Internal and online simplification in genetic
programming: an experimental comparison

Yaroslav Borcheninov, Yuri Okulovsky

Ural Federal University
Yekaterinburg, Lenina str. 51
Email: yuri.okulovsky @ gmail.com

Abstract—Genetic programming is an evolutionary algorithm,
which allows performing symbolic regression — the important
task of obtaining the analytical form of a model by the data,
produced by the model. One of the known problems of genetic
programming is expressions’ bloating that results in ineffictevely
long expressions. To prevent bloating, symbolic simplification of
expression is used. We introduce a new approach to simplification
in genetic programming, making it a uniform part of the evolu-
tionary process. To do that, we develop a genetic programming on
the basis of transofmation rules, similarly to computer algebra
systems. We compare our approach with existed solution, and
prove its adequacy and effectiviness.

Index Terms—genetic programming, symbolic computations,
computer algebra systems

I. INTRODUCTION

Symbolic regression is an approach to data mining, which
accepts a data, generated by some model, and produces an
analytic form of this model. Probably, the most known and
earliest successful application of the symbolic regression is
Johannes Kepler’s astronomical laws, which mathematically
describe observations made by Tycho Brahe. Symbolic re-
gression is an important step in the scientific method that
prescribes explaining observed data through the construction
of their mathematical model. By the close examination of such
mathematical model, scientists understand its internal structure
and suggest hypotheses about their underlying nature.

We should stress the difference between the symbolic re-
gression and numerical regression methods, like the linear,
segmented linear or polynomial regression. In case of numeri-
cal regression the model is fixed, and only its quotients are to
be found. For example, by applying polynomial regression to
the data, we explicitly suggest that the model is a polynomial
function. If the actual model is a trigonometric function,
line sinus, the regression can be made arbitrarily accurate
by choosing the appropriate polynom’s degree. However, no
matter how accurate it is in the sense of mean square error,
the polynomial regression is still incorrect, because it will
unavoidable miss the fact that the observed model is the
trigonometric function. Symbolic regression allows finding
the model itself, and therefore the sinus function will be
recognized as sinus.

Until recently, the symbolic regression could be
performed only manually, and no algorithm of symbolic
regression was available. With the discovery of genetic

programming technique by John Koza [Poli et al., 2008],
it becomes possible to automate symbolic regression.
Now automated symbolic regression is widely used in
natural sciences [Schmidt and Lipson, 2009], robotics
[Robertson and Dumont, 2002], economics [Koza, 1994],
medicine [Zhang and Wong, 2008], etc.

The algorithm processes versions about the actual data’s
model. These versions are expressions, encoded as trees and
stored in the pool. Initially, these expressions are random.
Then, the algorithm alters expressions with the following
procedures.

e Mutation. The randomly chosen expression is changed

by a replacement of a node.

e Crossover. Two randomly chosen expressions exchange
subtrees.

« After all the mutations and crossovers are performed, the
resulting expressions’ set is subjected to the selection,
which evaluates how each expression fits the experimental
data. The least valuable expressions are then removed
from the population.

With the time, expressions become better until the satisfiable
solution is found.

The known problem of genetic programming is expressions’
bloating, which means that expressions become ineffectively
long. For example, expression (z + 1)2 — (z — 1)? — 3z is
bloated, because it actually equals to x and should be replaced
by z in the pool. One result of bloating is unacceptable
form of the algorithm output. It can be resolved with the
simplification of the algorithm’s result. However, bloating also
hampers the algorithm’s work by increasing the expression
length and therefore the time required to compute them, and
also by leading the algorithm along the blind alley. It can be
resolved with the online simplification [Zhang et al., 2006],
[Kinzett et al., 2008], when all expressions in the pool are
simplified with some frequency. There exist other approaches
([Poli et al., 2008], [Mori et al., 2009]), however online sim-
plification is considered to be more effective.

