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ABSTRACT 
 
According to the Department of Defense, over 
10 million acres of land in the US need to be 
cleared of buried unexploded ordnance (UXO). 
Worldwide, UXO injures thousands each year. 
Cleanup costs are prohibitively expensive due to 
the difficulties in discriminating buried UXO 
from other inert non-UXO objects. Government 
agencies are actively searching for improved 
sensor methodologies to detect and discriminate 
buried UXO from other objects. This paper 
describes the results of work performed on data 
gathered by the GeoPhex GEM-3 
electromagnetic sensor during their attempts to 
discriminate buried UXO at the U.S. Army 
Jefferson Proving Ground (JPG). We used a 
variety of evolutionary computing (EC) 
approaches that included genetic programming, 
genetic algorithms, and decision-tree methods. 
All approaches were essentially formulated as 
regression problems whereby the EC algorithms 
used sensor data to evolve buried UXO 
discrimination chromosomes. Predictions were 
then compared with a ground-truth file and the 
number of false positives and negatives 
determined. 
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1 INTRODUCTION 
 
At GECCO 2004, Francone et al [1] presented a 
late breaking paper titled “Discrimination of 
Unexploded Ordnance from Clutter using Linear 
Genetic Programming”. Later last year, we 
attempted to attack the same problem using a 
variety of evolutionary computing approaches. 
 
Francone et al’s main result was based on data 
from the U.S. Army Jefferson Proving Ground 
Phase V (JPG-V) tests. Unfortunately, to date we 
have not been able to obtain the same data sets 
(sensor data plus ground truth data). In lieu of 
that data, we accessed data from an earlier 
experiment at the same location called JPG 
Phase IV (JPG-IV). This data is available at 
http://www.eoir.com/uxo/JPG4.htm.  
 
We wanted to apply genetic programming and 
other similar techniques to determine how well 
our independently derived results compared with 
those reported earlier by the original JPG-IV 
participants.  
 
2 PROBLEM DESCRIPTION 
 
Ten vendors participated in the original JPG-IV 
experiment. Participants included private 
companies and government groups, as well as 
combinations of both. Several participants used 
sensors of their own design while some used 
those designed by others. Three main types of 
sensor technologies were available: magnetic 
(M), electromagnetic (EM), and ground 
penetrating radar (GPR). From the available 
data, we chose to re-examine the data obtained 
by the GeoPhex Limited GEM-3 sensor. This 
sensor takes data using electromagnetic coils. 
We chose this data set because it seemed to have 
enough density of data to allow for the 



development of adequate discrimination 
chromosomes, yet enough variety to challenge 
the technology. 
 
In this JPG-IV experiment, a total of 160 targets 
were catalogued and deliberately buried 
underground: 50 ordnance and 110 other 
assorted “fragments.” A flag marked the position 
of all ordnance and fragments. Vendors did not 
know what kind of object was buried beneath the 
flags. Targets varied in size, mass, and the depth 
at which they were buried. Indeed, target weight 
varied over a scale of 450 to 1 (20 mm to 155 
mm ordnance). Readings were taken at 25 grid-
points separated by 9 inches and with the center 
grid-point directly over the target. Each reading 
involved 8 different frequencies, ranging from 30 
to 23,970 Hz. The in-phase (I) and quadrature 
(Q) components were measured at each point and 
frequency. This yielded 400 measurements for 
each target (25 points x 8 frequencies x 2 
components) to use with our genetic software 
program. A ground truth file was also available. 
It listed not only the ordnance type, but also its 
depth, length, weight, azimuth, declination, and 
other properties. Figure 1 below provides 
examples of the ordnance buried in the JPG-IV 
test. 
 

3 CHROMOSOME ENCODING  
 
Our first task in the processing of the available 
sensor data was to obtain a set of “features” or 
“operators” that could be used to develop the 
chromosomes. In a problem of this nature, these 
are not obvious. Creativity is required to 
determine what might work at extracting 
information useful for discrimination purposes. 
For example, the average of the I and Q values 
over all sensor measurement points was one such 
feature. Some of these operators were 
parameterized, taking one or more arguments, 
typically using the frequency as the parameter. 
An early attempt to simply use the raw data only 
and evolve the features did not work as well as 
the use of such pre-computed features. Some of 
the features we selected were based on what we 
deemed to be reasonable physics models, 
although we are by no means subject matter 
experts. Other features were rather capricious, 
such as one that measures how the spatial 
gradient of signal intensity rotates with 
frequency. The idea was to let the selection 
process weed out poor operators. 
 
