
Paper Category: Artificial Life

Chemical Crossover

Hugues Bersini
IRIDIA – Université Libre de Bruxelles
CP 194/6 - 50, av. Franklin Roosevelt

1050 Bruxelles – Belgium
bersini@ulb.ac.be

 Abstract

During chemical reactions, molecules interact to
produce new molecules. Some of the reaction
mechanisms are very close to the way gene
combine to produce new genes. Like the classical
genetic crossover operator, chemical crossover
occurs when two molecules exchange the atomic
material they are composed of. Molecules do so in
order to produce new and more stable molecules.
Several differences exist however between the
genetic crossover and its chemical version.
Molecules are not coded as binary string but as
computational tree instead. Moreover this
computational tree, due to the symmetry in the way
atoms are connected, must be organized in a strictly
ordered way. Following a crossover, the resulting
molecules must be reshaped according to precise
organization rules. The crossover involves the
exchange of single or multiple links. The fitness is
distributed through the molecule such that only
“better” molecules can result from the crossover. In
this paper the chemical crossover and the computer
simulation will be discussed within several
perspectives: chemical, Alife and engineering.
Simulation results will be presented for a simple
chemical reactor composed of four atoms with
different valence, and allowing molecules to
deterministically or randomly interact according to
the single-link-crossover.

1 INTRODUCTION

From its origins, Alife has always taken as fundamental
the conception of software environments able to model

the appearance and the disappearance of complexes
constructed from simpler complexes or basic elements.
This preoccupation leads to a succession of keystones in
the Alife production such as Fontana’s alchemy (1992),
Kauffman’s autocatalytic networks (1993) or Holland’s
echo models (1995). These software environments, like
the major part of work being done (or which should be
done) in the “Alife spirit”, could have three major
applications. Following an adequate parameterization,
they could be used by chemical or biological practitioners
who could find in these “computational platform” a
helpful way to model a particular system. We can then
speak of a set of computational design patterns, or
software shell, which should easily be adapted to the
simulation of a particular chemical or biological
environment. On the other hand, these simulations can
stand on their own and allow the discovery of generic
laws, expressed in mathematics or linguistic terms,
characterizing the behaviour of emergent and complex
systems. For instance, in Kauffman’s simulation of
Boolean nets (1993), some laws establish the stability or
instability of generic networks as a function of the range
of their connectivity. Others set the number of attractors
as a function of the number of units in the network. In our
specific case, these laws could connect, for instance, the
number and the maximal size of possible complexes with
the number of basic elements, with their valence, the
number of sources or any time constant for the
concentration variation, etc. Finally, they can inspire the
development of engineering practices which, by using the
computational power in a simple but fully iterative and
parallel way, can lead to very satisfactory solutions for
highly complex problems.

This work departs from its ancestors by essentially relying
on Object-Oriented (OO) computation instead of
indifferent or ad-hoc computational tricks. Its originality

lies in the way the chemical environment is
conceptualized in a network of classes and their specific
interactions. From its origins, OO computation has
allowed programming to come closer to physical
simulation (the first OO language was indeed called
“simula”) instead of being constrained by the processor
set of elementary instructions. Today there is a trend
which make more and more possible to abstract software
engineering from the processor by naturally using high-
level natural concept making up the problems as the
bricks of the resolution. This goes together with the
increased use of visual modeling language such as UML.
UML proposes a set of well defined diagrams
(transcending any specific OO programming language) to
naturally describe and resolve problems with the high
level concepts inherent in the formulation of the problem.
It is enough to discover the main actors of the problem
and how they mutually relate and interact in time to build
the algorithmic solution of this problem. It is beyond the
scope of this paper to present UML although some of its
symbols will be used to describe our chemical software
environment. A simple and introductory overview of the
UML language can be found in (Eriksson and Penker,
1998). However, by deliberately restricting our use of
UML to the only class diagram, readers familiar enough
with OO programming should not have any problem
understanding this approach.