We argue that online simplification is too rough. Simpli-
fying the expression inevitably leads to the elimination of
potential growing points. For example, while approximating
the function (x + 1)y?, the intermediate solution (1 + 1)y!*!
can be found. This solution will be simplified to 2y2, which
requires at least two mutations to become a correct answer,

N
\@

Fig. 1. The tree representation of the function f(z) = |z|.

e.g. 2y*> = xy? = (z + 1)y°. The initial solution (1+ 1)y *!
requires only one mutation (1+1)y' ™ = (z+1)y' 1. Hence,
the simplification hampers the evolution in this case. On other
hand, the partial simplification (1 + 1)y'*™! = (1 + 1)y?
does not produce such effect for the function (z + 1)y2,
but does so for 2y$+1. Therefore, the question of where to
apply the simplification depends on the problem specification,
on the particular found expression, etc. In other words, the
simplification can alter evolution of expressions in the same
way the mutation and crossover do.

In [Borcheninov and Okulovsky, 2011], we introduce an
approach of integration of simplification into genetic pro-
gramming as uniform part. We call our approach internal
simplification genetic programming (ISGP), as opposed to
online simplification genetic programming (OSGP). The key
aim of this paper is to measure the advantage of ISGP in
comparison with OSGP.

Simplification is based on the rules, which describe ways
of correct expressions’ transformation. Since we use the sim-
plification inside the algorithm, we must base our algorithm
on the rules. In section 1, we show how to implement OSGP
and ISGP an instances of more general rule-based algorithm.
In section 2, we describe experiments to compare internal and
online simplification.

II. ALGORITHM ESSENTIALS
A. Expressions, trees and rules

An expression is represented as a tree of nodes. The
example of such tree that encodes the function f(z) = |z|
is shown in the Fig. 1. Three types of nodes are considered:
constants, variables and operators. In Fig. 1, node @ is a
variable node, @ is a constant node. The remaining nodes are
operators: addition @ comparison @ and ternary logical
operator @ defined as follows

y, if =z
z, if -z

o

Each node has a return type, which is an arbitrary C#
type. Different return types can be used in one expression.
For example, in Fig. 1, all nodes have double return type,
except for the node @ that has the bool return type.

We define numerous rules to transform these expressions.
Some of these rules are universal, and can be applied to the
tree regardless of data types or operations that are used in it.

select ?A(7?B)

(I-Re) where A.Type=B.Type
mod A—B
select ?7A,7B

(I-Cr) where A.Type=B.Type
produce A—B; ret A.Root

In I-Re rule, the select clause specifies the nodes that will
be selected as a tuples (A4, B), and then processed by the rule.
The notion ?A (?B) specifies that A is an arbitrary descendant
of root (i.e., and arbitrary node in the tree), and B is an
arbitrary descendant of A. Then, selected tuples are subjected
to selection according to where clause. In I-Re, we accept only
the tuples (A, B) such that they returning types coincides. To
selected tuples, we can apply mod clause. In the case of I-Re,
it replaces A with B. The tree remains correct, because of
the selection in where clause. In I-Cr rule, the select clause
?A, ?B denotes that the rule accepts two trees, and selects an
arbitrary node from each of them. Therefore, this rule is binary,
while I-Re rule is unary. Then we demand the equality of their
returning types, and finally replace A with B and return the
root of A as an output. Using produce clause means that we
specify directly the output of the rule. It is necessary, because
binary rules accept two trees, and it is not clear which one of
them should be the output.

Most of the rules, however, are not universal. With each
data type 7', the following rules are associated

select ?A
(I-Co) where A.Type=T
mod A—new Const(v)
select ?A
(I-Va) where A.Type=T
mod A—new Var(i)
select ?A
(I-Tu) where A is Const
mod A—new Const(R(A.Value))

I-Co rule replaces the node with the return type 7" with the
constant of the same type. Here v is a randomly selected value
of the constant. I-Va rule replaces the node with the return type
T with the variable. The argument ¢ is a number of the variable
in the argument array of the expression. Instances of I-Va rule
have to be created for each variable of type T.We can also
define tunning rules that adjust the constants. For Boolean and
integer data types, such rules seem to be redundant, because
they are just instances of I-Co. However, for floating point data
type, rule I-Tu can be written. Here R is a random function
R(x) that returns a random number from [z(1 — ¢), (1 + ¢)].
I-Tu rule allows changing the constant value gradually, near
its initial value, and therefore differs from I-Co rule that does
not take the previous value into account.

