
Automated Shape Composition Based on Cell Biology and
Distributed Genetic Programming

Linge Bai
lb353@cs.drexel.edu

Manolya Eyiyurekli
me52@cs.drexel.edu

David E. Breen
david@cs.drexel.edu

Department of Computer Science
Drexel University

ABSTRACT
Motivated by the ability of living cells to form specific shapes
and structures, we present a computational approach using
distributed genetic programming to discover cell-cell inter-
action rules for automated shape composition. The key con-
cept is to evolve local rules that direct virtual cells to pro-
duce a self-organizing behavior that leads to the formation
of a macroscopic, user-defined shape. The interactions of
the virtual cells, called Morphogenic Primitives (MPs), are
based on chemotaxis-driven aggregation behaviors exhibited
by actual living cells. Cells emit a chemical into their en-
vironment. Each cell responds to the stimulus by moving
in the direction of the gradient of the cumulative chemical
field detected at its surface. MPs, though, do not attempt
to completely mimic the behavior of real cells. The chemical
fields are explicitly defined as mathematical functions and
are not necessarily physically accurate. The functions are
derived via a distributed genetic programming process. A
fitness measure, based on the shape that emerges from the
chemical-field-driven aggregation, determines which func-
tions will be passed along to later generations. This paper
describes the cell interactions of MPs and a distributed ge-
netic programming method to discover the chemical fields
needed to produce macroscopic shapes from simple aggre-
gating primitives.

Categories and Subject Descriptors
I.3.5 [Computing Methodologies]: Computational Ge-
ometry and Object Modeling

General Terms
Algorithms, Experimentation, Performance

Keywords
Shape Composition, Morphogenesis, Chemotaxis, Distributed
Genetic Programming, Self-organization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

Figure 1: A set of randomly placed Morphogenic
Primitives (left) aggregate to form a “gear” (right).

1. INTRODUCTION
In living things, cells aggregate and grow to create compli-

cated structures. This process, called morphogenesis, is one
of the fundamental components involved in the development
of all complex organisms [17]. One of the essential processes
involved in morphogenesis is chemotaxis [6]. Chemotaxis
is the phenomenon where cells interact with other cells by
emitting a chemical that diffuses into the surrounding en-
vironment. Neighboring cells detect the overall chemical
concentration at their surfaces and respond to the chem-
ical stimulus by moving either towards or away from the
source [9]. The motions induced by chemotaxis may then
produce patterns or sortings of cells [12], or even large-scale
structures, e.g. cavities or vessels. These phenomena have
motivated us to look to developmental biology for concepts
that lead to a more organic, cell-biology-inspired approach
to shape composition.

In this approach, we discover the local interaction rules
that direct the self-organizing primitives, that we call mor-
phogenic primitives (MPs) [1], to aggregate into a particu-
lar user-defined shape. Macroscopic shapes are formed au-
tomatically by the aggregation of these simple primitives
responding only to local information. A collection of MPs
are at first randomly placed in the modeling environment.
The primitives emit a field, and then respond to the cumu-
lative field by moving along its gradient. A macroscopic,
user-defined shape then emerges from the combined actions
of the individual primitives.

1.1 Morphogenic Primitives
Several principles were followed when developing mor-

phogenic primitives. 1) MPs are autonomous“agents”. Each
MP is an independent entity that senses the environment,
responds to it, and then modifies the environment and its
internal state. There is no “master designer” directing the

1179

Figure 2: Genetic programming process that produces functions for morphogenic primitive interactions.

actions/motions of the MPs. 2) Actions are based on local
information. Each primitive emits a finite “chemical” field
that can be sensed only by other primitives within a certain
range. The only information received by an MP is gathered
at its surface, namely the concentration of the cumulative
field and contact with immediate neighboring MPs. 3) MPs
respond to information with prescribed behaviors. The ac-
tions performed by each MP are the same, but the specifics
of the individual actions are based on information received
from the environment. 4) MPs have no representation of
the final, macroscopic shape to be produced. MPs do not
use information about the final shape to determine what
actions to take. Their actions are pre-determined by the
ultimate shape to produce, but MPs do not carry or access
information about the shape. The MP’s final global posi-
tion relative to the shape is not known ahead of time. 5)
The shape emerges from the aggregation of local interactions
and behaviors. Rather than following a plan to produce the
shape, MPs sense, change and respond to the cumulative
field concentration. This simple behavior, when combined
with somewhat complex chemical fields, will direct the MPs
to take individual actions based on local information that
will ultimately aggregate to produce a user-defined, macro-
scopic shape. The main challenge here is to determine which
local chemical fields will direct the MPs to ultimately come
together into the desired shape.