The second section of the paper will describe and discuss
the basic classes of our chemical software environment,
their main attributes and methods, and how they do relate
to each other i.e. giving a verbal description of what
compose the class diagram. The third section will
describe in more details what is a molecule and how it is
uniquely coded by a computational tree. In this work a
molecule is neither a lambda-calculus expression
(Fontana, 1992), any kind of operator (Dittrich, 1999;
Dittrich and Banzhaf, 1998) nor a binary string (Farmer,
Kauffman, and Packard, 1986; Holland, 1995), but is
taken to be a computational tree, whose vertical and
horizontal organization is strictly defined, due to the
symmetry in the way atoms are connected. These
organizational rules prevent two identical molecules,
obtained as respective outcome of different reaction
histories, to co-exist at any moment in the system. This is
a replica, for our molecular computational tree, of the
notions of “sameness” and “normal form” stressed by
Walter Fontana is his lambda calculus framework
(Fontana, 1992; Fontana and Buss, 1996). Those rules
will be given and illustrated by numerous examples of
molecules in section three.

In chemistry tutorials, it is frequent to find different
names for different types of chemical reactions like:
“decomposition” (when one molecule breaks down into
two or more other simpler ones) or “combination” (when
two molecules combine to form a new one) or “single and
double replacement” (involving exchange of partners),

etc. Based on the precise computational definition of a
molecular identity given in the previous section, the
section four and five will described in details one of these
reaction mechanisms: the chemical crossover. The section
will show how do the molecules exchange their link and
how the products are reorganized. Section six will show
the results of some simulations obtained, departing from
four atoms of valence 1,2 and 4, and which compose four
elementary molecules of two atoms. These four diatomic
molecules will initiate a chain of reactions where two
molecules picked randomly will be able to interact
according to the single-link-crossover reaction. The last
section will show what happens to the simulation when
we allow, besides the metadynamics (leading to an
artificial chemistry said “strongly constructive” (Fontana,
1992; Dittrich, 1999)), the molecule to change their
concentration in time. A simple first-order reaction will
be simulated. Various algorithmic alternatives for the
whole simulation loop will be discussed. Whereas in a lot
of Alife simulations, the dynamics and the metadynamics
are kept separated, a clear interest of this work is their
simultaneous consideration.

2 THE OO CHEMISTRY CLASS
DIAGRAM

A lot of similarities are found with the UML class
diagram presented in an earlier paper (Bersini, 1999). The
Component super class includes as main attributes the
concentration. This concentration changes in time by
natural decrease or increase and as a result of the
reactions and their specific rate, in a way that will be
discussed in section five.

Figure 1: The UML class diagram of the OO Chemistry

Component

concentration

modifyConcentration()

0..*

ChemicalComponent

reactivity
0..*

SourceComponent

0..*0..*

1
1..*

0..*
1

myIdentity

Atom

identity
keys
locks
valence
energyReceptors

1..*

myConnectedAtoms

1

*

1

Link

nbrOfBounds
energy

exchangeLink()

headAtom
1

Molecule

numberOfInstances[]
1

1..*

0..*
1

1
AtomInMolecule

aCopy_AtomInMolecule

duplicate()
compare()

1..*

1

*

1

1

1

The Chemical Component is a subclass of Component
and the super-class of two further sub-classes: Atoms and
Molecules. The Atom is the first sub-class of the
Chemical Component and describes the basic objects of
the whole system. The fundamental attribute is the
valence, which indicates in which proportion this atom
will connect with another one to form a molecule. For
instance an atom with valence 4 (for instance with
identity “1” for reasons to appear later) will connect with
four atoms of valence 1 (for instance with identity “4”) to
form the molecule: 1(4 4 4 4). Connections between
atoms are perfectly symmetric.

The second major attribute is the identity, which, in our
simulation, relates to the value of the variance. Atom with
a high variance will be given a small identity index. This
identity simply needs to be an ordered index (“1”, “2”,
…) for the organization rules shaping the molecular tree
be possible. The way this identity is defined depends on
what we take to be unique to any atom. In chemistry this
identity is given by the atomic mass i.e. the number of
protons and neutrons.