Some rules are even more specific, and are associated not
with data types, but with the operations domain. The domain
is a set of operations that are commonly used together and are
bound by some mathematical laws. Examples are arithmetic

domain (addition, multiplication, etc.); trigonometric domain
(sinus, cosinus, etc.); logical domain (conjunction, negation,
etc.).

For each operation, we need an introduction rule. Two
approaches to operation’s introduction are possible.

select ?A
(G-In) where A.Type = double
mod A—new Mult(A,new Const(1))
select ?A
(G-In*) where A.Type = double
mod A—new Mult(A,new Const(v))

G-In rules selects a node with floating point return type,
and replaces it with a new multiplication operation. G-In rule
differs from all the rules above, because it does not change
the function, encoded by the expression. It only inflates the
expression and adds potential growing point in it. Of course,
we could combine G-In rule with I-Co, therefore obtaining
G-In*. However, it is not convenient. Suppose our task is to
transform z into 2z. With the modified G-In rule, we need
the double luck to do that: we need to guess correctly both
the operation and the constant. Wrong choice of constant may
lead to significant decrease of the expression correctness, and
therefore the expression will be removed, without a chance
to adjust the constant. Original G-In rule does not affect
correctness, and therefore modified rule can remain in the pool
for a long time, so different mutations by I-Co rule can occur
in the future and a right constant has more chances to be
chosen.

For each operation, we also define simplification rules,
for example transforming a multiplication of two constants
into a constants with their multiplication, or transforming the
multiplication of any node and zero into zero. We call such
simplifying rules S-rules. They are known from computer
algebra systems, so we will not study them deeply. Some
rules are developed not for a single operations, but for several
operations in the domain. The example is distributivity of
addition and multiplication, which is G-rule for transformation

a-(b+c) — ac+ cb and S-rule for reverse transformation.
Aside from simplification rules, we can also define a
crossover rules for domain, with a very natural meaning:

select AB
(I1-CA) where A.Type=double and B.Type=double
produce new Div(new Plus(A,B),2)

The absence of quotation marks before A and B means that
they are not descendants of the root, but the roots themselves.
Crossover I-CA is reasonable: if two expressions fit the task,
their halfsum may fit even better.

B. Implementation of genetic programming algorithms

To define a concrete algorithm in the genetic programming
algorithms’ family, we need to specify the operations, men-
tioned in the Intoduction: mulation, crossover and evaluation.
We define mutation and crossover operations on basis of rules
collection. The algorithm has two sets of rules: the set of
unary rules for mutation, and the set of binary rules for

crossover. In order to perform mutation, algorithm randomly
selects expressions for mutation. Then, for each expression,
we randomly select a rule, and perform it to obtain a mutated
expression. Correspondingly, in order to cross two randomly
selected expressions, the algorithm chooses a binary rule from
the collection and performs it.

From the start of observations it becomes clear that different
rules must have different probability to be applied. Each rule
has multiple tags that describe the place of the rule in our
classification. Then we assign to each tag its weight, and
calculate the weight of the rule as the product of associated
tags’ weights. The greater the rule’s weight is, the more the
probability of rule’s application is.

The most important tags are Inductive and Simplification
tags. Inductive tags marks all the rules, which enlarge the
expressions (G-rules from section 1.1), or changes the function
the expression encodes (I-rules). Simplification rules make
the expression shorter (S-rules). The ratio of Inductive and
Simplification tags « is the first important parameter of our
algorithm.

The evaluation of the expression is performed by calculating
several metrics and obtaining their weighted total. The fitness
metric describe, how good the found expression g fits given
data (x1j,...,%n,j,y;), and is calculated as

nr(g) = (1 + Z(g(xz‘,h e Tim) — yz)2> .