While MPs’ fundamental interaction is based on chemo-
taxis, we do not limit their behaviors/properties to be phys-
ically realistic or completely consistent with biology. In-
stead, developmental biology provides a motivating starting
point for MPs. As a way to customize chemotaxis-driven
cells for shape composition, we alter the chemical concen-
tration fields around individual cells. Instead of the chemi-
cal concentration dropping off as a function of distance (the
physically accurate description), we define the concentra-
tion field with a mathematical function of distance, angle
and time. Since it is extremely difficult to determine which

particular local field function will direct MPs to form a spe-
cific macroscopic shape, we employ genetic programming
[21] to produce the expressions that explicitly specify the
field function. A fitness measure, based on the shape that
emerges from the chemical-field-driven aggregation, deter-
mines which functions will be passed along to later genera-
tions. The genetic process stops once a function in the pop-
ulation provides the desired shape, or after a certain number
of function generations have been produced and evaluated.

The evaluation of each potential chemical field function
involves a complex and compute-intensive cell aggregation
simulation process. Since thousands of functions are gen-
erated and evaluated, the GP process that generates the
correct MP interactions has extraordinarily high computa-
tional requirements. To meet these requirements, we have
implemented a distributed GP system that is capable of ex-
ploiting the computational power of a Linux cluster.

1.2 Approach Overview
The general approach, which has been implemented within

the Open Beagle Framework [16], to defining the field func-
tions that ultimately produce the user-desired shape is pre-
sented in Figure 2. We start with a population of func-
tions, which is initially randomly generated. Each function
is compiled into a chemotaxis-based cell aggregation simula-
tion program, and defines the chemical field that surrounds
the individual cells. A simulation program is executed for
each field function on a node in our cluster, usually produc-
ing some kind of aggregated structure. The resulting MP
configuration is compared to the user-desired shape, and a
scalar fitness value is calculated that quantifies how well the
computed shape matches the desired shape. A subset of the
top candidates are then used to create the next generation
of field functions. The process continues until a field func-
tion produces the desired shape or the maximum number of
generations is reached.

Once the local field function has been identified for a spe-

1180

cific shape, MPs may be randomly placed in the computing
environment, with each MP surrounded by the GP-produced
concentration field. A simulation is performed where the
cumulative field is computed, and each MP moves along its
gradient, until the MP population reaches an equilibrium,
which is the desired shape.

We have utilized this new approach to define morphogenic
primitives that aggregate to form a number of user-defined
shapes, e.g. an ellipse, a diamond, a boomerang, and an
hourglass. In the process of evolving the field functions for
user-defined shapes, a few pleasant surprises materialized.
Most of them included repeated patterns, e.g. stripes, spots
and sine waves, but most interestingly a gear shape emerged
from the evolutionary process. See Figures 5 through 12.

2. RELATED WORK
Sims [26] applied genetic programming to create func-

tional representations of intricate, interesting images and
solid textures. In this work, an interactive process allows
a user to guide the evolution of the image functions by the
selection of preferred images and results. The repeated inter-
action between the user and the evolutionary process leads
to the definition of functions for a large number of surpris-
ing and appealing images. This approach was extended for
the creation of procedural models [27] and the definition of
motions and behaviors of virtual creatures [28].

Fleischer explored a cell-based developmental model for
self-organizing geometric structures [13, 14]. He applied his
cell interaction simulation system to produce an approach
to cellular texture generation [15]. Eggenberger Hotz pro-
posed the use of genetic regulatory networks coupled with
developmental processes for use in artificial evolution and
was able to evolve simple shapes [7, 18]. The combination
of artificial evolutionary techniques and developmental pro-
cesses provides a comprehensible framework for the analysis
of evolutionary shape creation. Additional shape genera-
tion methods based on grammars and cellular automata are
described in [2].

Theraulaz and Bonabeau present a modeling approach
based on the swarming behavior of social insects [29, 30],
a type of swarm intelligence [3]. They combine swarm tech-
niques with 3D cellular automata to create autonomous agents
that indirectly interact in order to create complex 3D struc-
tures. This indirect interaction, known as stigmergy [31],
allows the agents to act cooperatively, but independently,
through a stimulus-response mechanism based on modifica-
tions made to the environment. Bonabeau et al. [4] apply
genetic algorithms (GA) to the stigmergic swarm-based 3D
construction method in order to improve the overall process.
A fitness function, chosen by human observers, is assigned
to each pattern in this approach, and a GA is used to search
the space of all possible patterns.

Given the heavy computation requirements of evolution-
ary computing and its applications, distributed evolutionary
algorithms have been implemented to shorten computation
times [24]. Tomassini [32] characterizes the different types of
parallel evolutionary algorithms based on the granularity of
the data structure and parallel synchronization. Experimen-
tation with and analysis of different distributed genetic pro-
gramming models have indicated that asynchronous models
are more efficient in terms of execution time than other ap-
proaches [34]. Software frameworks for distributed genetic
programming have also been developed, from tools based on

MPI on a Linux cluster [33] to the open-source Java envi-
ronment DGPF run over large networks [35].