In addition to the derived operators, we also 
allowed a variety of arithmetic operators such as 
addition, subtraction, exponentiation, logarithms, 
as well as some conditionals (if-then-else, 
greater than, etc.). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Examples of ordnance buried in the JPG-IV test 
 



Figure 2 illustrates the difficulty in 
discrimination of these buried objects. This 
figure shows 3 charts of the in-phase (I) and 
quadrature (Q) sensor readings as a function of 
frequency for each of the 25 grid-points where 

measurements were taken. The bold lines are for 
the point directly at the flag in the center of the 
grid. Note that the first chart is for a mortar 
(ordnance) and the latter two are for fragments 
although the first two are far more similar! 

 
 
 
 
 
 
 
 
 
 
 
 
 

        Target-3 (Mortar)                    Target-4 (Fragment)                 Target-36 (Fragment) 
 

Figure 2. Three plots of I and Q as a function of frequency 
 

Data for each target could be examined 
individually using this analysis tool that we 
called the “target explorer”. The target explorer 
provided some visual insight as to possible 
features that might be used for discrimination.  
 
4 GENETIC PROGRAMMING 
ENCODING 
 
In terms of our discrimination results, the most 
successful approach was to use genetic 
programming (GP). We encoded the 
chromosomes as linear strings of operators 
(genotype) composed of several genes. For GP 
we used chromosomes of 10 genes, with 2 genes 
each encoding for depth, length, and weight, and 
4 genes encoding for discrimination, that is, 
determination of whether the target represented 
ordnance or not. Each pair of genes was simply 
evaluated over the sensor data for a target. This 
evaluation produced two numbers that were 
added to yield an estimate for depth, length, and 
weight. For the ordnance discrimination the last 
four genes were combined in various ways 
(arithmetic and logical). The best results turned 
out to be simply their sum. The sum was 
compared to a reference number (typically 1.0) 
and if greater, the target was presumed to be 

ordnance, otherwise it was classified as non-
ordnance. 
 
5 GENETIC ALGORITHM 
ENCODING 
 
A GA encoding was also attempted in the form 
of a single large gene, comprising a constant 
weight value for each of the available features. 
The fitness Fpn (see later) was then simply the 
linear weighted sum of features as compared to a 
reference value. The result was quite inferior to 
GP, but due to the nature of the features selected, 
this was to be expected. We may yet return to 
GA to combine the features in a less-linear way. 
At present, we are not using this approach. 
 
6 DECISION TREE ENCODING 
 
Based on a discrimination approach described in 
Freitas [2], we also encoded the chromosome as 
a decision tree (DT) problem. It offered the 
advantage of much faster evaluation since the 
result of evaluating the first gene determined 
which half of the remaining genes should to be 
evaluated. The balanced binary tree resulted in 
only logarithmically increasing evaluations when 
compared with the normal GP approach. Leaf 
nodes then answered whether a target was 



ordnance or not. The DT approach also proved to 
be inferior to GP and suffered more strongly 
from overfitting, a problem discussed in the next 
section. 
 
7 THE OVERFITTING PROBLEM 
 
One of the most troubling problems we had to 
overcome was the development of chromosomes 
that would show excessive overfitting to the 
data. In the total of 50 ordnance objects in the 
data set, we had many different types and sizes. 
Weight varied from 0.1 kg (20 mm high 
explosive) to over 43 kg (155 mm high explosive 
with lifting lug). The data contained only 3 or 4 
occurrences of each type of item. Thus it was 
very easy for the GP to evolve some almost 
irrelevant expression that just happened to match 
those very few instances. Thus, that chromosome 
would only fit that data set: the chromosome 
would be overfit. 
 
To avoid the problem of overfitting we divided 
the whole 160-target data set into three groups: a 
Training set, a Test set, and a Validation set. 
Typically these sets included 50%, 40%, and 
10% of the data, respectively. Great care was 
taken to have a similar distribution of all target 
types in all three data sets. The chromosomes 
were evolved using the Training data set only. 
Chromosome fitness was tested against the Test 
set and the best result selected. Finally, we report 
the score as this chromosome was applied to the 
previously unseen validation set. To ensure that 
we obtained a representative chromosome, each 
10% of objects in the Validation set were held 
back. As a result, each Validation set did not 
overlap with any other and the entire data set was 
covered and used in the final evaluation (in a 
jackknife technique). 
 