Taking the reciprocal value is important, because it allows
bounding the value of p, and provides correspondence between
a higher value of p and a better expression. The length
metric p; is a reciprocal to the count of operations in g.
Valuation of an expression is determined as a weighted total
e(9) = wysps(g) + wip(g). The ratio between the fitness
metric and the length metric A = w;/w; is the second
important parameter of our algorithm.

To perform online simplification, we modify the described
algorithm. First, only I- and G-rules are allowed to be used
in the algorithm. Second, the weight of length metric is set
to zero, because algorithm does not have necessary means to
decrease the expression’s length. Finally, after each ¢ itera-
tions, we apply a simplification algorithm to each expression
in the pool. Namely, we apply S-rules to expression until it
is possible, and return the resulting expression in the pool.
Online simplification algorithm has only one parameter &.

III. EXPERIMENTAL RESULTS

We conducted the following experiments to compare online
and internal simplification in genetic programming. At first,
we prepared test sets to run the algorithm on. Then, we
found the optimal parameters of both algorithms to fetch best
performances. Finally, we compared the performance of both
algorithms.

In order to achieve a reasonable ratio between the repre-
sentativeness of experiments and the time of computations,
we followed the guidelines below. We limited the domain

of expressions by algebraic expressions that contain addi-
tion, subtraction, multiplication, division and power operations
and integer constants. The reason is limiting the amount of
parameters of algorithms. Two parameters are unavoidable:
length/evaluation metrics ratio A and inductive/calculation x
tags ratio. Introducing floating point constants demands us to
use tunning rule (I-Tu). Our observations showed that intensity
of this rule should be much greater than others’, in order to
find the appropriate values of constants. This adds one more
parameter. Correspondingly, the introduction of trigonometric
functions leads to various expressions like sin(sin(cos(...))),
and therefore these operations need to have their own tag
with reduced value. Therefore, widening the domain requires
increase of parameters. Since we needed to obtain the optimal
parameters in order to compare approaches, we decided to
limit the domain.

On the other hand, we made a high demand to the algo-
rithm’s outcome. The algorithm was provided with a very
strict amount of data points: 10 for unary function and 100 for
binary. The amount of iteration was limited by 10000, which
takes about 15 minutes to compute. We also demanded the
algorithm to find the exact function, used to generate the data,
not its good approximation. The function may be presented as
different expressions, however. It is a very strict requirement:
sometimes the algorithm found the solution that was very close
to data (root mean error is about 2-3%), and nevertheless,
we neglected such solution and demanded the exact solution
to be found. Summarizing, we can say that algorithm had to
find an exact function with a limited data set in a short time.
We believed that the complexity of this task compensates the
domain narrowness.

To build the test set we made a rundown over different
expressions, tested them with our algorithm and therefore
obtained a knowledge about ”complexity” of these expressions
in terms of the algorithm. The considered parameters of
expressions was the number of expression’s arguments; the
number of operations, used in the expression; the level of white
noise, applied to data. At first, we builded a random tree with
desired count of operations and tested, if the expression truly
depends on all its arguments. Then, we formed test set as an
array

1,1, ceey Tnd, U1
L1,2, -5 Tn,2, Y2
Lims -5 Tnms Ym

where
{(z1,5, ..

the set K is {0,0.1,...,1}, y; = f(x14,---,Zn;) - (1 —
p + 2pa), p is white noise level and « is a uniform random
number between 0 and 1. If f cannot be calculated for some
j, we dropped the expression and searched again. On each
data set, we run the algorithm several times and measure the
average success rate. If the algorithm had accidentally found
the form of expression containing least operation that planned,

- T, j |j€1,...,m}:K",

Variable count = 1

p=0 p=0.01 p=0.02 p=0.05
c=2 | 96.67 95.38 90.87 95.62
c=3 | 2947 30.63 33.93 25.68
c=4 | 11.67 0 0 0
Variable count = 2
p=0 p=0.01 p=0.02 p=0.05
c=2 | 98.62 97.39 98.24 98.67
c=3 | 25.58 39.46 31.19 29.02
c=4 2.4 2.45 3.65 5.74
TABLE I

