be evaluated. Thus, controlling or
reducing the complexity of the heuristics that are evolved is
also important for efficiency reasons, and the development of
effective bloating control [100], [101] and online program
simplication techniques [90], [91], [92] should also be of
concern to hyper-heuristic research in the future.
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F. Overfitting and robustness
Given the high computational requirements of unsupervised

hyper-heuristics, it is highly desirable that the resulting heuris-
tics are reusable. However, like other forms of machine learn-
ing, hyper-heuristics carry the risk of generating heuristics that
overfit the problem instances used in the training stage and
perform poorly on all other instances, limiting their reusability.
In fact, overfitting has been observed in connection with hyper-
heuristics by several researchers, in particular when more
complex representations [40], [49] and/or small sets of training
instances [33] are used. Hence, this issue should be taken into
account when designing a hyper-heuristic.

A concept closely related to overfitting is that of the
robustness of heuristics, i.e. their ability to cope with un-
foreseen changes in the scheduling environment. Clearly, if
the performance of the heuristics evolved were to strongly
deteriorate in the event of a minor change, e.g. in the job arrival
pattern, this would question the practicality of the approach. So
far, a few studies have examined the robustness of dispatching
rules evolved by various hyper-heuristics, whose results can
be summarised in that evolved rules show to be reasonably
robust, including to changes in the number of machines [44],
processing time distribution [44], [51], job arrival pattern [44],
[65], shop utilisation [51], [52], [65], and due date setting [51],
[65]. These studies can be further extended, e.g. by examining
the limits of the robustness of evolved heuristics, i.e. when
they become worse than benchmark heuristics. On the other
hand, if the changes to the scheduling environment are more
pronounced, there is always the option to simply rerun the
hyper-heuristic to generate a new heuristic for the altered
problem. How to determine the point at which rerunning
the hyper-heuristic becomes beneficial is another challenging
question to be investigated.

V. CONCLUSIONS

In recent years, hyper-heuristics have demonstrated their
ability to automatically generate very competitive heuristics
for a wide range of problems. Because hyper-heuristics gen-
erate heuristics automatically, it becomes feasible to tailor
heuristics to the specific production environment, and to
change them quickly whenever the environment changes. In
this sense, hyper-heuristics have the potential to revolutionise
production scheduling as they allow problem-specific heuris-
tics to be applied successfully in settings where the traditional
way of a human expert designing heuristics would be too
expensive, or simply too time consuming.

This paper constitutes the first comprehensive review of
hyper-heuristics for the automated design of production
scheduling heuristics, providing a simple taxonomy and fo-
cussing on key design choices such as the learning method,
attributes, representation and fitness evaluation. Moreover, a
number of the issues and challenges that should be addressed
in the future have been discussed, including the generation
of rule sets, algorithm comparison, interpretability of the
resulting heuristics, computational time, and overfitting and
robustness.

The review is aimed for researchers as well as practitioners.
Researchers who aim to further advance the technique of

hyper-heuristic scheduling are provided with a comprehensive
review of the state-of-the-art and a discussion of the open
issues suitable for future work. Also, we have established a
website that may serve as a starting point for future algorithm
comparisons on dynamic, stochastic benchmark problems.
Practitioners in scheduling, on the other hand, can use the
paper to compose a suitable hyper-heuristic and make the
appropriate design choices for their particular application.
The paper contains guidelines for example on how to select
attributes, what fitness function to choose, and what represen-
tation might be the most appropriate.

Currently, the vast majority of papers fall into the cat-
egory of unsupervised learning with open-ended grammar-
based evolution. Clearly, some of the less explored areas
may deserve more attention, and the work reviewed here may
benefit from cross-fertilisation also with other hyper-heuristic
concepts, such as hyper-heuristics for heuristic selection [3].
Whereas the approaches to select dispatching rules mostly use
machine learning algorithms such as artificial neural networks,
decision trees or support vector machines, heuristic generation
approaches mostly apply heuristic search methods such as
evolutionary algorithms or tabu search, and so far there is
very little overlap between the two areas. A first example
that combines heuristic generation and heuristic selection (but
both based on EAs) can be found in [65]. Another promising
direction may be to automatically gear metaheuristics to a
particular problem domain, such as in [102].

Finally, our review has focussed on the generation of
reusable heuristics for production scheduling. The research
in this area may benefit from ideas developed for hyper-
heuristics in related problem domains like timetabling [16],
[17] or project scheduling [20]. Given their potential and the
various open problems, research on hyper-heuristics for the
design of production scheduling heuristics is likely to continue
yet for some time.
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and R. Qu, “Hyper-heuristics: a survey of the state of the art,” Journal
of the Operational Research Society, vol. 64, no. 12, pp. 1695–1724,
2013.

[4] H. Fisher and G. L. Thompson, “Probabilistic learning combinations of
local job-shop scheduling rules,” in Industrial Scheduling, J. F. Muth
and G. L. Thompson, Eds. Englewood Cliffs, NJ: Prentice-Hall, 1963,
pp. 225–251.

[5] R. H. Storer, S. D. Wu, and R. Vaccari, “New search spaces for
sequencing problems with application to job shop scheduling,” Man-
agement Science, vol. 38, no. 10, pp. 1495–1509, 1992.

[6] U. Dorndorf and E. Pesch, “Evolution based learning in a job shop
scheduling environment,” Computers & Operations Research, vol. 22,
no. 1, pp. 25–40, 1995.

[7] M. J. Shaw, “A pattern-directed approach to flexible manufacturing:
a framework for intelligent scheduling, learning, and control,” The
International Journal of Flexible Manufacturing Systems, vol. 2, no. 2,
pp. 121–144, 1989.

[8] S. Nakasuka and T. Yoshida, “Dynamic scheduling system utilizing
machine learning as a knowledge acquisition tool,” International Jour-
nal of Production Research, vol. 30, no. 2, pp. 411–431, 1992.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. X, NO. X, JANUARY XXXX 13

[9] W. Mouelhi-Chibani and H. Pierreval, “Training a neural network
to select dispatching rules in real time,” Computers & Industrial
Engineering, vol. 58, no. 2, pp. 249–256, 2010.

[10] R. Kumar, A. H. Joshi, K. K. Banka, and P. I. Rockett, “Evolution
of hyperheuristics for the biobjective 0/1 knapsack problem by multi-
objective genetic programming,” in GECCO ’08: Proceedings of the
10th Annual Conference on Genetic and Evolutionary Computation,
C. Ryan and M. Keijzer, Eds. New York: ACM Press, 2008, pp.
1227–1234.
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and Heidelberg: Springer, 2006, vol. 3905, pp. 73–84.

[27] C. D. Geiger and R. Uzsoy, “Learning effective dispatching rules
for batch processor scheduling,” International Journal of Production
Research, vol. 46, no. 6, pp. 1431–1454, 2008.

[28] M. Kofler, S. Wagner, A. Beham, G. Kronberger, and M. Affenzeller,
“Priority rule generation with a genetic algorithm to minimize sequence
dependent setup costs,” in Computer Aided Systems Theory — EURO-
CAST 2009, ser. LNCS, R. Moreno-Dı́az, F. Pichler, and A. Quesada-

Arencibia, Eds. Berlin and Heidelberg: Springer, 2009, vol. 5717, pp.
817–824.

[29] L. Nie, X. Shao, L. Gao, and W. Li, “Evolving scheduling rules with
gene expression programming for dynamic single-machine scheduling
problems,” The International Journal of Advanced Manufacturing
Technology, vol. 50, no. 5–8, pp. 729–747, 2010.

[30] S. Olafsson and X. Li, “Learning effective new single machine dis-
patching rules from optimal scheduling data,” International Journal of
Production Economics, vol. 128, no. 1, pp. 118–126, 2010.
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