Molecule is the second sub-class of Chemical
Component. The following section will show how are the
molecules structured in a unique way. As shown in the
class diagram, molecules are compounds of atoms. An
attribute called numberOfInstances is a vector of integers
whose elements are the number of times one specific
atom appears in the molecule (i.e. four “4” and one “1” in
the molecule 1(4 4 4 4)). Molecules are trees that are
computationaly structured with pointers of class
AtomInMolecule. Each molecule possesses one and only
one AtomInMolecule pointer called the headAtom and
which can be seen as its “front door” (it would be the “1”
in the molecule 1(4 4 4 4)). As soon as an atom enters into
a molecule, it is transformed into an AtomInMolecule
object. AtomInMolecule relates to atom since the identity
of such an object is the same as its associated atom.
AtomInMolecule are responsible for coding the tree
structure (Aho and Ullman, 1995) of the molecule since
they possess pointer attributes (called
myConnectedAtoms) pointing to a vector of
AtomInMolecule objects.

An addition with respect to the previous work is the class
Link. An object “Link” connects two AtomInMolecule. It
has a given energy so that the weakest link is the first to
break, and a number of bonds. For instance two atoms of
valence 4 will connect (to form a diatomic molecule 4(4))
with a link containing 4 bonds, and one atom of valence 4
will connect with four atoms of valence 1 (1(4 4 4 4)),
each link containing one bond. Link objects intervene in
the unfolding and the coding of the reaction mechanisms.
For instance, one major method associated with the class
Link is “exchangeLink” involved in crossover molecular
reactions.

3 THE MOLECULAR UNIQUE
COMPUTATIONAL STRUCTURE

For facility and space, the following linear notation will
be adopted to describe a molecular computational tree.
One example will be enough to understand it. Take the
following molecule:

1 (1 (4 4 4) 2 (1 (3 3 3)) 2 (2 (3)) 2 (4))

 “1” is an atom with valence 4, “2” is an atom with
valence 2, and “3” and “4” are atoms with valence 1. The
graphic tree version is given in figure 2.

Figure 2: The molecular graphic tree

The following rules need to be respected in order to shape
the molecular tree in a unique way:

Vertically: The highest node, i.e. the front door
of the molecule (the initial “1” in our example of fig.2)
must be the smallest of all the AtomInMolecule objects
composing the tree.

Horizontally: Below any node (i.e. any
AtomInMolecule) the sub-nodes are arranged from left to
right in an increasing order, the smallest to the left, the
greatest to the right.

Clearly these two rules depend on the definition of
“smaller” between two AtomInMolecule nodes. It is
defined in a way described in table 1 for two
AtomInMolecule “n” and “m”. You can see that the
example given in fig.2 indeed respect these rules: the
highest “1” is connected first to a “1” then to a “2”
whereas the other “1”, although first connected to a “1”,
are afterwards connected to atoms with higher identity.
The horizontal rule is equally verified for all connected
atoms.

4 4 4

1

3 3 3

1

2

3

2

2

4

2

1

 if (the identity of n < the identity of m) {the smaller is n }

 else

 if (the identity of n = the identity of m)

{if (n has no connected atom and m has no connected

atom) {the smaller is n}

 else

 if (the number of connected atoms of n > the number of

connected atoms of m) {the smaller is n}

else

if (the number of connected atoms of n = the number of

connected atoms of m)

{for all j connected atoms of n and m

{if (the identity of the jth connected atom of n < the

identity of the jth connected of m) {the smaller is n ,

break-the-loop}

else

{ for all connected atoms of n and m

{ redo recursively the same testing procedure}}}

Table 1: Which is the smaller between the
atomInMolecule n and m.

4 THE CHEMICAL CROSSOVER

Several reaction mechanisms called “decomposition”,
“combination”, “replacement” are repeatedly described in
the chemical literature. Based on our syntactical definition
of what is the molecular identity, we will here only focus
on one common type of chemical reactions called the
chemical crossover, with two instances: the single-link
and the multiple-links. Every time a new molecule is
created as a result of the combination of two molecular
reactants, this new molecule needs to be reshaped
according to the organization rules previously defined
(transformed into its normal form (if borrowing Fontana’s
words (1996)).

- Single-link crossover: the weakest links of each
molecule are exchanged (remember that “1” has
valence 4, “2” has valence 2 and “3” and “4”
have valence 1, and suppose the link “2-3” is
weaker than the link “2-4”).

 1(1) + [4] 2 (3 4) � 1(3 3 3 3) + 1(2(4) 2(4) 2(4) 2(4))

The bold values between brackets are
stoichiometric coefficients needed in order to
balance the chemical equations. Famous

chemical reactions like for instance the
neutralization reaction are typical single-link
crossover, for instance:

 HCl + NaOH � NaCl + H2O

- Multiple-link crossover: several weak links are
homogeneously exchanged between the two
molecules.

 1(4 4 4 4) + [2]2(2) � 1(2 2) + [2]2(4 4)

The linear notation cannot account for the
number of bonds characterizing the links. Here
the 2-2 and the 1-2 links are double bonds.

CH4 + 2O2 � CO2 + 2H2O

5 THE DIFFERENCES WITH THE
GENETIC CROSSOVER

Since the essential similarity between GA and the
chemical simulation presented here lies in the
recombination operator, it is worth discussing in details
the differences existing between the two operators and the
engineering consequences of these differences.

1. Crossover occurs between computational trees
instead of binary strings, and by links exchange (see
fig.3). The recombination of individuals coded in a
different way than binary string has become very
common in the GA community. Indeed recombining
computational trees is at the basis of genetic
programming (Koza, 1992). Crossover reaction
between molecules is more akin to lisp automated
programming than simple GA.

Figure 3: a single-link-crossover

2. Chemical valence plays the following role. If a link
containing n bonds exchange with a link containing
m bonds, the new individuals will be connected by
n/m links:

1(1) + [4]3(4) � 1(3 3 3 3) + 1(4 4 4 4)

There is no engineering application that could
positively benefit from this chemical fact.

 1

 2

 3

 4

 2

 3

 1

 4

+ =

3. Like seen previously, the crossover can involve more
than one links in one of the two molecules, to become
a multiple-links crossover. This type of crossover can
equally be found in engineering applications where
the repetition of identical schema to be exchanged at
one go is not impossible.

4. A major aspect in our simulation is the reshaping of
the molecular trees in a strictly specified order after
the recombination has occurred. In figure 3, the
second molecule obtained after the crossover is not
3(2) but 2(3) to respect the vertical ordering rule. No
practice of genetic algorithm raises this problem of
re-transforming the obtained individual in a canonical
form. Every obtained individual exists in its resulting
form. However engineering problems where the
solutions present important symmetry could be
found, requiring their subsequent reshaping to avoid
repetition and redundancy. Binary string and lisp
codes have no problem of symmetry but trees or
more sophisticated computational structure could
have.

5. A final aspect is the way fitness and selection enter
into the simulation. In real chemistry only reaction
that lower the energy (assimilated here with a fitness
increase) of the products as compared with the
energy of the reactants are possible. In fact the fitness
increase is a basic condition for the reaction to occur.
It is akin to a form of hill-climbing where only
improvement is possible. As a matter of fact
molecules are structured in such a way that it is easy
to pinpoint the material to exchange (here the links)
in order to increase the fitness or decrease the energy.
Moreover molecule seem to present weak epistatic
interactions because the contribution of the links to
the global energy of the molecule can be
individuated. With respect to classical GA, this could
drive to algorithmic versions where the fitness is
distributed among the schema and whenever a
recombination occur, only the schema contributing
the most to the fitness would be recombined. Notice
that this type of recombination exists and has been
already discussed in the GA community (Baluja and
Caruana, 1995). Obviously the weaker the epistasis
the more meaningful this type of recombination
appear.

6 SIMULATING THE SINGLE-LINK
CROSSOVER

We now show the results obtained by running the
chemical simulators with the four atoms “1” (valence 4),
“2” (valence 2), “3” (valence 1), “4” (valence 1) and the
four basic diatomic molecules: 1(1), 2(2), 3(3), 4(4).

The simulator runs in the following way:

1. Take randomly two molecules
2. Make them interacting according to the

single-link-crossover. The link to exchange
in each molecule is the weakest link (each
link receives a random energetic value).

3. Generate the new molecules in their
organized form only if they do not already
exist in the system.

A list of some firstly obtained molecules is given below:

1 (2 2) , 1 (3 3 3 3) , 2 (3 3) , 1 (4 4 4 4) , 1 (1 (2)
1 (2)) , 1 (2 3 3) , 1 (2 4 4) , 1 (1 (2) 2) , 1 (1 (3 3
3) 1 (3 3 3) 1 (3 3 3) 1 (3 3 3)) , 1 (2 (1 (3 3 3)) 3
3 3), 1 (1 (1 (3 3 3) 2) 3 3 3), 1 (2 (3) 2 (3) 2 (3) 2
(3)) ,1 (2 (3) 2 (3) 2) , 1 (2 (3) 3 3 3) , 1 (1 (4 4 4
) 1 (4 4 4) 1 (4 4 4) 1 (4 4 4)) , 1 (2 (1 (4 4 4)) 4 4
4) , 1 (1 (1 (4 4 4) 2) 4 4 4) , 1 (1 (4 4 4) 4 4 4) , 1 (
2 (4) 2 (4) 2 (4) 2 (4)) , 1 (2 (4) 3 3 3) , 1 (2 (4)
4 4 4) , 1 (1 (1 (2)) 1 (1 (2))) , 1 (1 (2) 3 3) , 1 (1
(2) 4 4) , 1 (1 (1 (3 3 3) 1 (2)) 3 3 3) , 1 (1 (1 (4 4
4) 1 (2)) 4 4 4)

It is worth verifying the correct vertical and horizontal
organization of all the molecular trees to see the rules
presented in the section three in action.

After several seconds of simulation you easily get
molecules long of 53 atoms like the following one:

1 (1 (1 (3 3 3) 1 (3 3 3) 1 (3 3 3)) 1 (1 (3 3 3)
1 (3 3 3) 1 (3 3 3)) 1 (1 (3 3 3) 1 (3 3 3) 1 (3 3 3))
1 (1 (3 3 3) 1 (3 3 3) 1 (3 3 3)))

or 101 atoms like:

1 (1 (1 (3 3 3) 1 (3 3 3) 1 (1 (1 (3 3 3) 1 (3 3 3
) 1 (3 3 3)) 1 (2))) 1 (1 (3 3 3) 1 (3 3 3) 1 (1 (1 (3
3 3) 1 (3 3 3) 1 (3 3 3)) 1 (2))) 1 (1 (3 3 3) 1 (3 3
3) 1 (1 (1 (3 3 3) 1 (3 3 3) 1 (3 3 3)) 1 (2))) 1 (1 (
3 3 3) 1 (3 3 3) 1 (1 (1 (3 3 3) 1 (3 3 3) 1 (3 3 3)) 1
(2))))

You could substitute “1” with “C”, “2” with “O” and “3”
with “H” in order to obtain realistic organic molecules.

7 THE DYNAMICS COMES INTO PLAY

Every chemical component, and thus molecule, is
assigned an important attribute: its concentration
(designated by “conc()” in the following) which can
change in time. In the next simulations to be shown, like
for classical chemical kinetics, the molecular
concentration will change as the sole effect of the

reactions. For instance in a first-order reaction whenever
an interaction takes place between two molecules A and B
to give two new products E and F:

A + B � E + F

conc (E) = conc (F) � k*conc(A)*conc(B)

if E and F don’t exist already. k is called the reaction
rate.

conc (E) � conc (E) + k*conc(A)*conc(B)

if E already exists (the same for “F”)

And in all cases:

conc(A) � conc(A) – k*conc(A)*conc(B)
conc(B) � conc(B) – k*conc(A)*conc(B)

Take the elementary case of a chemical reaction involving
only two one-valence atoms “3” and “4” composing two
diatomic molecules 3(3) and 4(4), and interacting by
single-link-crossover:

3(3) + 4(4) � [2] 3(4) (the [2] is the
stoichiometric coefficient)

Figure 4: Time evolution of the concentration of the three
interacting molecules: up – in the reversible case, down – in the

irreversible case.

In figure 4, you can see two plots showing the
concentration evolution in time of the three molecules
3(3), 4(4) and 3(4): The first plot in the case of a
reversible reaction, the second one in the case of an
irreversible reaction.

These two plots experimentally obtained could be
analytically obtained by resolving in this case the simple
differential equations. While the analytical road is
possible for very simple reaction mechanisms, it is far to
be the case for much more complicated reaction schemes
involving a lot of intermediaries. For these reactions,
rapidly leading to a formidable analytical complexity, one
is forced to resort to computer simulations. The complete
simulation of our chemical systems can take three forms.
The first is random interaction shown in table 2.