Distributed evolutionary algorithms have been utilized to
solve a number of challenging computational problems. Rao
and Hansdah have proposed Extended Distributed Genetic
Algorithm to generate algorithms for channel routing prob-
lems [25]. Koza and Andre have implemented coarse-grained
parallel genetic programming with 64 computers as pro-
cessing nodes and successfully solved the 5-parity problem
[22]. Implementation of fine-grained parallel genetic pro-
gramming has been proposed by Juille and Pollack, in which
parallel evaluation of different S-expressions was implemented
on a SIMD computer [19]. Messom and Walker have ap-
plied distributed genetic programming in evolving cooper-
ative robotic behaviors in robot soccer games [23]. Klein
and Spector have proposed a system of distributed genetic
programming based on JavaScript and XML, which does not
require the installation of client-side software or explicit user
participation [20].

Similar to some previous work, we have developed a che-
motaxis-based cell aggregation simulation system. However
we have extended and modified the system in order to utilize
evolutionary computing to discover rules for shape compo-
sition. In our work, MPs cooperate with each other only
through local interactions. The primitives have no informa-
tion about the predefined global shape that is being com-
posed. We have also developed a steady-state distributed
genetic programming system, based on Unix programming
[5], that provides the computational resources needed to per-
form numerous cell aggregation simulations. Moreover, an
automated fitness evaluation process has been implemented
that quantifies the similarity between the shape of the aggre-
gated MPs produced by each cell simulation and the user-
defined macroscopic shape.

3. CELL AGGREGATION SIMULATION
We have previously developed a computational model and

software system that is capable of simulating chemotaxis-
based cell aggregation in 2-D [10, 11]. Our 2-D model incor-
porated fundamental parameters involved in cell-cell aggre-
gation, such as a cell’s ability to emit and detect chemoat-
tractant chemicals, cell motility, attachment, proliferation,
aggregation and various stages of a cell’s life cycle. This
model and system provide the conceptual and software foun-
dation for morphogenic primitives.

The full complexity of the original chemotaxis-based cell
aggregation model was not needed for the initial implemen-
tation of MPs. The model was simplified and we focused
the evolutionary process on one aspect of the possible cell
interactions, the definition of the chemoattractant chemical
field surrounding a single cell. Therefore we only utilize the
chemoattractant emission and response portion of the cell
simulation system. We also modified the system to allow
for a general functional description of chemical fields. The
chemical fields are defined as a function of the distance d
and the angle θ between two MPs, as well as the MP’s age
t. Since we define the chemical fields as mathematical ex-
pressions, we utilize a number of protected operators, such as
protected division and protected logarithm. These protected
operators safely handle invalid input values, for example di-
vide by zero and non-positive logarithms. Additionally, the
field function is truncated at a fixed distance (RMax = 200
units) in order to keep the MP interactions finite and local.

1181

Initialize first generation

Termination criteria met?

Buffer empty?

Store the generation in the individuals buffer

 Look through node list
 for available slave node s

Slave node available?

Send individual i to slave node s
 Start sl ave process on node s

Wait

Wait for all fitness values to be
 written into fitness buffer

Perform GP operations based on fitness
 values to produce a new generation

End

Yes

No

Yes

Yes

No

No

Figure 3: The master process.

Each MP simulation process begins by randomly placing
a number of MPs (500 for our examples) in the computa-
tional environment. A morphogenic primitive is represented
by a small disk existing in a toroidal 2D environment. The
environment is effectively infinite with no boundaries, since
the top edge of our computational world is connected to the
bottom edge, and the left edge is connected to the right edge.
A single aggregation simulation is comprised of a series of
time steps. For each time step, each cell performs a pre-
scribed set of actions. Each MP emits a “chemical” into the
environment. It then detects the cumulative field at eight re-
ceptors on its surface, and calculates the field gradient from
this input. The gradient is used to determine the primitive’s
velocity. We assume that MPs travel at a terminal velocity
through a viscous fluid environment, therefore an MP’s ve-
locity is directly proportional to the chemical field gradient
(∇C). When an MP moves in the direction of the chemical
gradient, its velocity is calculated as

Velocity = λ ∗ ∇C, (1)

where λ (1 for our examples) is a constant that determines
the magnitude of a cell’s response to the gradient. At each
simulation time step (∆t) the displacement of the MP is

∆x = Velocity ∗∆t. (2)

If the displacement makes the MP collide with another MP,
a small random step is taken instead. MPs do not always
follow the field gradient. 10% of the time MPs take a ran-
dom small step instead of following the field gradient. This
randomness injects a small amount of noise into the system,
helping to prevent the set of MPs from collecting into local
minima configurations.