The classification problem is aggravated by the 
fact that the classification was binary: ordnance 
or non-ordnance (O/NO). Both types of 
classification exhibited very large variations in 
mass and length, as well as the depth at which 
they were buried. To alleviate this problem we 
included a measure of confidence in the result as 
a magnitude adjustment. When used, this 
adjustment considered the value of the 
chromosome as compared to the reference value. 
Thus, a value of 1.0002 when the chromosome 
was applied to a particular target would be a 
determination of ordnance (since it exceeds the 
reference value of 1.0), but the confidence level 

is very low, so its effect on the overall fitness 
was diminished. Similarly we looked at the 
signal strength as another sort of magnitude 
adjustment. When the overall signal strength was 
very weak, we diminished its effect on fitness 
because it was hardly anything more than noise. 
We would rather misclassify such ordnance than 
have an adverse affect on training on targets with 
stronger signals. 
 
In all cases a “dig list” was produced listing 
UXO digging priority. The items with most 
confidence (highest values) almost certainly 
were ordnance, while the ones with lowest 
values were almost certainly non-ordnance. It 
was those intermediate values that were more 
likely to be in error. 
 
8 GENOTYPE 
 
We use a genotype encoding called Karva that 
follows Ferreira [3, 5-6]. We also sometimes use 
other encodings such as Reverse Polish Notation 
(RPN), but have found Karva usually superior. 
In brief, if one views the tree structure for an 
expression, then reads the operators and 
variables in a top to bottom, left to right order, 
the resulting string of symbols is a Karva 
expression. Thus each gene is simply a linear 
string of operators and features (variables). 
These genes are then “compiled” for maximum 
speed. 
 
9 FITNESS FUNCTION FOR GP 
 
Fitness is computed by evaluating the Karva 
expressions to produce a number which is then in 
turn compared to a fixed reference value to 
decide whether the target is ordnance or not. This 
decision is then compared with the ground truth 
file. If the decision is incorrect, the result is a 
false positive (FP) or false negative (FN). Then 
the fitness value to be minimized is given 
through the following two equations: 
 

Fpn = FN + R*FP         (1) 
 
F = DLWfitness + Fpn      (2) 

 
In equation (1) Fpn indicates the total number of 
UXO false positives and false negatives. It is a 
number we want to minimize. This means that 
FN and FP give the number of misclassified 
buried objects. FN designates the targets 



classified as non-UXO that in fact were UXO. In 
contrast, FP corresponds to the number of targets 
classified as UXO when they really did not 
belong in that category. R is a coefficient that 
weighs the relative importance of FN to FP. 
Experts in charge of clearing an area of buried 
UXO want to avoid as much as possible leaving 
any genuine UXO buried in place. Thus, they 
give greater importance to discrimination 
algorithms that reduce FN. The coefficient R is 
always less than 1 to accomplish this task. 
 
Although we concentrate on Fpn, we typically 
evolve on the full fitness function F given by 
equation (2). F, which is to be minimized, 
includes a measure of the error in depth, length, 
and weight, designated as DLWfitness. We 
typically set the Fpn score with a much higher 
relative importance so that DLWfitness may not be 
the predominant feature. The genes for O/NO 
have reference to the DLWfitness gene’s values as 
additional operators. They were added to put a 
bit of selection pressure on discovering good 
measures of these properties. 
 
10 PARAMETERS 
 
Our genetic programming software provides a 
very large set of adjustable parameters, including 
several types of mutation, recombination, 
population manipulation operations, selection 
pressure, and others. There are approximately 85 
adjustable items in total. Through experience we 
can usually establish a reasonable set of values 
for starting the evolution, and then refining the 
set by making many runs. 
 

We typically used a basic mutation rate of about 
3%, (µ, λ) selection, a selection pressure of about 
25% (100% is pure rank selection, 0% is pure 
random selection), a population of a few hundred 
chromosomes, and computation duration of 6-12 
minutes. Ultra-long computation durations of 10 
days or so generally were inferior due to 
overfitting. 
 
11 RESULTS 
 
Figure 3 on the next page shows our results, with 
FN and FP scores. This chart illustrates a single 
value for most vendors and shows how they 
fared on the Jefferson Proving Ground Area IV 
test range. We show three of our results. The 
three results vary due to the use of a different 
ratio parameter R that specifies the relative 
importance of reducing FN and FP. The shaded 
rectangle in the upper right corner is the “region 
of desired operational performance” according to 
[4]. This rectangle corresponds to a maximum of 
5% FN (ordnance left in the ground) and 25% FP 
(non-ordnance unnecessarily to be dug up). The 
plotted FN and FP scores are fractional due to 
averaging a large number of separate runs. 
 
12 CONCLUSION 
 
Although we have been unable to show an 
apples-to-apples comparison with the results of 
Francone [1] due to lack of access to that data 
set, we have validated their use of EC in 
addressing this type of classification problem. 
Furthermore we have expanded thereon by 
providing additional information such as 
predicted burial depth, length, and weight as well 
as a confidence level in our predictions. 

 



 
 

Figure 3. SMDC/ARC Results 
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