Ad infinitum do {
 - time = time + 1
 - Select randomly one molecule A
 - Select randomly one molecule B
 - Make the reaction (A,B) according to a specific
reaction scheme
 - If the products of the reaction already exists, increase
their concentration, if not add them in the system with
their specific concentration.
 - Decrease the concentration of A and B
}

Table 2: The random interaction algorithm

In the case of several interacting molecules, figure 5
shows the evolution in time of 5 molecules among others.

Figure 5: Time evolution of the concentration of the interacting
molecules for the random interaction algorithm.

Now the random interactions, although commonly found
in a lot of artificial chemistry schemes (Fontana, 1992;
Dittrich, 1999) does not make a lot of sense if the
molecules are not single chemical objects but are
concentration of chemical objects. In this case, the
reaction rate “k”, to some extent, already account for the
randomness of the molecular collisions. It becomes more
natural to resort to a deterministic type of simulation such
as indicated in table 3.

0

50

100

150

200

250

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

time

co
n

ce
n

tr
at

io
n

3(3)

4(4)

3(4)

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40

time

co
n

ce
n

tr
at

io
n

3(3)
4(4)
3(4)

t i m e

lo
g

(c
o

n
ce

n
tr

at
io

n
)

m o l e c u l e 5

m o l e c u l e 4

m o l e c u l e 3

m o l e c u l e 2

m o l e c u l e 1

Ad infinitum do {
- time = time + 1
- For all molecules i of the system

For the molecules j (= 1 to i) of the system
{ - Make the reaction (i,j) according to a specific

 reaction mechanism
 - If the products of the reaction already exist, increase
their concentration, if not add them in the system with
their specific concentration.
 - Decrease the concentration of i and j }}

Table 3: The deterministic interaction algorithm

Although the best algorithmic version, the problem with
such an algorithm, is that everything rapidly exponentially
explodes so that after 4 or 5 time increments, the
simulation is captured in a nearly infinite loop (at time
t=0 : 10 reactions, at t=1: 55 reactions , at t=2:1540
reactions etc.).

A final algorithmic compromise is still deterministic but
takes the time increment inside the double loop such that
a reaction occurs at every time step, with nevertheless the
sequence of molecular interaction kept fixed. The time
evolution of some molecules is shown in figure 6.

Figure 6: Time evolution of the concentration of seven
molecules for the deterministic interaction algorithm

Interestingly enough, this version of the algorithm allows
the detection of chaining reaction (which is related with
the Fontana’s level 1 of self-maintaining molecular
system (1992)). As a matter of fact, the concentration of
certain molecules seems to oscillate in time. This is only
possible if some reaction intermediaries are first
consumed then regenerated as products of subsequent
reactions. Fully self-maintaining molecular loops in
which all molecules are the products of some interaction
involving other molecules can be distinguished from
weaker chaining reaction in which only some of the
molecules are obtained as a consequence of reactions.

However the observed cycles are nothing but artifactual
effect of the version of the algorithm. They would
naturally disappear to give fixed point in the more exact

version of the algorithm (version 2). Indeed, the figure 4,
in the reversible case, the smallest version of a molecular
self-maintaining system, shows clearly the appearance of
fixed point. This computer artifact reminds a similar
effect and related discussion concerning “the
asynchronous versus synchronous updating” found in the
cellular automata literature (Bersini and Detours, 1994).

So while chaining reactions and self-maintaining
molecular systems are certainly common in the whole
reactor, their precise detection could be harder among the
multitude of fixed points that would allow the simulation
of the whole system, provided much computing power is
available.

8 CONCLUSIONS

The kind of computational chemistry being investigated
in this work lies at an abstraction level that might allow
the simultaneous fulfillment of two of the main objectives
of Alife. A first one is to offer chemists a computational
platform, which following an adequate parameterization,
could help them to model and understand the evolution of
a particular chemical system. Indeed a large number of
key aspects remain to be explored and tuned in the
simulation among which:

- the value of the reaction rates
- whenever two molecules collide, which reaction

mechanism takes place and which links in each
molecule are involved in this reaction

- the kind of relationship that exists between the
reaction rates and the composition of the
molecules involved in the reaction.

- the dependence of the reactions on the energy
sources

Getting all this missing knowledge, it might be possible to
simulate in a distant future the historical Miller’s
experiment aiming at replicating the origin of life. This
could shed some new light on the length of the organic
molecules obtained by Miller, of surprising complexity
but still so far from the complexity of a DNA.

