Skip to main content

Learning Probabilistic Tree Grammars for Genetic Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Abstract

Genetic Programming (GP) provides evolutionary methods for problems with tree representations. A recent development in Genetic Algorithms (GAs) has led to principled algorithms called Estimation-of-Distribution Algorithms (EDAs). EDAs identify and exploit structural features of a problem’s structure during optimization. Here, we investigate the use of a specific EDA for GP. We develop a probabilistic model that employs transformations of production rules in a context-free grammar to represent local structures. The results of performing experiments on two benchmark problems demonstrate the feasibility of the approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cramer, N.L.: A representation for the adaptive generation of simple sequential programs. In: Grefenstette, J.J. (ed.) Proceedings of the First International Conference on Genetic Algorithms and their Applications, Hillsdale, NJ, Carnegie-Mellon University, pp. 183–187. Lawrence Erlbaum Associates, Mahwah (1985)

    Google Scholar 

  2. Koza, J.R.: Genetic Programming. The MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  3. Angeline, P.J., Pollack, J.B.: The evolutionary induction of subroutines. In: Proceedings of the Fourteenth Annual Conference of the Cognitive Science Society, Hillsdale, NJ, pp. 236–241. Lawrence Erlbaum Associates, Mahwah (1992)

    Google Scholar 

  4. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. The MIT Press, Cambridge (1994)

    MATH  Google Scholar 

  5. Rosca, J.P., Ballard, D.H.: Discovery of subroutines in genetic programming. In: Angeline, P., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2, pp. 177–202. The MIT Press, Cambridge (1996)

    Google Scholar 

  6. Salustowicz, R.P., Schmidhuber, J.: Probabilistic incremental program evolution. Evolutionary Computation 5, 123–141 (1997)

    Article  Google Scholar 

  7. Sastry, K., Goldberg, D.E.: Probabilistic model building and competent genetic programming. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practise, pp. 205–220. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  8. Shan, Y., McKay, R., Baxter, R., Abbass, H., Essam, D., Nguyen, H.: Grammar model-based program evolution. In: Proceedings of the 2004 Congress on Evolutionary Computation – CEC 2004, Piscataway, New Jersey, IEEE Press, Los Alamitos (2004)

    Google Scholar 

  9. Bosman, P.A.N.: Design and Application of Iterated Density-Estimation Evolutionary Algorithms. PhD thesis, Utrecht Univ., Utrecht, the Netherlands (2003)

    Google Scholar 

  10. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic, London (2001)

    Google Scholar 

  11. Pelikan, M.: Bayesian optimization algorithm: From single level to hierarchy. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois (2002)

    Google Scholar 

  12. Pelikan, M., Goldberg, D.E., Lobo, F.G.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21, 5–20 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Rissanen, J.: Hypothesis selection and testing by the MDL principle. The Computer Journal 42, 260–269 (1999)

    Article  MATH  Google Scholar 

  14. Buntine, W.: A guide to the literature on learning probabilistic networks from data. IEEE Transactions On Knowledge And Data Engineering 8, 195–210 (1996)

    Article  Google Scholar 

  15. Punch, W.F., Zongker, D., Goodman, E.D.: The royal tree problem, a benchmark for single and multiple population genetic programming. In: Angeline, P.J., Kinnear Jr., K.E. (eds.) Advances in Genetic Programming 2, pp. 299–316. The MIT Press, Cambridge (1996)

    Google Scholar 

  16. Korkmaz, E.E., Üçoluk, G.: Design and usage of a new benchmark problem for genetic programming. In: Yazıcı, A., Şener, C. (eds.) ISCIS 2003. LNCS, vol. 2869, pp. 561–567. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Bosman, P.A.N., de Jong, E.D.: Grammar transformations in an EDA for genetic programming. In: Pelikan, M., et al. (eds.) Proceedings of the Optimization by Building and Using Probabilistic Models OBUPM Workshop at the Genetic and Evolutionary Computation Conference GECCO 2004, Springer, Berlin (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bosman, P.A.N., de Jong, E.D. (2004). Learning Probabilistic Tree Grammars for Genetic Programming. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics