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Abstract

Face recognition is a challenging task due to high variations of pose, expres-
sion, ageing, and illumination. As an effective approach to face recognition,
feature learning can be formulated as a multi-objective optimisation task
of maximising classification accuracy and minimising the number of learned
features. However, most of the existing algorithms focus on improving clas-
sification accuracy without considering the number of learned features. In
this paper, we propose new multi-objective genetic programming (GP) al-
gorithms for feature learning in face recognition. To achieve effective face
feature learning, a new individual representation is developed to allow GP to
select informative regions from the input image, extract features using various
descriptors, and combine the extracted features for classification. Then two
new multi-objective genetic programming (GP) algorithms, one with the idea
of non-dominated sorting (NSGPFL) and the other with the idea of Strength
Pareto (SPGPFL) are proposed to simultaneously optimise these two objec-
tives. NSGPFL and SPGPFL are compared with the single-objective GP for
feature learning (GPFL), a single-objective GP for weighting two objectives
(GPFLW), and a large number of baseline methods. The experimental results
show the effectiveness of the NSGPFL and SPGPFL algorithms by achieving
better or comparable classification performance and learning a small number
of features.
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1. Introduction

Face recognition is an active research area in computer vision [1]. The
task of face recognition is to identify the face of a person from a number of
face images. Face recognition has a wide range of applications in entertain-
ment, smart cards, information security, law enforcement and surveillance [2].
However, due to the wide variations of pose, illumination, ageing, expression,
resolution, and occlusion, face recognition remains a challenging task.

A face recognition system typically has two main stages: a face repre-
sentation stage and a face matching stage [3]. Face representation aims to
extract a set of discriminative features so that the face images can be easily
distinguished. Face matching aims to develop effective classifiers to classify
the face images into different groups using the extracted features. In gen-
eral, compared with face matching, face representation has more significant
effects on the recognition/classification performance and is more challenging
[4]. Many methods have been developed to obtain an effective face repre-
sentation, such as scale-invariant feature transform (SIFT) [5], local binary
patterns (LBP) [6] and Gabor wavelets [7]. The process that uses one of
these methods to extract features often needs human intervention and do-
main knowledge. Different from feature extraction, feature learning aims
to automatically learn/extract features from images without human inter-
vention and domain knowledge. Many feature learning methods have been
proposed in recent years to automatically learn representations of faces and
have achieved better performance than the methods using manually extracted
features [4]. Most feature learning methods are based on neural networks
(NNs), which learn representations using many non-linear layers from raw
data. However, NN-based methods have their limitations, such as require a
large number of training instances, have poor interpretability of the learned
representation, have a fixed model complexity, and require rich expertise to
design an effective architecture. Except for NNs, genetic programming (GP)
has also been applied to automatically learn features for image classifica-
tion [8, 9]. GP is an evolutionary algorithm, aiming to automatically evolve
computer programs to solve a task without any predefined solution struc-
ture [10]. Compared with NNs, GP has a flexible representation to evolve
variable-length solutions for solving a task. In addition, GP can evolve tree-
based solutions with high interpretability from a small number of training
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instances [11]. Many face recognition tasks often have a small number of in-
stances in each class, which may be difficult to train an effective NN without
any data argumentation. In contrast, the solutions of GP often have fewer
parameters and it is effective to use GP to learn features from the such a
small number of training instances [11]. Therefore, this study develops a new
GP-based approach to learning features for face recognition.

The dimension of features in face representation is important and a small
number of image features is typically preferred for fast applications. In many
traditional face recognition systems, dimensionality reduction methods, such
as using principal component analysis (PCA) and linear discriminant analy-
sis (LDA), are employed to reduce the dimension of the features [12, 13]. A
small number of features can not only shorten the training time of a classifi-
cation algorithm but also have potentially higher interpretability. However,
the majority of the existing feature learning methods, such as convolutional
neural networks (CNNs) and auto-encoders (AEs), focus on improving classi-
fication accuracy and ignore the number of learned/extracted features [2, 14].
To address this, it is possible to simultaneously maximise the classification
performance and minimise the number of learned/extracted features. Typi-
cally, these two objectives are potentially conflicting because a small number
of features represent limited information of the data and the between-class
similarity may be reduced. A simple and straightforward way to deal with
these two objectives is to combine them as a single-objective using a weighted
sum approach [15]. However, it is difficult to set the weights of these two
objectives because the optimal number of features is unknown for solving a
task. Instead, this problem can be formulated as a multi-objective optimisa-
tion problem and directly solved using an existing multi-objective algorithm.
Although many algorithms have been developed for feature learning [8, 16],
very few works focused on multi-objective feature learning with simultaneous
maximising the classification performance on the training set and minimising
the number of learned/extracted features. To this end, this study aims to fill
this gap by developing multi-objective GP-based feature learning algorithms
for face recognition.

In recent years, evolutionary multi-objective optimisation algorithms have
been widely applied to solve many real-world tasks, such as network plan-
ning [17], bound-constrained real-world problems [18], and spread spectrum
radar polyphase code design problem [19]. As evolutionary algorithms, multi-
objective GP algorithms have been proposed for symbolic regression and
modelling [20], and morphological filters optimisation [21]. It can also be
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found that multi-objective GP has been applied for feature extraction and
construction [22, 23, 24]. However, no GP-based algorithms have been de-
veloped for multi-objective feature learning. Existing multi-objective GP
methods focus on maximising the performance and minimising the tree size
rather than the number of features, such as in [22, 23]. In many GP-based
feature learning algorithms, the number of features is dynamically and auto-
matically changed during the evolutionary process [16, 25, 26]. These meth-
ods may learn a large number of features if the objective has no constraint
on the feature number. The multi-objective GP methods have seldom been
used to simultaneously maximise the classification performance and minimise
the number of learned/extracted feature. It is noted that feature selection
also has these two objectives and a number of evolutionary multi-objective
feature selection algorithms have been proposed, such as in [27, 28]. How-
ever, the maximum number of features in feature selection is known but it
is unknown in feature learning. This difference makes these two tasks and
the behaviours/landscapes of these two objectives very different. This also
makes the multi-objective feature learning task is more difficult. Therefore,
it is necessary to investigate multi-objective feature learning and develop a
new multi-objective feature learning algorithm to solve it.

1.1. Goals

The overall goal of this study is to develop new multi-objective feature
learning algorithms for face recognition using GP with the objectives of max-
imising the classification performance and minimising the number of learned
features. To effectively learn features from face images, a new representation,
a new function set and a new terminal set will be developed to allow GP to
automatically detect regions from the input images, use descriptors to extract
features and combine the extracted features for classification. Then we de-
velop two single-objective feature learning algorithms and two multi-objective
feature learning algorithms based on GP with the new representation:

• single-objective GP for feature learning (GPFL)

• single-objective GP for weighting two objectives (GPFLW)

• multi-objective GP for feature learning using the idea of non-dominated
sorting (NSGPFL)

• multi-objective GP for feature learning using the idea of strength Pareto
(SPGPFL)
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These four algorithms will be examined on four face recognition datasets of
different image sizes, numbers of instances and difficulty. Specifically, we will
investigate

1. whether NSGPFL and SPGPFL can achieve better classification per-
formance and learn a smaller number of features than GPFL;

2. whether NSGPFL and SPGPFL can achieve better classification per-
formance and learn a smaller number of features than GPFLW with
different weighting factors;

3. Which method of NSGPFL and SPGPFL is better than the other in
improving the classification performance and the number of learned
features;

4. Whether NSGPFL and SPGPFL with the new individual represen-
tation can achieve better classification performance than 34 non-GP-
based baseline methods, including CNN-based methods and the meth-
ods using well-known face features;

1.2. Organisation

The rest of the paper is organised as follows. Section 2 provides back-
ground of this study and reviews typical related work. Section 3 proposes the
new representation of GP, new single-objective GP-based feature learning
algorithms and new multi-objective GP-based feature learning algorithms.
The experimental design is presented in Section 4. Section 5 discusses and
analyses the experimental results. The final section presents conclusions and
future work.

2. Background and Related Work

This section provides background about multi-objective optimisation and
GP. It also reviews typical work on face recognition and GP for image feature
learning.

2.1. Multi-Objective Optimization

Multi-objective optimisation aims to simultaneously optimise two or more
conflicting objective functions. A multi-objective optimisation problem of
maximising multiple objective functions can be mathematically formatted as
follows

maximise F (x) = [f1(x), f2(x), . . . , fk(x)], (1)
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subject to:
gi(x) ≤ 0, i = 1, 2, . . . , m, (2)

hi(x) = 0, i = 1, 2, . . . , l. (3)

where x represents a vector of decision variables and k (k > 1) represents
the number of objective functions. fi(x) is the ith objective function to be
maximised. gi(x) and hi(x) are the constraints functions of the problem.

A multi-objective optimisation problem is to find a Pareto front of many
non-dominated solutions. Let y and x be two solutions of the above problem.
The relation of two solutions y and z can be defined as y dominates z (y is
better than z or z is dominated by y) if the following condition is satisfied :

∀i ∈ k : fi(y) ≥ fi(z) and ∃i ∈ k : fi(y) > fi(z). (4)

Feature learning can be formulated as a two-objective problem of min-
imising the number of learned features and minimising the classification error
rate. It is noticeable that feature learning for images is different from feature
extraction or feature construction. Feature extraction or construction often
extracts/constructs a fixed number of features from raw images or pre-defined
features [22, 23]. Therefore, feature extraction or construction does not need
to consider the objective of the number of features. These two objectives are
the same as that for feature selection [27]. The maximum number of fea-
tures in feature selection is known, while it is unknown in feature learning.
This makes the two tasks different and the behaviours/landscapes of the two
objectives are different. Therefore, it is necessary to investigate the task of
feature learning by formulating it as a multi-objective problem. In this study,
we formulate it as a two-objective problem of maximising the classification
performance and minimising the number of learned features.

2.2. Genetic Programming (GP)

GP is an evolutionary algorithm of automatically evolving computer pro-
grams to solve a problem [10]. Compared with other evolutionary algo-
rithms, GP has a flexible representation, i.e., tree-based representation. In
a GP tree, the internal nodes are functions and the terminal nodes are fea-
tures/variables. A classic example tree of GP is shown in the left part of
Figure 1. For handling other types of data, such as image data, strongly
typed GP (STGP) [29] is often used since it can deal with multiple data
types. With STGP, many domain-specific functions/operators can be em-
ployed in GP. An example program is shown in the right part of Figure 1,
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where O1, O2 and O3 are the functions/operators that can deal with arrays
and/or floating-point numbers. STGP has been widely used on image data
by employing many domain-specific operators as functions (internal nodes)
of GP trees. Based on STGP, this study develops a new GP approach with
a new representation, a new function set and a new terminal set to feature
learning for face recognition.
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Figure 1: Two different example trees of GP.

2.3. Related Work

2.3.1. Face Recognition Methods

Existing face recognition methods can be broadly classified into three
groups: holistic methods, feature-based structural matching methods, and
hybrid methods [2]. Holistic methods extract global features from the whole
images and use these features as the inputs to a face recognition system. Pop-
ular methods are PCA and LDA, where the extracted features are known as
eigenfaces and Fisherfaces [13]. The eigenfaces and Fisherfaces have been
widely used in many face recognition tasks [2]. Feature-based structural
matching methods extract local features of the partial face, such as eye,
mouth and nose, and use these features for recognition. The well-known fea-
tures are Gabor wavelets [6] and LBP features[7]. Hybrid methods use both
holistic and local features for face recognition. In the past decades, many
algorithms have been developed and most of them follow one of these three
groups [2, 1]. In recent years, it is popular and effective to automatically
learn features directly from face images for classification, such as using GP
or deep NNs. More works related to deep NNs for face recognition can refer
to [30]. It is known that NN-based methods often learn a high-dimensional
feature vector and require a large number of training instances. Therefore,
it is necessary to develop non-NN-based methods to overcome these limita-
tions. In this study, we propose a new GP-based approach to automatically
extracting local features for face recognition.
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2.3.2. GP for Face Recognition and Feature Learning

Early work on GP for face recognition can be found in [31, 32]. Bo-
zorgtabar and Rad [31] extract eigenfaces as features and employ GP to
construct classifiers for face recognition. Ibrahem et al. [32] apply GP to
find a model/expression of face feature description. However, this method
has only been examined on one dataset.

Liang et al. [33] apply GP to construct high-level features and classifiers
for figure-ground segmentation using seven different types of image features.
The experimental results showed that these methods using different types of
features can achieve better performance than four widely-used segmentation
techniques. Choi and Choi [34] propose a GP-based system for pulmonary
nodule detection on computed tomography images. In the final step of the
system, GP is employed to evolve classifiers for categorising nodules and non-
nodules using 2D geometric features, 3D geometric features, 2D intensity-
based statistic features, and 3D intensity-based statistic features. Zhang et
al. [35] develop a GP method for multi-class object detection using domain-
independent features. The results show that this method achieves promising
results on multi-class object detection. Lee and Muhammad [36] apply GP
to classify non-classified feature points into the inlier and outlier classes from
the features computed using various distances and angle information in the
image registration system. Peng et al. [37] develop a new GP approach
to automatically extracting and constructing high-level features from raw
signals for fault type classification. This method achieves better performance
than many traditional methods for fault type classification.

Many GP-based feature learning methods have been proposed for image
classification. A multi-tier GP approach with an image filtering tier, an ag-
gregation tier and a classification tier is proposed in [38] to learning high-level
features for image classification. Al-Sahaf et al. [39] simplify this method
in the proposed two-tier (2TGP) methods, which only have the aggregation
and classification tiers to construct high-level features for image classification.
The 2TGP methods can detect rectangle, square, line, and circle regions from
the input image and extract pixel statistics from the detected regions. Lensen
et al. [40] introduce HOG in GP to learn HOG histogram and distance fea-
tures based on the framework of 2TGP for image classification. In [41], a set
of image operators, e.g., Gaussian filter, LoG and Sobel, are cooperated in a
multi-layer GP method to facilitate feature learning for image classification.
However, these methods have only been examined on binary image classifi-
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cation. Shao et al. [22] develop a multi-objective GP algorithm with many
filtering and pooling operators to feature learning for image classification
with simultaneously maximising the classification performance and minimis-
ing the tree size. This method has achieved better performance than several
commonly used image classification algorithms [22]. However, it generates a
high-dimensional feature vector from an image so that PCA is employed for
dimensionality reduction. Al-Sahaf et al. [11] propose a GP-based algorithm
to automatically extract a flexible number of features from images for tex-
ture classification. This method has achieved better performance than the
well-known texture descriptors, LBP and its variants. However, this method
is only for texture classification [11]. Bi et al. [25] develop a GP-based fea-
ture learning algorithm with convolution operators for image classification.
This method employs convolution and pooling operators as internal nodes of
GP trees to extract informative features from images. However, this method
could produce a large number of features if few pooling functions are used
as internal nodes in the GP trees or the input image is large [25]. Bi et al.
[42] develop an ensemble method that uses GP to simultaneously learn fea-
tures and evolve ensembles for image classification. As an ensemble method,
it has achieved promising results in many image classification tasks. But
the evolved solutions have several complex classifiers, which are difficult to
explain.

Although many methods (e.g., [38, 39, 40, 22, 11, 25, 42]) have been
developed for feature learning, they have some limitations. In addition, no
multi-objective GP algorithms have been applied for multi-objective feature
learning with simultaneously maximising the classification performance and
minimising the number of learned features. Therefore, this study addresses
this by developing new multi-objective GP-based feature learning algorithms
for face recognition.

3. The Proposed Approaches

This section describes the proposed single-objective and multi-objective
GP-based feature learning approaches. First, it introduces the new represen-
tation, the function set and the terminal set. Second, it presents the four
GP-based feature learning algorithms, i.e., single-objective GP for feature
learning (GPFL), single-objective GP for feature learning with a weighted
objective (GPFLW), multi-objective GP for feature learning using the idea
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of non-dominated sorting (NSGPFL), and multi-objective GP for feature
learning using the idea of strength Pareto (SPGPFL).

3.1. Representation

The new representation is based on STGP [29], which can integrate mul-
tiple different data types into a single tree. To extract informative features
from the face, the detection of the partial face such as nose, eye or mouth,
is important. The new representation can integrate multiple processes, i.e.,
region selection, feature extraction and feature combination, into a single
tree. In this representation, region selection aims to select a small important
region from the input image. For example, it may select the nose, eye or
mouth area of the face, which contains informative face features. Feature
extraction is to extract features from the selected regions using one of the
predefined image descriptors. Feature combination is to combine the fea-
tures extracted by various descriptors to produce a feature vector. Feature
combination allows the new approach to produce a combination of various
features, which are potentially more effective for classification than a single
type of features.

FC3

LBP LDA

RSS

An image

Output features

     

SIFT

RSR

Image ImageX1 Y1 S1 X2 Y2 W2 H2

RSR

Image X3 Y3 W3 H3

(X1, Y1)

S

S
(X2, Y2)

H2 W2

(X3, Y3)

H3

W3

LBP SIFT LDA
Feature combination
Feature extraction
Region selection

Figure 2: An example program/tree and the process of feature generation using this
example tree.

Figure 2 shows an example program/tree and the process of feature gen-
eration from an example image using this example program. This example
program selects three regions from a face image, uses LBP , SIFT and LDA
to extract features from the three regions, respectively, and combines these
features to form the final feature vector. From the example image, it can be
found that informative regions of the face may be selected by the example
program. From these regions, effective features can be extracted using the
well-known descriptors. The trees of the new approach can be more wide
or deep to produce more features for classification during the evolutionary
process.
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3.1.1. Terminal Set

The new terminal set has the Image, X, Y , S, W , and H terminals.
Image represents the input image and is a matrix/array. The values of the
image are normalised into the range of [0, 1] by diving 255, which follows
the commonly used method for normalisation. X and Y represent the coor-
dinates of the top-left point of the selected region in the image. S represents
the size of a square region selected by the region selection function RSS. The
W and H terminals represent the width and height of a region selected by
the region selection function RSR. In the proposed approach, the X, Y , S,
W , and H terminals are ephemeral random constants. The ranges of S, W
and H are set to [20, 50]. These allow the new approach to select a region
with a size ranging from 20×20 to 50×50. The ranges of X and Y are set to
[0, Image width−20] and [0, Image height−20], respectively. Image width
and Image height represent the width and height of the image.

3.1.2. Function Set

The operators/functions in the function set are region selection functions,
feature extraction functions and feature combination functions.

Region Selection Functions: Two region selection functions are em-
ployed in the proposed approach. The first function is RSS, which can
select a square region from the input image. The RSS function has four
arguments, i.e., Image, X, Y , and S. The region selected by this function is
Image[X : min(Image width,X + S), Y : min(Image height, Y + S)]. The
second function is RSR, which can select a rectangle region from the input
image. The RSR function has five arguments, i.e., Image, X, Y , W , and H.
The region selected by this function is Image[X : min(Image width,X +
W ), Y : min(Image height, Y +H)].

Feature Extraction Functions: To extract effective features from the
selected region, four commonly used descriptors are developed as feature ex-
traction functions in the proposed approach. The four descriptors are LDA
[13], SIFT [5], LBP [6], and Conca. The LDA function extracts the features
that can maximise the between-class distance and minimise the within-class
distance. The extracted features are known as Fisherfaces, which have been
widely used in face recognition [13]. The number of features extracted by
LDA is C − 1, where C is the number of classes of the dataset. The SIFT
function extracts histogram features of gradient magnitudes and directions.
In the proposed approach, the dense SIFT method [43] is employed to ex-
tract features from the whole image without keypoint detection. From each
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image/region, the SIFT method produces 128 features. The LBP method
extracts invariant texture features from an image/region. The LBP features
have been applied for face recognition [6]. In the LBP function, the number
of neighbours is set to 8 and the size of the radius is set to 1.5. The uniform
version of LBP is employed as the extracted features are invariant to rotation.
From each image/region, the LBP function extracts 59 features. The Conca
function concatenates all the rows in the image/region into a vector. This
function returns raw pixels of the region without any transformation since
some regions may contain sufficient information for classification. Based on
the region detection functions, the number of features produced by Conca is
between 400 to 2500. With these feature extraction functions, various num-
bers of features can be produced by different GP trees during the evolutionary
process.

Feature Combination Functions: Feature combination functions aim
to concatenate features extracted from different regions into a feature vector.
The feature combination functions are FC2 and FC3. These two functions
combine features extracted from 2 and 3 regions, respectively. These two
functions can be the root node of the GP trees and can also be the children
nodes of each other. This allows the GP trees to have a flexible depth/length
with the capability to produce more features.

3.2. Single-Objective GP for Feature Learning (GPFL)

With the new representation, a single-objective GP-based feature learn-
ing (GPFL) algorithm can be applied for face recognition. The goal of GPFL
is to automatically learn a number of features to maximise the classification
performance. The framework of GPFL is shown in Algorithm 1. The fit-
ness/objective function is the classification accuracy defined by

Facc =
TP + TN

TP + TN + FP + FN
. (5)

where TP, TN, FP, and FN indicate the number of true positives, the number
of true negatives, the number of false positives, and the number of false
negatives, respectively. The value range of Facc is in [0, 1].

In the fitness evaluation process, five-fold cross-validation on the training
set Dtrain is employed to obtain the classification accuracy [16]. Because the
features extracted by different feature extraction functions are in different
scales, the learned features are normalised using the min-max normalisation
method. Then the normalised data are split using five-fold cross-validation
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Algorithm 1: Framework of GPFL and GPFLW

1 begin
2 Split an image dataset into a training set Dtrain and a test set Dtest;
3 P0 ← Initialise a population of N trees based on the new representation;
4 Evaluate P0 using the objective function on Dtrain;
5 g ← 1;
6 Update Best Ind according to P0;
7 while g ≤ G do
8 Selected← Select trees from Pg−1 using torunament selection;
9 Pg ← Generate a new population from Selected using crossover and

mutation operators;
10 Evaluate Pg using the objective function on Dtrain using five-fold cross

validation;
11 Update Best Ind according to Pg;
12 g ← g + 1;

13 end
14 Calculate the number of learned features by Best Ind;
15 Calculate the test accuracy of Best Ind on Dtest;
16 Return Best Ind, the number of learned featues, and the test accuracy.

17 end

to feed into a linear support vector machine (SVM) for training and testing.
The linear support vector machine is employed because it is commonly used
in image classification [22] and it has fewer parameters than SVM with other
kernels. The mean test accuracy of the five folds is set as the objective value
for the evaluated individual.

3.3. GPFL for Weighting Two Objectives (GPFLW)

Single-objective GPFL may learn a high-dimensional feature vector from
images because the fitness function (as listed in Equation 5) only focuses
on maximising classification accuracy and does not make any constrain on
the number of features. To address this, a new fitness function is proposed
with the goals of maximising the classification accuracy and minimising the
number of learned features. Instead of using the number of learned features
as an objective function directly, we use the inverse ratio of the number of
features and change this objective to be a maximisation problem. With a
ratio α (α ∈ [0, 1]), the new fitness/objective function is defined by

Fratio =
Min(C − 1, 59)

NF
(6)
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Fcomb = α ∗ Facc + (1− α) ∗ Fratio. (7)

where α (α ∈ [0, 1]) and (1−α) indicates the importance of the two objectives
Facc (Equation 5) and Fratio (Equation 6). C indicates the number of classes
and NF indicates the number of learned features. Fratio indicates the inverse
ratio of the number of learned features, which is in the range of [0, 1]. In
this objective, the values of Fratio is set to 0 if NF < Min(C − 1, 59).
Min(C − 1, 59) indicates the minimal number of learned features. Based on
the algorithm design, it can be found that the minimal number of learned
features is the minimal of C − 1 and 59. C − 1 is the number of features
extracted by the LDA function in the function set and 59 is the number
of features extracted by the LBP function. The integrated/weighted fitness
function is Fcomb defined by Equation 7. The value of Fcomb is in the range of
[0, 1]. The fitness evaluation process of GPFLW is the same as that of GPFL
except for the calculation of the fitness values. The algorithm framework of
GPFLW is outlined in Algorithm 1.

3.4. Multi-Objective GPFL with Non-Dominated Sorting (NSGPFL)

The fitness function in Equation 7 jointly optimises the two objectives,
i.e., the classification accuracy and the number of learned features. However,
the weight α is difficult to set because the importance of the two objec-
tives are unknown. To address this, it is necessary to optimise these two
objectives using a multi-objective optimisation algorithm. A multi-objective
GP-based feature learning algorithm using the idea of non-dominated sort-
ing (NSGPFL) is developed optimise the two objectives (Facc and Fratio)
described by Equations 5 and 6. The idea of non-dominated sorting is from
non-dominated sorting genetic algorithm II (NSGA-II) [44], which is one
of the most popular evolutionary multi-objective optimisation algorithms.
The overall algorithm of NSGPFL is described in Algorithm 2. The main
procedure of NSGPFL is the same as that of NSGA-II [44]. In the fitness
evaluation of NSGPFL, the calculation of the two objective functions are
based on Equation 6. After the evolutionary process, the non-dominated
solutions are tested on the test set and the numbers of learned features are
calculated.

3.5. Multi-Objective GPFL with Strength Pareto (SPGPFL)

In order to further investigate the use of evolutionary multi-objective al-
gorithms for feature learning in image classification, another multi-objective
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Algorithm 2: Framework of NSGPFL

1 begin
2 Split an image dataset into a training set Dtrain and a test set Dtest;
3 P0 ← Initialise a population of N trees based on the new representation;
4 Evaluate P0 using the two objective functions on Dtrain;
5 O0 ← Generate a new population using crossover and mutation operators;
6 g ← 0;
7 while g ≤ G do
8 Evaluate Og using the two objective functions on Dtrain;
9 Rg ← Pg ∪Og;

10 front = (front1, front2, . . . )← Identify different levels of
non-dominated fronts in Rg using fast non-dominated sorting;

11 Pg+1 ← ∅ and i = 1;
12 while |Pg+1| < N do
13 if |Pg+1|+ fronti < N then
14 Pg+1 ← Pg+1 ∪ fronti;
15 i = i+ 1;

16 else
17 Calculate crowding distance of each individual in the front

fronti;
18 Pg+1 ← Add (N − |Pg+1|) least crowded indiviudals of fronti;

19 end

20 end
21 Og+1 ← Generate a new population using crossover and mutation

operators;
22 g ← g + 1;

23 end
24 Calculate the number of learned features by each non-dominated solution in

front1;
25 Calculate the test accuracy of each non-dominated solution in front1 on

Dtest;
26 Return each individual in front1, the number of learned features, and the

test accuracy.
27 end
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evolutionary algorithm using the idea of strength Pareto [45] is proposed.
The same as NSGPFL, the SPGPFL algorithm aims to maximise the clas-
sification accuracy and minimise the number of learned features. Different
from NAGAII, the strength Pareto evolutionary algorithm (SPEA2) [45] is
an evolutionary multi-objective algorithm that performs environmental se-
lection based on fitness and density. SPEA2 is a widely used evolutionary
multi-objective algorithm and has been employed in GP for other tasks, such
as figure-ground image segmentation [23]. The major steps of the proposed
SPGPFL algorithm are the same as that of SPEA2. The algorithm frame-
work of SPGPFL is described in Algorithm 3. In SPGPFL, the Archive is
employed to store non-dominated solutions. More details about SPEA2 can
be found in [45]. After the evolutionary process, the non-dominated solutions
from Archive are identified and tested on the test set.

4. Experiment Design

4.1. Datasets

To examine the performance of the proposed approaches, four well-known
face recognition datasets of varying difficulty are used for conducting the ex-
periments. The four datasets are ORL [46], Extended Yale B [47], Aberdeen
[48], Faces95 [49]. The details of the four datasets are listed in Table 1. It
is found that these datasets have different image sizes, numbers of classes,
numbers of training and test instances. It is noted that these four datasets
are not extremely large datasets but they cover typical face image variations,
i.e., the variations of illumination, occlusion, pose, expression, background,
and facial details.

The ORL dataset [46] is a small dataset of 400 images, i.e., ten images
per class. The face images have variations of pose, illumination condition and
expression. In the experiments, five images per class are randomly selected
for training and the remaining images are used for testing. The Extended
Yale B dataset [47] has 2424 face images of 38 different subjects. The images
were sampled under various light conditions. Each class has 63/64 images.
In the experiments, 20 images per class are randomly selected for training
and the remaining images are used for testing. The original 168×192 images
are resized to 90×100 to reduce the computational cost. The Aberdeen
dataset [47] has 690 images in 116 classes. Some classes have a small number
of images, i.e., smaller than eight. Therefore, only 30 classes with a larger
number of images, i.e., over ten images, are selected for the experiments. The
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Algorithm 3: Framework of SPGPFL

1 begin
2 Split an image dataset into a training set Dtrain and a test set Dtest;
3 P0 ← Initialise a population of N trees based on the new representation;
4 g ← 0;
5 Archive← ∅;
6 while g ≤ G do
7 Evaluate Pg using the two objective functions on Dtrain;
8 Union← Pg ∪Archive;
9 Calculate the raw fitness of each individual in Union;

10 Calculate the density of each individual in Union;
11 Calculate the fitness of each individual based on the raw fitness and the

density value;
12 Identify non-dominated solutions in Union and add then to Archive;
13 if |Archive| < Maximum Archive Size then
14 Add the Maximum Archive Size− |Archive| non-dominated

solutions in the current population to Archive;
15 i = i+ 1;

16 else
17 Remove the most similar individuals from Archive;
18 end
19 Selected← Select individuals as parents from Archive;
20 Pg+1 ← Generate a new population using crossover and mutation

operators from Selected;
21 g ← g + 1

22 end
23 Obtain non-domained soltuions from Archive;
24 Calculate the number of learned features by each non-domined solution;
25 Calculate the test accuracy of each non-domained solution;
26 Return each individual in Archive, the number of learned featues, and the

test accuracy.
27 end
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sizes of the images vary from 336×480 to 624×544. The images are resized to
100×100 and the colour images are converted to gray-scale images to reduce
the computational cost. In the experiments, eight images per classes are
randomly selected for training and the remaining images are used for testing.
The final dataset is Faces95 [49], having 1440 images in 72 classes. Each
class has 20 images with the size of 180×200. The images have variations of
background, expression and illumination. In the experiments, ten images per
class are randomly selected for training and the remaining images are used
for testing. The original colour images are converted to gray-scale images
and are resized to 90×100 for reducing the computational cost. Example
images of these datasets are shown in Figure 3.

Table 1: Summary of the datasets

Datasets #Class Image Size Train Set (Per Class) Test Set
ORL 40 112×92 200 (5 images) 200
Extended Yale B 38 90×100 760 (20 images) 1664
Aberdeen 30 100×100 240 (8 images) 269
Faces95 72 90×100 720 (10 images) 720

4.2. Baseline Methods

A large number of baseline methods are used for comparisons, i.e., two
NN-based methods and 32 traditional methods using different classification
algorithms and face features. The two NN-based methods are LeNet [50] and
a five-layer CNN [51]. The other 32 methods use eight types of well-known
features and four commonly used classification algorithms. The eight types
of features are Fisherfaces, Eigenfaces1, Eigenfaces2, SIFT, LBP, Original,
Downsample4, and Downsample8. Fisherfaces are C − 1 features extracted
by LDA [13]. The Eigenfaces1 and Eigenfaces2 features are generated using
PCA [12]. The values of explained variance in PCA are set to 0.8 and 0.9 to
generate various numbers of features to form the Eigenfaces1 and Eigenfaces2
features, respectively. The SIFT [5] and LBP [6] features are extracted from
the images using the feature extraction functions in the proposed approach.
The Original features indicate the raw pixels. Downsample4 and Downsam-
ple8 features are down-sampled from the images using 4×4 and 8×8 win-
dows [52], respectively. The four commonly used classification algorithms
are k-nearest neighbour (KNN) [11], SVM [22], sparse representation-based
classification (SRC) [52], and random forest (RF) [53].
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ORL

Extended Yale B

Aberdeen

Faces95
Figure 3: Example images of the ORL, Extended Yale B, Aberdeen, and Faces95
datasets.

It is noticeable that there are several evolutionary multi-objective algo-
rithms that can optimise the objective of classification accuracy and the
objective of the number of features, such as in [27, 28]. However, these
algorithms are developed for feature selection, which is very different from
image feature learning. Feature selection is based on the dataset with well-
established features, while image feature learning is based on raw images.
In feature selection, the number of features is known, while the number of
features is unknown in image feature learning. Feature selection only selects
and produces a small set of existing features, while feature learning generates
new features. Therefore, the current evolutionary multiobjective algorithms
cannot be employed for comparisons.

4.3. Parameter Settings

In the four GP-based feature learning algorithms, the maximum number
of generations is set to 50 and the population size is set to 100 [51, 42]. The
crossover and mutation rates are set to 0.8 and 0.2, respectively. Elitism is not
employed in these GP algorithms as the best individual or the non-dominated
solutions are recorded/updated at each generation. Tournament selection
with size 7 is employed to select individuals for genetic operations. The
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minimum tree depth is set to 2 and the maximum tree depth is set to 8. The
ramped-half-and-half method is used for generating the initial population.
The stopping criteria is reaching the maximum number of generations. For
GPFLW, α is a weighting factor and is subjective to the relative importance
of the two objectives, i.e., the objective of classification accuracy and the
objective of the number of learned features. The best value of α may vary
with the dataset and tuning is needed to find it. In this paper, we investigated
the performance of GPFLW with two representative values of α, i.e., i.e.,
α = 0.5 and α = 0.8, and keep them the same for all the datasets for
simplification. For α=0.5, we would like to investigate the performance of
GPFLW when these two objectives are equally important. For α=0.8, we
would like to investigate the performance of GPFLW when the first objective
is more important than the second one.

The parameters for the classification algorithms are the commonly used
settings. In KNN, the number of neighbours is 1 [11]. The linear kernel is
employed in SVM as it has fewer parameters than the other kernels [22]. In
RF, the number of trees is 500 and the minimum tree depth is 100 [53]. In
LeNet and CNN, the batch size is set to 20 and the number of epochs is set
to 100, referring to [53].

The GP-based feature learning algorithms are implemented using the
DEAP (Distributed Evolutionary Algorithm in Python) package [54]. The
classification algorithms, i.e., KNN, SVM and RF, are based on the scikit-
learn package [55]. The implementations of LeNet and CNN are based on the
Keras package [56]. For fair comparisons, each algorithm runs independent
30 times on each dataset. The test results from the 30 runs are reported in
the following section.

To compare the performance of NSGPFL and SPGPFL, one commonly
used indicator, hypervolume [57], is used. Hypervolume only needs one ref-
erence point, which is earlier to set in contrast to a set of reference points
required in other indicators, such as the inverted generational distance (IGD)
indicator [58] . In each run, the NSGPFL or SPGPFL algorithm obtains two
Pareto front approximations, which are from the training set and the test set,
respectively. The two sets of metric values (the values of Facc and Fratio) are
used to calculate the hypervolume. In the calculation, the values of 1− Facc

and 1−Fratio are used and the reference point is set to (1, 1), indicating the
worst values of 1−Facc and 1−Fratio. A larger hypervolume value indicates
a better algorithm.
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5. Results and Discussions

This section discusses and analyses the performance of GPFL, GPFLWs,
NSGPFL, SPGPFL, and the baseline methods on the four different datasets.
The classification results and the number of learned features of the GPFL,
GPFLWs, NSGPFL, and SPGPFL on the four datasets are shown in Table
2, and Figures 4 and 5. In Figures 4 and 5, “NSGPFL-Best” and “SPGPFL-
Best” indicate the approximated Pareto fronts of the 30 runs. The compar-
isons with NSGPFL, SPGPFL and a large number of non-GP-based baseline
methods are demonstrated in Tables 4 and 5. A statistical test: Wilcoxon
rank-sum test with a 5% significance level [59], is employed to compare the
performance between GPFL, GPFLWs, NSGPFL, SPGPFL, and the bench-
mark algorithms.

5.1. Comparisons between GPFL, GPFLWs, NSGPFL, and SPGPFL

The test accuracy and the number of learned features of GPFL, GPFLWs
(GPFLW with a weighting factor α=0.5 and GPFLW with a weighting fac-
tor α=0.8), NSGPFL, and SPGPFL are listed in Table 2. The results are
the maximum test accuracy, the mean accuracy and standard deviation, the
maximum number of learned features, the average number of learned fea-
tures and standard deviation. To compare with these methods, the results of
NSGPFL and SPGPFL are obtained using the individuals with the best clas-
sification performance of the training sets. In Table 2, the symbols “+”, “=”
and “–” (“↑”, “→” and “↓” ) indicate that NSGPFL (SPGPFL) achieves sig-
nificantly better, similar and worse results than/to the compared algorithm,
respectively.

5.1.1. NSGPFL and SPGPFL versus GPFL

From Table 2, it can be found that NSGPFL achieves similar classifica-
tion performance than GPFL on the ORL, Aberdeen and Faces95 datasets
and significantly worse performance on the Extended Yale B dataset. Com-
pared with GPFL, SPGPFL achieves similar results on the four datasets.
Although the mean accuracy obtained by GPFL is slightly higher than that
by SPGPFL, there are no significant differences. Table 2 also shows that
GPFL learns a larger number of features than NSGPFL or SPGPFL on the
four datasets. More importantly, the average number of features learned by
GPFL is 721.63 on ORL, which is much larger (almost double the number)
than that of NSGPFL (385.83) or SPGPFL (440). On Aberdeen, NSGPFL
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Table 2: Test accuracy (%) and the number of learned features on the four datasets.
The symbols “+”, “=” and “–” (“↑”, “→” and “↓” ) indicate that NSGPFL (SPGPFL)
achieves significantly better, similar and worse results than/to the compared algorithm

Test Accuracy Number of Learned Features
Max Mean±St.dev Max Mean±St.dev

Dataset ORL
GPFL 99.50 97.90±1.11 =→ 1348 721.63±273.78
GPFLW (α=0.5) 90.50 86.13±2.43 + ↑ 59 59.00±0.00
GPFLW (α=0.8) 99.50 95.18±3.16 + ↑ 600 216.37±145.00
NSGPFL 99.50 97.48±1.66 → 934 385.83±174.75
SPGPFL 99.50 97.40±1.19 649 440.00±115.18
Dataset Extended Yale B
GPFL 99.10 97.49±1.46 – → 2496 1167.00±469.16
GPFLW (α=0.5) 67.13 19.61±27.73 + ↑ 74 69.50±6.87
GPFLW (α=0.8) 98.62 79.78±34.41 = ↑ 1944 500.53±405.61
NSGPFL 98.32 95.32±2.83 ↑ 1560 753.60±308.46
SPGPFL 98.92 96.60±2.15 2719 1120.53±560.74
Dataset Aberdeen
GPFL 99.26 97.37±1.51 =→ 3460 830.83±592.38
GPFLW (α=0.5) 85.50 75.68±17.44 + ↑ 59 58.87±0.34
GPFLW (α=0.8) 97.40 95.32±2.65 + ↑ 472 154.20±83.62
NSGPFL 98.88 97.06±1.34 → 659 417.60±142.91
SPGPFL 99.63 97.30±1.08 1238 562.13±238.62
Dataset Faces95
GPFL 99.44 97.95±0.88 =→ 708 232.07±153.80
GPFLW (α=0.5) 97.64 54.02±35.16 + ↑ 118 89.80±23.03
GPFLW (α=0.8) 98.61 96.58±2.25 + ↑ 177 134.07±25.95
NSGPFL 99.17 97.82±0.85 → 354 180.93±71.34
SPGPFL 99.17 97.62±0.78 708 184.87±121.62

learns a maximum number of 659 features and SPGPFL learns a maximum
number of 1238 features, which are much smaller than that by GPFL, i.e.,
3460 features. The results show that both NSGPFL and SPGPFL achieve
comparable performance to GPFL but learn a smaller number of features.
The reason is that GPFL does not have a limit on the number of learned fea-
tures when maximising the classification performance. In contrast to GPFL,
NSGPFL and SPGPFL find the solutions that achieve similar performance
but extract a smaller number of features via optimising these two objec-
tives (the classification accuracy and the number of features) and identifying
non-dominated solutions.
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On the training sets, as shown in Figure 4, NSGPFL or SPGPFL finds
a set of non-dominated solutions that extract various numbers of features
and achieve different training performance. Compared with the solutions
of GPFL, the solutions of NSGPFL or SPGPFL are more diverse in the
classification performance and the number of features. On the test sets, as
shown in Figure 5, most of the solutions of GPFL achieve better test accuracy
but use a larger number of features than that of NSGPFL or SPGPFL. From
these two figures, however, it can be found that when the number of features
increases, the classification performance of the training or test set does not
always increase significantly. This confirms the necessity of optimising both
the objectives of the number of features and the classification performance.

To sum up, the results suggest that NSGPFL and SPGPFL learn a smaller
number of features and achieve comparable classification performance than
the single-objective GPFL by simultaneously optimising these two objectives:
the number of learned features and the classification performance.

5.1.2. NSGPFL and SPGPFL versus GPFLWs

The results in Table 2 show that NSGPFL achieves significantly better
or similar results than GPFLW (α=0.5) and GPFLW (α=0.8) on the four
datasets. The results show that SPGPFL significantly outperforms GPFLW
(α=0.5) and GPFLW (α=0.8) on the four datasets. From Table 2, the results
show that GPFLW (α=0.5) achieves the lowest mean accuracy of 19.61% and
GPFLW (α=0.8) achieves a mean accuracy of 79.7% on the Extended Yale
B dataset. GPFLW (α=0.5) achieves the lowest mean accuracy of 75.68% on
the Aberdeen dataset and of 54.02% on the Faces95 dataset. On these three
datasets, both NSGPFL and SPGPFL achieve a mean accuracy of over 95%.
The results show that NSGPFL and SPGPFL achieve better classification
performance than GPFLW with the two different weighting factors. Table 2
shows that GPFLW (α=0.5) and GPFLW (α=0.8) learn a smaller number
of features than NSGPFL or SPGPFL.

The training and test results of the 30 runs are shown in Figures 4 and 5.
With a constraint on the number of the features in the objective, GPFLW
(α=0.5) and GPFLW (α=0.8) learn a small number of features and achieve
low classification performance of the training or test set. On the training sets,
as shown in Figures 4, GPFLW (α=0.5) and GPFLW (α=0.8) achieve worse
classification performance than NSGPFL or SPGPFL when the number of
learned features is similar or the same. Compared with GPFLW (α=0.8),
GPFLW (α=0.5) extracts smaller numbers of features in most cases but
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Figure 4: Training results (i.e.. the number of learned features and accuracy) of the 30
runs obtained by GPFL, GPFLW (α=0.5), GPFLW (α=0.8), NSGPFL, and SPGPFL on
the four datasets.

achieves worse classification performance on the training set. It is noted that
some of the solutions of GPFLW (α=0.8) still extract a large number of fea-
tures, such as on the ORL and Extended Yale B datasets. The results show
that the classification performance is difficult to be optimised in the weighted
objective/fitness function of GPFLW (α=0.5) and GPFLW (α=0.8). In con-
trast, the objective of the classification performance can be optimised in the
multi-objective algorithms, i.e., NSGPFL and SPGPFL.

On the test sets, most solutions of GPFLW (α=0.8) can achieve good
classification performance, but not as good as some solutions of NSGPFL
and SPGPFL. Figure 4 shows that the solutions of GPFLW (α=0.5) achieve
worse classification accuracy than most solutions of NSGPFL and SPGPFL
when the number of features is similar or the same.

To sum up, compared with GPFLWs, NSGPFL and SPGPFL are more
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Figure 5: Test results (i.e.. the number of learned features and accuracy) of the 30 runs
obtained by GPFL, GPFLW (α=0.5), GPFLW (α=0.8), NSGPFL, and SPGPFL on the
four datasets.

effective for optimising these two objectives. Because the trade-off between
the two objectives is unknown, it is difficult to integrate them into a single-
objective to be jointly optimised as that in GPFLWs. The results show that
GPFLWs with different α values achieve different performances on the four
datasets, indicating that α is an important factor in GPFLW but is difficult
to set. Compared with GPFLWs, NSGPFL and SPGPFL are more effective
by simultaneously optimising the objectives of the classification performance
and the number of features.

5.1.3. NSGPFL versus SPGPFL

Table 2 shows that SPGPFL achieves significantly better performance
than NSGPFL on the Extended Yale B dataset and similar performance on
the remaining three datasets. On the ORL and Faces95 datasets, NSGPFL
achieves better mean accuracy than SPGPFL. However, SPGPFL achieves
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better maximum accuracy and mean accuracy than NSGPFL on Extended
Yale B and Aberdeen. Table 2 shows that NSGPFL learns a smaller num-
ber of features than SPGPFL on the four datasets. The results in Table
2 show that SPGPFL achieves better classification performance than NS-
GPFL but learns a larger number of features. Because the results in Table 2
are obtained by the solutions with the best classification performance of the
training set, these results cannot comprehensively show the performance of
NSGPFL and SPGPFL in multi-objective feature learning. Therefore, more
detailed comparisons are conduced as follows.

On the training sets, as shown in Figure 4, both NSGPFL and SPGPFL
obtain a set of diverse solutions with different training accuracies and num-
bers of features. The approximated Pareto fronts obtained by NSGPFL and
SPGPFL confirm that the classification performance of the training set in-
creases with the number of learned features. From Figure 4, it can be found
that the solutions of NSGPFL achieve better classification performance of
the training sets than that of SPGPFL when the number of learned fea-
ture is similar or the same on the four datasets. Compared with NSGPFL,
SPGPFL finds more solutions with a larger numbers of features, especially
on the Extended Yale B and Aberdeen datasets. It is also noted that some
solutions of NSGPFL and SPGPFL obtain a small number of features with
poor classification performance of the training sets.

On the test sets, as shown in Figure 5, NSGPFL and SPGPFL obtain
different approximated Pareto fronts from that on the training sets. The re-
sults show that NSGPFL obtains better classification accuracy than SPGPFL
when the number of features is similar or the same. It can also be found that
some solutions of NSGPFL and SPGPFL achieve poor classification perfor-
mance when the numbers of features become too small, such as on the ORL
and Extended Yale B datasets. It is noted that the solutions with poor
classification performance of the training sets and small numbers of features
achieve very low classification accuracy of the test sets. This indicates that
when the number of learned features is small, the generalisation performance
is poor.

Table 3 lists the maximum values, mean values and standard deviations
of the hypervolume of the NSGPFL and SPGPFL algorithm on the training
and test sets. The “↑” and “↓” symbols indicate that SPGPFL is significantly
better or worse than NSGPFL. It can be found that SPGPFL is significantly
worse than NSGPFL in seven comparisons and significantly better than NS-
GPFL in one comparison out of the total eight comparisons. Compared with
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Table 3: Hypervolume of the training and test sets. The “↑” and “↓” symbols indicate
that SPGPFL is significantly better and worse than NSGPFL, respectively

Training Test
Max Mean±St.dev Max Mean±St.dev

Dataset ORL
NSGPFL 0.6083 0.5948±0.0067 ↓ 0.6210 0.6041±0.0079 ↓
SPGPFL 0.5758 0.5506±0.0141 0.6122 0.5856±0.0174
Dataset Extended Yale B
NSGPFL 0.8704 0.8633±0.0034 ↓ 0.7957 0.7674±0.0214 ↓
SPGPFL 0.8305 0.7580±0.0353 0.7725 0.7233±0.0285
Dataset Aberdeen
NSGPFL 0.4678 0.4625±0.0045 ↓ 0.4430 0.3662±0.0308 ↑
SPGPFL 0.4435 0.4274±0.0092 0.4374 0.4178±0.0269
Dataset Faces95
NSGPFL 0.4332 0.4292±0.0045 ↓ 0.3618 0.3566±0.0060 ↓
SPGPFL 0.4289 0.4098±0.0112 0.3580 0.3399±0.0132

SPGPFL, NSGPFL obtains higher maximal and mean hypervolume values in
most cases. The results show that the non-dominated solutions of NSGPFL
cover larger space than that of SPGPFL to the reference point. As a result,
NSGPFL with the idea of non-dominated sorting is better than SPGPFL for
multi-objective feature learning in face recognition.

The reason that NSGPFL is better than SPGPFL can be found in Figures
6 and 7, which show the median fronts of NSGPFL and SPGPFL on the
training sets and the test sets. The median front of each datasets is from
a single run that obtains the median hypervolume value on the training
or test set [59]. Figures 6 and 7 show that SPGPFL is able to find more
boundary solutions than NSGPFL but the solutions of NSGPFL achieve
better performance than SPGPFL. The results show that SPGPFL finds
solutions with better diversity than NSGPFL, but NSGPFL can find a set
of non-dominated solutions with better performance than SPGPFL.

The results suggest that both NSGPFL and SPGPFL automatically find
a set of non-dominated solutions that reduce the number of learned features
and improve the classification performance. Compared with SPGPFL, NS-
GPFL finds a set of solutions with higher classification performance of the
training and test sets when the numbers of features are similar or the same.
The results of hypervolume indicator show that NSGPFL is more effective
than SPGPFL for multi-objective feature learning in face recognition.
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Figure 6: Median fronts of NSGPFL and SPGPFL on the training sets of the four datasets.

5.1.4. GPFL versus GPFLWs:

The results in Table 2 show that GPFL achieves better classification per-
formance than GPFLW (α=0.5) and GPFLW (α=0.8) on the four datasets.
GPFLWs have a weighted fitness function (Equation 7), aiming to maximise
the classification accuracy and minimise the number of learned features, while
GPFL does not have a limit on the number of learned features so that it can
learn a larger number of features to achieve better classification performance
than GPFLWs.

The number of features in Table 2 and the results from the 30 runs in
Figures 4 and 5 confirm that GPFL learns a larger number of features to
achieve a better classification performance than GPFLWs. GPFL learns over
400 features on the Faces95 dataset and over 1000 features on the remaining
datasets, while GPFLWs learn less than 200 features on Faces95 and less
than 1000 features on the remaining three datasets. The results suggest that
both GPFLW (α=0.5) and GPFLW (α=0.8) significantly reduce the number
of learned features but have a limited ability to improve the classification
accuracy of the four datasets.
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Figure 7: Median fronts of NSGPFL and SPGPFL on the test sets of the four datasets.

5.2. Comparisons with Baseline Methods

To show the effectiveness of the proposed GP-based feature learning al-
gorithms, we compare the results obtained by NSGPFL and SPGPFL with
the 34 non-GP-based baseline methods. The results of these methods on the
four datasets are listed in Tables 4 and 5. In Tables 4 and 5, the symbols
“+”, “=” and “–” (or ‘↑”, “→” and “↓”) indicate that NSGPFL (SPGPFL)
achieves significantly better, similar and worse results than/to the compared
algorithm, respectively. The final row of each block in Tables 4 and 5 sum-
marises the overall results of the significance tests.

5.2.1. Comparisons with CNNs

It can be found from Table 4 that both NSGPFL and SPGPFL sig-
nificantly outperform the two CNN methods on the four face recognition
datasets. Importantly, the mean accuracy obtained by NSGPFL and SPGPFL
is at least 10% higher than that by LeNet and CNN on the Faces95 dataset
and at least 5% higher on the Extended Yale B dataset. The reason is that
LeNet and CNN require a large number of training instances to obtain a
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Table 4: Test accuracy (%) on the four datasets. The symbols “+”, “=” and “–” (“↑”,
“→” and “↓” ) indicate that NSGPFL (SPGPFL) achieves significantly better, similar
and worse results than/to the compared algorithm

Max Mean±St.dev Max Mean±St.dev
Dataset ORL Extended Yale B
LeNet 93.50 88.33±2.91+↑ 93.33 88.42±2.63+↑
CNN 96.00 93.72±1.30+↑ 92.55 89.98±1.24+↑
NSGPFL 99.50 97.48±1.66 98.32 95.32±2.83
SPGPFL 99.50 97.40±1.19 98.92 96.60±2.15
Overall 2 + / 2 ↑ 2 +/ 2 ↑
Dataset Aberdeen Faces95
LeNet 94.05 90.14±2.01+↑ 89.72 85.83±1.55+↑
CNN 96.28 94.67±0.97+↑ 89.58 87.21±1.16+↑
NSGPFL 98.88 97.06±1.34 99.17 97.82±0.85
SPGPFL 99.63 97.30±1.08 99.17 97.62±0.78
Overall 2+ / 2 ↑ 2 +/ 2 ↑

higher generalisation performance. The number of instances in per class of
the four datasets is small so that only several instances can be used for train-
ing. The current training data may not be sufficient to train LeNet and CNN
although they only have a few layers. Therefore, the performance of LeNet
and CNN is limited to the small number of training instances. It is noted
that using more training data can improve the performance of LeNet and
CNN, but it is beyond the scope of this paper. The comparisons show that
both NSGPFL and SPGPFL achieve significantly better performance than
the two CNN methods on the four face recognition datasets.

5.2.2. Comparisons with Other 32 Baseline Methods

From Table 5, it is noticeable the both NSGPFL and SPGPFL achieve
significantly better or similar performance in all the comparisons. Specifi-
cally, NSGPFL achieves significantly better performance in 124 comparisons,
similar performance in two comparisons, and significantly worse performance
in two comparisons out of the total 128 comparisons. The NSGPFL algo-
rithm achieves significantly better performance in 124 comparisons and sim-
ilar performance in four comparisons out of the 128 comparisons. These
results indicate that both NSGPFL and SPGPFL significantly outperform a
large number of traditional face recognition algorithms.

From Table 5, it can be found that the performance of different features
and different classification algorithms varies with the datasets. On the ORL
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Table 5: Test accuracy (%) on the four datasets. The symbols “+”, “=” and “–” (“↑”,
“→” and “↓” ) indicate that NSGPFL (SPGPFL) achieves significantly better, similar
and worse results than/to the compared algorithm

Mean±St.dev Mean±St.dev Mean±St.dev Mean±St.dev
KNN SVM SRC RF

Dataset ORL
Fisherfaces 92.00±0.00+↑ 92.47±0.13+↑ 91.50±0.00+↑ 95.85±0.49+↑
Eigenfaces1 81.00±0.00+↑ 96.00±0.32+↑ 92.50±0.00+↑ 91.58±0.87+↑
Eigenfaces2 82.50±0.00+↑ 94.50±0.00+↑ 89.00±0.00+↑ 90.57±0.84+↑
SIFT 87.50±0.00+↑ 97.00±0.00+↑ 98.00±0.00=→ 97.78±0.49=→
LBP 67.50±0.00+↑ 89.23±0.75+↑ 66.50±0.00+↑ 87.17±0.96+↑
Original 83.00±0.00+↑ 95.50±0.00+↑ 91.00±0.00+↑ 94.13±1.00+↑
Downsample4 82.50±0.00+↑ 95.50±0.00+↑ 90.50±0.00+↑ 96.63±0.73+↑
Downsample8 81.50±0.00+↑ 94.50±0.00+↑ 87.00±0.00+↑ 96.53±0.59+↑
Overall NSGPFL: 30 +, 2 = SPGPFL: 30 ↑, 2 →
Dataset Extended Yale B
Fisherfaces 88.04±0.00+↑ 77.93±2.08+↑ 88.76±0.00+↑ 82.68±0.28+↑
Eigenfaces1 30.95±0.00+↑ 76.02±0.54+↑ 69.95±0.00+↑ 76.47±0.43+↑
Eigenfaces2 42.19±0.00+↑ 86.87±0.37+↑ 90.08±0.00+↑ 84.38±0.32+↑
SIFT 34.38±0.00+↑ 73.68±0.00+↑ 71.75±0.00+↑ 65.52±0.44+↑
LBP 18.15±0.00+↑ 42.36±4.08+↑ 20.01±0.00+↑ 43.67±0.40+↑
Original 43.51±0.00+↑ 90.75±0.03+↑ 97.18±0.00–→ 94.04±0.26+↑
Downsample4 42.73±0.00+↑ 90.32±0.00+↑ 94.53±0.00+↑ 91.66±0.23+↑
Downsample8 40.81±0.00+↑ 86.72±0.00+↑ 87.02±0.00+↑ 88.03±0.26+↑
Overall NSGPFL: 31 +, 1– SPGPFL: 31 ↑, 1 →
Dataset Aberdeen
Fisherfaces 91.08±0.00+↑ 91.07±0.07+↑ 87.36±0.00+↑ 90.77±0.55+↑
Eigenfaces1 65.43±0.00+↑ 87.99±0.37+↑ 85.13±0.00+↑ 84.71±0.91+↑
Eigenfaces2 69.52±0.00+↑ 95.06±0.17+↑ 94.80±0.00+↑ 89.22±1.08+↑
SIFT 83.64±0.00+↑ 91.07±0.00+↑ 97.77±0.00–→ 95.48±0.44+↑
LBP 39.78±0.00+↑ 73.19±2.89+↑ 62.83±0.00+↑ 78.02±0.99+↑
Original 69.89±0.00+↑ 94.81±0.07+↑ 95.54±0.00+↑ 90.66±0.80+↑
Downsample4 66.91±0.00+↑ 95.63±0.21+↑ 94.80±0.00+↑ 91.70±0.78+↑
Downsample8 67.29±0.00+↑ 92.95±0.07+↑ 92.19±0.00+↑ 89.64±0.80+↑
Overall NSGPFL: 31 +, 1 – SPGPFL: 31 ↑, 1 →
Dataset Faces95
Fisherfaces 85.69±0.00+↑ 75.41±0.13+↑ 76.53±0.00+↑ 81.64±0.40+↑
Eigenfaces1 73.33±0.00+↑ 83.69±0.22+↑ 73.06±0.00+↑ 84.68±0.45+↑
Eigenfaces2 71.11±0.00+↑ 80.17±0.07+↑ 79.17±0.00+↑ 82.62±0.47+↑
SIFT 80.14±0.00+↑ 94.31±0.00+↑ 93.75±0.00+↑ 92.57±0.28+↑
LBP 84.58±0.00+↑ 94.24±1.27+↑ 64.17±0.00+↑ 94.61±0.38+↑
Original 70.83±0.00+↑ 83.06±0.00+↑ 74.58±0.00+↑ 93.33±0.36+↑
Downsample4 70.69±0.00+↑ 83.47±0.00+↑ 80.56±0.00+↑ 93.60±0.37+↑
Downsample8 68.89±0.00+↑ 82.08±0.00+↑ 78.06±0.00+↑ 93.44±0.34+↑
Overall NSGPFL: 32 + SPGPFL: 32 ↑
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Figure 8: Comparisons between NSGPFL, SPGPFL and the baseline methods in terms of
the classification accuracy and the number of learned features.

and Aberdeen datasets, SIFT+SRC (SRC using SIFT features) achieves bet-
ter results than the other algorithms, while SIFT+SRC achieves worse results
than SIFT+SVM on Extended Yale B and Faces95 and worse results than
Original+SRC on Extended Yale B. These results indicate that it is typically
difficult to manually extract features and choose a classification algorithm to
build a face recognition system. Compared with these algorithms, NSGPFL
and SPGPFL can automatically extract features to build a classification sys-
tem for face recognition. The results show that NSGPFL and SPGPFL are
more effective and adaptive than the algorithms using manually extracted
features for various face recognition tasks.

Fig. 8 compares the classification performance and the number of learned
features of NSGPFL, SPGPFL, and baseline methods. For the baseline meth-
ods, the best accuracy achieved by these features is presented in Fig. 8. For
better comparisons, the Original features are not included because they are
raw pixels with a high dimension e.g., 10,000 for a 100×100 image. From
Fig. 8, it can be found that some solutions of NSGPFL and SPGPFL achieve
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better classification accuracy than the baseline methods when the number of
features is similar. It can also be found that many solutions of NSGPFL and
SPGPFL achieve better classification performance and use a larger number
of features than these baseline methods. NSGPFL and SPGPFL are multi-
objective algorithms and can find a set of solutions with the tradeoff between
the classification performance and the number of learned features.

To sum up, the comparisons with NSGPFL, SPGPFL and the 34 base-
line methods show that NSGPFL and SPGPFL achieve significantly better
results in almost all comparisons on the four datasets. The results show
that the features learned by NSGPFL and SPGPFL are more effective than
many well-known manually extracted features and the features learned by
LeNet and CNN for face recognition. Compared with the baseline methods
using manually extracted features, some solutions of NSGPFL and SPGPFL
achieve better performance when the number of features is similar. The re-
sults confirm that NSGPFL and SPGPFL are effective approaches to feature
learning.

6. Conclusions

The goal of this paper was to develop multi-objective GP-based feature
learning algorithms for face recognition by simultaneously optimising the
objectives of the classification performance and the number of learned fea-
tures. The goal has been successfully achieved by developing the NSGPFL
and SPGPFL algorithms with new representation, a new function set and a
new terminal set. With the new representation, the new GP algorithms can
automatically select small regions from the input image, select descriptors
to extract features from the regions and combine these features to form the
final output features for classification. Based on the new representation, four
GP-based algorithms were developed, which are single-objective GPFL with
maximising the classification accuracy, single-objective GPFLW with jointly
optimising the classification accuracy and the number of learned features,
multi-objective NSGPFL and SPGPFL with simultaneously optimising the
classification accuracy and the number of learned features.

The performances of these algorithms were examined on four face recog-
nition datasets of varying difficulty and compared with 34 baseline methods.
The results suggested that both NSGPFL and SPGPFL achieved compa-
rable classification performance and learned a smaller number of features
than GPFL. The results showed that NSGPFL and SPGPFL are more ef-
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fective than GPFLWs with different weighting factors (α=0.5 and α=0.8)
for optimising the two objectives. The comprehensive comparisons between
NSGPFL and SPGPFL show that NSGPFL is more effective than SPGPFL
for finding a set of non-dominated solutions for multi-objective feature learn-
ing in face recognition. The results show that NSGPFL can find a better
approximated Pareto front but SPGPFL is able to find more boundary solu-
tions with high diversity. Compared with SPGPFL, NSGPFL finds a set of
solutions with higher classification performance of the training and test sets
when the numbers of features are similar or the same. The results suggested
that both NSGPFL and SPGPFL achieved significantly better or similar
performance than 34 non-GP-based baseline methods, including CNN-based
methods and the methods using well-known manually designed face features.

The experimental results of GPFLWs confirm the difficulty of the simple
combination of the two objectives as the exact range of the number of the
learned features is unknown. In the future, we will further improve the per-
formance of GPFLW by developing an adaptive weighting strategy to auto-
matically adjust the weight when optimising the aggregation objective func-
tion. In this study, we investigated to use the ideas of non-dominated sorting
and strength Pareto in GP-based feature learning algorithms. There are
many other evolutionary multi-objective algorithms, such as decomposition-
based algorithms [60]. In the future, we will develop new multi-objective
GP-based feature learning algorithms to better search for the Pareto front of
non-dominated solutions.

Declaration of Competing Interest

The authors declare no conflict of interest.

Acknowledgements

This work was supported in part by the Marsden Fund of New Zealand
Government under Contracts VUW1509, VUW1615, VUW1913 and VUW1914,
the Science for Technological Innovation Challenge (SfTI) fund under grant
E3603/2903, the University Research Fund at Victoria University of Welling-
ton grant number 223805/3986, MBIE Data Science SSIF Fund under the
contract RTVU1914, and National Natural Science Foundation of China
(NSFC) under Grant 61876169.

34



References

[1] A. K. Jain, S. Z. Li, Handbook of Face Recognition, Springer, 2011.

[2] W. Zhao, R. Chellappa, P. J. Phillips, A. Rosenfeld, Face recognition:
A literature survey, ACM Computing Surveys (CSUR) 35 (4) (2003)
399–458.

[3] C. Ding, J. Choi, D. Tao, L. S. Davis, Multi-directional multi-level dual-
cross patterns for robust face recognition, IEEE Transactions on Pattern
Analysis and Machine Intelligence 38 (3) (2015) 518–531.

[4] J. Lu, V. E. Liong, X. Zhou, J. Zhou, Learning compact binary face
descriptor for face recognition, IEEE Transactions on Pattern Analysis
and Machine Intelligence 37 (10) (2015) 2041–2056.

[5] D. G. Lowe, Distinctive image features from scale-invariant keypoints,
Proceedings of International Journal of Computer Vision 60 (2) (2004)
91–110.

[6] T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary
patterns: Application to face recognition, IEEE Transactions on Pattern
Analysis & Machine Intelligence (12) (2006) 2037–2041.

