Skip to main content

Advertisement

Log in

Mathematical models of climate evolution in Dobrudja

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The understanding of processes that occur in climate change evolution and their spatial and temporal variations are of major importance in environmental sciences. Modeling these processes is the first step in the prediction of weather change. In this context, this paper presents the results of statistical investigations of monthly and annual meteorological data collected between 1961 and 2007 in Dobrudja (a region situated in the South–East of Romania between the Black Sea and the lower Danube River) and the models obtained using time series analysis and gene expression programming. Using two fundamentally different approaches, we provide a comprehensive analysis of temperature variability in Dobrudja, which may be significant in understanding the processes that govern climate changes in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Notes

  1. ECJ is an open-source evolutionary computation research system developed in Java at George Mason University’s Evolutionary Computation Laboratory and available at http://cs.gmu.edu/˜eclab/projects/ecj/.

References

  • Aksoy H, Gedikli A, Erdem Unal N, Kehagias A (2008) Fast segmentation algorithms for long hydrometeorological time series. Hydrol Process 22(23):4600–4608

    Article  Google Scholar 

  • Baeck T, Fogel DB, Michalewicz Z (1997) Handbook of evolutionary computation. CRC, Boca Raton

    Book  Google Scholar 

  • Baltagi BH (2008) Econometrics. Springer, Berlin

    Google Scholar 

  • Bărbulescu A, Băutu E (2009) ARIMA and GEP models for climate variation. Int J Math Comput (in press)

  • Bărbulescu A, Ciobanu C (2007) Mathematical characterization of the signals that determine the erosion by cavitation. International Journal Mathematical Manuscripts 1(1):42–48

    Google Scholar 

  • Brockwell P, Davies R (2002) Introduction to time series. Springer, New York

    Google Scholar 

  • Buishard TA (1984) Tests for detecting a shift in the mean of hydrological time series. J Hydrol 73:51–69

    Article  Google Scholar 

  • Charles SP, Bates BC, Smith IN, Hughes JP (2004) Statistical downscaling of observed and modeled atmospheric fields. Hydrol Process 18(8):1373–1394

    Article  Google Scholar 

  • De Gooijera JG, Hyndman RJ (2006) Twenty five years of time series forecasting. Int J Forecast 22(3):443–473

    Article  Google Scholar 

  • Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2):87–129

    Google Scholar 

  • Ferreira C (2006) Gene expression programming: mathematical modeling by an artificial intelligence. Springer, Berlin

    Google Scholar 

  • Gourieroux C, Monfort A (1990) Series temporelles et modeles dynamiques. Economica, Paris

    Google Scholar 

  • Hubert P, Carbonnel JP (1993) Segmentation des series annuelles de debits de grands fleuves africains. Bull Liaison Com Interafr Étud Hydraul 92:3–10

    Google Scholar 

  • IPCC (2008) Climate Change and Water, IPCC Technical Paper VI, June 2008, Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 210 pp., Available at http://www.ipcc.ch/ipccreports/technical-papers.htm

  • Jones PD, Wigley TML, Wright PB (1986) Global temperature variations between 1861 and 1984. Nature 322:430–434

    Article  Google Scholar 

  • Jones PD (1988) Hemispheric surface air temperature variations: recent trends and an update to 1987. J Climate 1:654–660

    Article  Google Scholar 

  • Jones PD, Horton EB, Folland CK, Hulme M, Parker DE (1999) The use of indices to identify changes in climatic extremes. Clim Change 42:131–149

    Article  Google Scholar 

  • Khronostat 1.1 software. Available at http://www.hydrosciences.org

  • Lee AFS, Heghinian SM (1977) A shift of the mean level in a sequence of independent normal random variables—a Bayesian approach. Technometrics 19(4):503–506

    Article  Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT, Cambridge

    Google Scholar 

  • Maftei C, Gherghina C, Bărbulescu A (2007) A computer program for statistical analyzes of hydro-meteorological data. International Journal Mathematical Manuscripts 1(1):95–103

    Google Scholar 

  • Maftei C, Bărbulescu A (2008) Statistical analysis of the climate evolution in Dobrudja region. Lecture Notes in Engineering and Computer Sciences II:1082–1087

    Google Scholar 

  • Michalewicz Z, Schmidt M, Michalewicz M, Chiriac C (2006) Adaptive business intelligence. Springer, New York

    Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28(2):126–135

    Article  Google Scholar 

  • Seskin DJ (2007) Handbook of parametric and nonparametric statistical procedures. CRC, Boca Raton

    Google Scholar 

  • Taylor W (2000) Change-Point Analyzer 2.0 shareware program. Taylor Enterprises, Libertyville. Available at http://www.variation.com/cpa

  • Wagner N, Michalewicz Z, Khouja M, Mcgregor RR (2007) Time series forecasting for dynamic environments: the DyFor genetic program model. IEEE Trans Evol Comput 11(4):433–452

    Article  Google Scholar 

Download references

Acknowledgements

This paper was supported by grant ID_262 and grant PNCDI2 NatCOMP 11028/2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Bărbulescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bărbulescu, A., Băutu, E. Mathematical models of climate evolution in Dobrudja. Theor Appl Climatol 100, 29–44 (2010). https://doi.org/10.1007/s00704-009-0160-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-009-0160-7

Keywords

Navigation