SUCCESS RATE, IN PERCENTS, FOR DIFFERENT VARIABLE COUNT, COUNT
OF OPERATIONS ¢ AND WHITE NOISE LEVEL p

Function Success Description
rate,
%
(@) (z +4) 80 Simple polinom
2(z+2) 80 A simple polynom with two variables
x*Y 80 A simple non-rational function

Intermediate polynom with two variables

2<I“i3) 50 Intermediate rational function
(3x)%Y 50 Intermediate non-rational function
2zy —y—2 20 Hard polynom

I(fj;) 20 Hard rational function

(%)Mc 20 Hard rational function

TABLE I
FUNCTIONS, SELECTED TO TEST SET

the data set was also considered invalid and was excluded from
experimental result.

For each set of parameters, we run 50 successful data set,
and each data set was processed by the algorithm 10 times.
Obtained result are presented in Table III. The overall tendency
is clear. The complexity is determined mostly by count of op-
erations, then by the level of white noise. Additional variables
seem to reduce the complexity, probably because of widening
data set from 10 to 100 samples. We can also conclude that the
algorithm is functional, even though initial parameters could
be far from optimal.

We selected 9 expressions as test set for the OSGP and
ISGP comparison. Selected expressions are listed in Table III.
We did not selected expressions with 0% success rate, because
it this case the difference between hard and impossible is not
clear. For the same reason, we omited expressions with 100%
success.

We ran ISGP algorithm with different length/fitness metrics
ratio A and calculation/induction tags ratio x and obtained the
resuls, presented in Table III. We see that the algorithm is in
tote stable, and its success rate varies in range 60-70%. It
is unlikely to find some local maxima outside the considered
parameters’ range. Parameters A\ and « by definition are greater
that zero. When A = 0 or x = 0, the simplification is simply
not performed, and expressions bloat rapidly, blocking the
algorithm. When A > 1 or x > 1, the simplification is too
strong: by out observation, no expressions of length more than
3 can be produced. Therefore we believe that the best success

K 0.01 0.02 0.05 0.1 0.2 0.4
A=0.01 | 66.67 71.67 6444 63.89 6333 56.67
A=0.02 | 6722 6833 66.11 6222 65 59.44
A=0.05 | 66.67 66.67 6722 67778 6444 58.89
A=0.1 66.11 62.22 63.89 70 60 56.11
A=02 63.89 66.67 6556 6444 6222 53.89
A=04 68.89 66.67 6556 66.11 65.56 62.78
A=0.8 66.67 63.33 65.56 65 6722 61.67
K 0.02 0.04 0.06 0.08 0.1
A=0.01 68.33 73.89 68.89 6722 66.11
A=0.0333 | 66.11 63.890 6222 6333 68.89
A =0.0666 | 66.67 63.89 61.67 6222 64.44
A=0.1 73.33 65 63.33 70 63.33
TABLE III

SUCCESS RATES, IN PERCENTS, OF OSGP WITH VARIOUS VALUES OF THE
PARAMETERS K AND A. THE LOWER TABLE GIVES A CLOSER LOOK TO
THE AREA, WHERE LOCAL MAXIMA SEEM TO BE.

=10 £=20 £=230 £=40 £=50 £=60
36.11 55 70.56 70 7167 68.89
=70 £=80 £=90 £=100 £=160
68.80 65 70 6333 65.56
TABLE 1V

SUCCESS RATES, IN PERCENTS, OF ISGP WITH VARIOUS VALUES OF THE
PARAMETER £.

rate of our algorithm is about 70% on our test set.

For OSGP, we need to determine the count of iterations
between simplifications, &. The results of OSGP for different &£
are presented in Table III. Again, it is unlikely that the optimal
value of ¢ is greater than 160, because such rare simplification
is hardly noticeable. On other hand, when the simplification
is performed too often (§ < 5), long expressions are almost
never appear in the pool.

In table III we present the success rate of best algorithm’s
variants on test set. We can conclude, that the algorithms
are very close in terms of performance. It is also obvious
that accurate choise of parameters is important, and improves
effectiveness significantly, at least for some functions.