On the other hand, Alife simulations can stand on their
own and lead to the discovery of generic laws
characterizing the behavior of complex systems. When
concerned with chemistry, the best representative of this
research road is Walter Fontana (1992, 1996) who is
trying to develop a pure mathematical abstraction
allowing to better formalize the appearance of interesting
dynamic and self-maintaining structures. His assimilation
of molecules with operators of the lambda calculus, and
reactions with molecules operating one on another seems
to be unrelated with this work.

0

1

2

3

4

5

1 13 25 37 49 61 73 85 97 10
9

12
1

13
3

14
5

15
7

16
9

18
1

19
3

time

co
n

ce
n

tr
at

io
n

However, it is possible that the algorithmic choices made
in our simulation (molecules = computational trees and
reactions = symmetric combinatorial exchanges or
combinatorial re-organization of the trees), closer to real
chemistry, could still appear as a possible instance of
Fontana’s mathematical developments. If this is the case,
we could have for the same price a chemical
computational platform benefiting from his mathematical
solid progress while able to present a friendly interface to
chemical practitioners.

Finally in a more engineering perspective, chemistry
seems to show aspects already found in various GA or GP
applications like the computational trees recombination or
the distribution of the fitness on the schema (in our case
the links) to be recombined. The reshaping of the obtained
individuals after crossover could appear in engineering
applications where the solutions, like molecules, present
strong symmetry in their organization.

References

1. Aho V. A., Ullman, J.D. (1995): Foundations of
Computer Science – Computer Science Press - W.H.
Freeman and Company – New York.

2. Baluja, S. and R. Caruana (1995). Removing the
Genetics From the Standard Genetic Algorithm. In
Proceedings of the Twefth International Conference
on Machine Learning, ML-95, Edited by A. Prieditis
and S. Russel, pp. 38-46. Palo Alto, CA: Morgan
Kaufman.

3. Bersini, H. (1999): Design Patterns for an Object-
Oriented Computational Chemistry – In proceedings
of the 5th European Conference on Artificial Life
(ECAL’99) – Eds : Floreano, Nicoud, Mondada –
Springer – Verlag - pp. 389-398

4. Bersini, H. and V. Detours: Asynchrony induces
stability in cellular automata based models – In
proceedings of Artificial Life V – Eds : Brooks and
Maes – MIT Press – pp. 382 – 387.

5. Detours, V., Bersini, H., Stewart, J. and Varela, F.
(1994): Development of an Idiotypic Network in
Shape Space – Journal of Theor. Biol. (170), 401-404
(1994)

6. Dittrich, P. and Banzhaf, W. (1998): Self-evolution in
a constructive binary string system. Artificial Life,
4(2):203-220.

7. Dittrich, P. (1999): Artificial Chemistries – Tutorial
held at ECAL’99 – European Conference on
Artificial Life 13-17 September, 1999 – Lausanne,
CH.

8. Eriksson, H-E, Penker, M. (1998): UML Toolkit –
John Wiley and Sons

9. Farmer, J.D., Kauffman, S.A. and Packard, N.H.
(1986) Autocatalytic reaction of polymers. Physica
D, 22:50-67.

10. Fontana, W. (1992): Algorithmic Chemistry. In
Artificial Life II: A Proceedings Volume in the SFI
Studies in the Sciences of Complexity (C.G. Langton,
J.D. Farmer, S. Rasmussen, C. Taylor, eds.), vol. 10.
Addison-Wesley, Reading, Mass (1992)

11. Fontana, W. and L.W. Buss (1996). The barrier of
objects: From dynamical systems to bonded
organization in Casti, J. and Karlqvist, A., editors,
Bondaries and Barriers, pages 56-116. Addison-
Wesley.

12. Holland, J.H. (1995): Hidden Order – How
adaptation builds complexity – Helix Books –
Addison Wesley Publishing Company (1995)

13. Kauffman, S. (1993): The Origins of Order: Self-
Organization and Selection in Evolution – Oxford
University Press

14. Koza, J.R. (1992) Genetic Programming. On the
Programming of Computers by means of Natural
Selection. Cambridge, MA MIT Press