[7] L. Shen, L. Bai, A review on gabor wavelets for face recognition, Pattern
Analysis and Applications 9 (2-3) (2006) 273–292.

[8] H. Al-Sahaf, Y. Bi, Q. Chen, A. Lensen, Y. Mei, Y. Sun, B. Tran,
B. Xue, M. Zhang, A survey on evolutionary machine learning, Journal
of the Royal Society of New Zealand 49 (2) (2019) 205–228.

[9] Y. Bi, B. Xue, M. Zhang, A survey on genetic programming to image
analysis, Journal of Zhengzhou University (Engineering Science) 39 (06)
(2018) 3–13.

[10] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection, MIT press, Cambridge, 1992.

[11] H. Al-Sahaf, M. Zhang, A. Al-Sahaf, M. Johnston, Keypoints detec-
tion and feature extraction: A dynamic genetic programming approach
for evolving rotation-invariant texture image descriptors, IEEE Trans-
actions on Evolutionary Computation 21 (6) (2017) 825 – 844.

35



[12] M. Turk, A. Pentland, Eigenfaces for recognition, Journal of Cognitive
Neuroscience 3 (1) (1991) 71–86.

[13] P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman, Eigenfaces vs. fish-
erfaces: Recognition using class specific linear projection, IEEE Trans-
actions on Pattern Analysis & Machine Intelligence (7) (1997) 711–720.

[14] D. Yi, Z. Lei, S. Liao, S. Z. Li, Learning face representation from scratch,
arXiv preprint arXiv:1411.7923 (2014).

[15] L. M. Antonio, C. A. C. Coello, Coevolutionary multiobjective evolu-
tionary algorithms: Survey of the state-of-the-art, IEEE Transactions
on Evolutionary Computation 22 (6) (2017) 851–865.

[16] Y. Bi, B. Xue, M. Zhang, Genetic programming with image-related op-
erators and a flexible program structure for feature learning to image
classification, IEEE Trans. Evol. Comput. 25 (1) (2021) 87–101.

[17] J. Avilés, J. Mayo-Maldonado, O. Micheloud, A multi-objective evo-
lutionary approach for planning and optimal condition restoration of
secondary distribution networks, Applied Soft Computing 90 (2020)
106182.

[18] R. Tanabe, H. Ishibuchi, An easy-to-use real-world multi-objective op-
timization problem suite, Applied Soft Computing (2020) 106078.

[19] G. Li, Q. Lin, W. Gao, Multifactorial optimization via explicit mul-
tipopulation evolutionary framework, Information Sciences 512 (2020)
1555–1570.

[20] J. Liang, Y. Liu, Y. Xue, Preference-driven pareto front exploitation for
bloat control in genetic programming, Applied Soft Computing (2020)
106254.

[21] A. M. B. Dourado, E. C. Pedrino, Multi-objective cartesian genetic pro-
gramming optimization of morphological filters in navigation systems
for visually impaired people, Applied Soft Computing 89 (2020) 106130.

[22] L. Shao, L. Liu, X. Li, Feature learning for image classification via multi-
objective genetic programming, IEEE Transactions on Neural Networks
and Learning Systems 25 (7) (2014) 1359–1371.

36



[23] Y. Liang, M. Zhang, W. N. Browne, Figure-ground image segmen-
tation using feature-based multi-objective genetic programming tech-
niques, Neural Computing and Applications 31 (7) (2019) 3075–3094.

[24] Y. Bi, B. Xue, M. Zhang, Automatically extracting features for face clas-
sification using multi-objective genetic programming, in: Proceedings of
the 2020 Genetic and Evolutionary Computation Conference Compan-
ion, 2020, pp. 117–118.

[25] Y. Bi, B. Xue, M. Zhang, An evolutionary deep learning approach using
genetic programming with convolution operators for image classification,
in: Proceedings of IEEE Congress on Evolutionary Computation, IEEE,
2019, pp. 3197–3204.

[26] Y. Bi, B. Xue, M. Zhang, An effective feature learning approach us-
ing genetic programming with image descriptors for image classification
[research frontier], IEEE Computational Intelligence Magazine 15 (2)
(2020) 65–77.

[27] B. Xue, M. Zhang, W. N. Browne, Particle swarm optimization for fea-
ture selection in classification: A multi-objective approach, IEEE Trans-
actions on Cybernetics 43 (6) (2012) 1656–1671.

[28] B. Xue, M. Zhang, W. N. Browne, X. Yao, A survey on evolution-
ary computation approaches to feature selection, IEEE Transactions on
Evolutionary Computation 20 (4) (2015) 606–626.

[29] D. J. Montana, Strongly typed genetic programming, Evolutionary
Computation 3 (2) (1995) 199–230.

[30] M. Wang, W. Deng, Deep face recognition: A survey, arXiv preprint
arXiv:1804.06655 (2018).

[31] B. Bozorgtabar, G. A. R. Rad, A genetic programming-pca hybrid face
recognition algorithm, Journal of Signal and Information Processing
2 (03) (2011) 170.

[32] H. Ibrahem, M. Nasef, M. Emam, Genetic programming based face
recognition, International Journal of Computer Applications 69 (27)
(2013) 1–6.

37



[33] Y. Liang, M. Zhang, W. N. Browne, Genetic programming for evolving
figure-ground segmentors from multiple features, Applied Soft Comput-
ing 51 (2017) 83–95.

[34] W.-J. Choi, T.-S. Choi, Genetic programming-based feature transform
and classification for the automatic detection of pulmonary nodules on
computed tomography images, Information Sciences 212 (2012) 57–78.

[35] M. Zhang, V. B. Ciesielski, P. Andreae, A domain-independent win-
dow approach to multiclass object detection using genetic programming,
EURASIP Journal on Advances in Signal Processing 2003 (8) (2003)
841–859.

[36] I. H. Lee, M. T. Mahmood, Adaptive outlier elimination in image reg-
istration using genetic programming, Information Sciences 421 (2017)
204–217.

[37] B. Peng, S. Wan, Y. Bi, B. Xue, M. Zhang, Automatic feature
extraction and construction using genetic programming for rotating
machine fault diagnosis, IEEE Transactions on Cybernetics, DOI:
10.1109/TCYB.2020.3032945 (2020).

[38] D. Atkins, K. Neshatian, M. Zhang, A domain independent genetic pro-
gramming approach to automatic feature extraction for image classifica-
tion, in: Proceedings of IEEE Congress on Evolutionary Computation,
2011, pp. 238–245.

[39] H. Al-Sahaf, A. Song, K. Neshatian, M. Zhang, Two-tier genetic pro-
gramming: Towards raw pixel-based image classification, Expert Sys-
tems with Applications 39 (16) (2012) 12291–12301.

[40] A. Lensen, H. Al-Sahaf, M. Zhang, B. Xue, Genetic programming for
region detection, feature extraction, feature construction and classifica-
tion in image data, in: Proceedings of European Conference on Genetic
Programming, Springer, Heidelberg, 2016, pp. 51–67.

[41] Y. Bi, B. Xue, M. Zhang, An automatic feature extraction approach to
image classification using genetic programming, in: Proceedings of Inter-
national Conference on the Applications of Evolutionary Computation,
Springer, 2018, pp. 421–438.

38



[42] Y. Bi, B. Xue, M. Zhang, Genetic programming with a new repre-
sentation to automatically learn features and evolve ensembles for im-
age classification, IEEE Transactions on Cybernetics (2020) 1–15, DOI:
10.1109/TCYB.2020.2964566.

[43] A. Vedaldi, B. Fulkerson, Vlfeat: An open and portable library of com-
puter vision algorithms, in: Proceedings of the 18th ACM international
conference on Multimedia, ACM, 2010, pp. 1469–1472.

[44] K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
Nsga-ii, in: Proceedings of International conference on parallel problem
solving from nature, Springer, 2000, pp. 849–858.

[45] E. Zitzler, M. Laumanns, L. Thiele, Spea2: Improving the strength
pareto evolutionary algorithm, TIK-report 103 (2001).

[46] F. S. Samaria, A. C. Harter, Parameterisation of a stochastic model for
human face identification, in: Proceedings of the Second IEEE Work-
shop on Applications of Computer Vision, 1994, pp. 138–142.

[47] K.-C. Lee, J. Ho, D. J. Kriegman, Acquiring linear subspaces for face
recognition under variable lighting, IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence (5) (2005) 684–698.

[48] M. in Research Methods in Psychology of Faces, Psychological image
collection at stirling (pics), http://pics.psych.stir.ac.uk/ (2012).

[49] L. Spacek, Face recognition data, University of Es-
sex. UK. Computer Vision Science Research Projects,
http://cswww.essex.ac.uk/mv/allfaces/index.html (2012).

[50] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning
applied to document recognition, Proceedings of the IEEE 86 (11) (1998)
2278–2324.

[51] Y. Bi, B. Xue, M. Zhang, An automated ensemble learning framework
using genetic programming for image classification, in: Proceedings of
the Genetic and Evolutionary Computation Conference, 2019, pp. 365–
373.

39



[52] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma, Robust face
recognition via sparse representation, IEEE Transactions on Pattern
Analysis and Machine Intelligence 31 (2) (2008) 210–227.

[53] Z.-H. Zhou, J. Feng, Deep forest, National Science Review 6 (1) (2018)
74–86.

[54] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, C. Gagné,
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