IV. CONCLUSION

The research, presented in this article, proves the internal
simplification genetic programming to be an operational tech-
nique that prevents bloating of expressions and provides ef-
fective symbolic regression. The only way to implement ISGP
is to found genetic programming on the basis of expressions’
transformation rules, as it was described in section 1.

The performance comparison states that ISGP is not worse
than existed online simplification approach. ISGP also open a
road for further research in the following areas. At first, we
plan to explore the more presice devision of rules into groups,
and finding the appropriate tags for such devision. This task
can be considered even for the algebraic domain: for example,
we could consider different tags for I- and G-rules. For the

Function ISGP, ISGP, OSGP,
Kk =0.5, Kk = 0.04, £=50
A=0.1 A =0.01
@) (z+4) 80 100 100
2(z+2) 80 100 100
Y 80 100 100
3z)%y 50 100 100
22— (y+3) 350 95 100
3 50 95 95
(2)* 20 25 25
2y —y — 2 20 50 5
s(z+4) 20 0 20
x—5
TABLE V

SUCESS RATES, IN PERCENTS, OF ALGORITHMS ON TEST SET. THE
SECOND COLUMN REPRESENTS THE INITIAL SUCCESS RATES, GENERATED
WHEN BUILDING TEST SET. THE THIRS AND FOURTH COLUMNS ARE BEST

RESULTS OF OSGP AND ISGP, CORRESPONDINGLY.

greater domains, this task is even more important, because
additional tags emerge anyway.

The more intriguing branch of research is adjusting the tag’s
weights during the algorithm’s work. The tentativ observations
show that such adjusting can sometimes drive the algorithm
out of the local minimun by speeding up induction, or narrow
the search around the best expression by increasing of the
fitness metric weight.

We also plan to develop a distributed version of our OSGP
implementation, and test it in real-world problems, mostly
from robotics field.

ACKNOWLEDGMENTS.

The work is supported by the program of President of
Russian Federation MK-844.2011.1.

REFERENCES

[Borcheninov and Okulovsky, 2011] Borcheninov, Y. V. and Okulovsky,
Y. S. (2011). Genetic programming with embedded features of symbolic
computations. In KDIR 2011 — Proceedings of the International Confer-
enceon Knowledge Discovery and Information Retrieval.

[Kinzett et al., 2008] Kinzett, D., Johnston, M., and Zhang, M. (2008).
Numerical simplification for bloat control and analysis of building blocks
in genetic programming. Evolutionary Intelligence, 4.

[Koza, 1994] Koza, J. R. (1994). Genetic programming for economic
modeling. In Intelligent Systems for Finance and Business.

[Mori et al., 2009] Mori, N., McKay, B., Hoai, N. X., Essam, D., and
Takeuchi, S. (2009). A new method for simplifying algebraic expressions
in genetic programming called equivalent decision simplification. Jour-
nal of Advanced Computational Intelligence and Intelligent Informatics,
13(14):237-238.

[Poli et al., 2008] Poli, R., Langdon, W. B., McPhee, N. F., and Koza, J. R.
(2008). A Field Guide to Genetic Programming.

[Robertson and Dumont, 2002] Robertson, A. P. and Dumont, C. (2002).
Design of robot calibration models using genetic programming. In
Mayorga, R. V. and Rios, A. S.-D. L., editors, Proceedings of the Third
International Symposium on Rob. and Autom., volume 3, pages 449-454.

[Schmidt and Lipson, 2009] Schmidt, M. and Lipson, H. (2009). Distilling
free-form natural laws from experimental data. Science, 324(5923):81-85.

[Zhang and Wong, 2008] Zhang, M. and Wong, P. (2008). Genetic program-
ming for medical classification: a program simplification approach. Genetic
Programming and Evolvable Machines, 9(2):229-255.

[Zhang et al., 2006] Zhang, M., Wong, P., and Qian, D. (2006). Online
program simplification in genetic programming. Simulated Evolution and
Learning - SEAL, pages 592-600.