Receive individual i

Set slave node status to busy

Make individual i the chemical
 field equation in cell simulation

Run cell simulation with new
 chemical field equation

Compare the MP aggregation
 with user-defined shape

Store fitness value of individual i
 in the fitness buffer

set slave node status to available

Figure 4: The slave process.

4. DISTRIBUTED GENETIC
PROGRAMMING

4.1 Steady-State Master-slave Model
Given the magnitude of the search space, i.e. all possible

polynomial and trigonometric functions, we have developed
an steady-state, fine-grained, master-slave, distributed com-
puting system that parallelizes the cell simulation and fitness
evaluation components of our GP-based shape composition
method. We have implemented an N-slave, 1-master model,
with the master process adaptively distributing individuals
among the slave processes, based on Unix shell scripting [5].
Open Beagle [16], a C++ evolutionary computing frame-
work, has been utilized and altered to function as the dis-
tributed genetic programming framework.

The master process, as outlined in Figure 3, adaptively
sends out individual functions over a network to a number
of slave processes, and performs most of the genetic pro-
gramming steps. Each slave node hosts one slave process.
As outlined in Figure 4, the slave process is responsible for
incorporating the individual (chemical field function) into
the cell simulation program, running the cell aggregation
simulation, comparing the resulting aggregated shape with
the user-defined shape and returning a fitness value to the
master process. The master process then utilizes the fitness
value associated with the individual function to perform ge-
netic programming operations.

4.2 Evolutionary Process
The ramped half-and-half method [8, 21] is used to gener-

ate the initial population of functions which consists of GP
trees of a predefined maximum depth. The master process
first stores the whole generation into a buffer and then adap-
tively sends all the individuals to slave processes. Once all of
the individuals have been distributed to the slave nodes, the
master process waits until all of the individuals have been
evaluated by the slave nodes. This is indicated when the fit-
ness buffer contains the same number of values as individual
functions.

The slave process receives an individual function and mod-
ifies the cell aggregation simulation program by setting its
chemical field function to the expression. A cell aggregation

1182

Example Function Generation Fitness value
ellipse Divide((Log(Divide(d,t))-Log(cos(theta))),Divide(d,t)) 7th 0.717403
diamond Divide(((Log(Divide(d,t))-Divide((0.924414),theta))-(0.363563)),Divide(d,t)) 11th 0.659776
hourglass Log(d)+cos(Divide((t*theta),Divide((t+Log(Divide(t,Log(d)))),(-0.356662)))) 18th 0.436527
boomerang Log((d*exp(d))) 13th 0.560553
wave Divide(Log((Log((sin(t)+cos(theta)))*d)),exp((sin(theta)+(Log(d)+theta)))) 25th 0.491477
annulus exp(exp(theta)) 25th 0.435082

Table 1: Summary of shapes, field functions, number of generations and fitness values

simulation is performed for each field function, producing an
image of the aggregated shape that emerges from the local
interactions defined by the function. Each aggregated result
is then evaluated by the fitness function, which compares
the aggregate image with a target image. A fitness value
(a scalar between 0 and 1) that quantifies how closely the
resulting aggregate matches the target shape is assigned to
each individual function. The fitness values are stored in the
master process’s fitness buffer. The slave process pauses un-
til it receives another individual and then the slave process
begins again.

Once all the fitness values have been calculated, parent
selection is performed on the population based on the fit-
ness values. Variation then takes place using a swap subtree
operation and single-point mutation. Generational replace-
ment is used for survivor selection, i.e. the offspring replace
the parents from the previous generation. The distributed
genetic programming process repeats until the termination
criteria are met, either after generating a maximum number
of generations or when the fitness of an individual surpasses
the threshold, i.e. the associated aggregate is approximately
the same shape as the target.

4.3 Fitness function
The fitness function defines the similarity between two

shapes, the aggregate generated by the MPs under the in-
fluence of the chemical field function and the user-defined
target shape. Since the fitness function is based on compar-
ing images, it is necessary to keep the total area of the MPs
(the area of one MP times the total number of MPs) approx-
imately equal to the area of the desired shape. Since MPs
are not aware of a global coordinate system, we do not want
the shape of the resulting aggregate to be tied to a specific
fixed orientation. We therefore align the aggregated shape
with the target shape before applying the fitness function.
This is accomplished by calculating the centroid and major
axis of the aggregated and target shapes. A translation and
rotation is applied to a candidate MP that aligns its centroid
and major axis with those of the target. This allows MPs to
aggregate into the desired shape, but not necessarily in the
same position and orientation of the target.

Once the alignment is completed, the fitness function cal-
culates the ratio of the overlapping pixels of the aggregate
and target shapes to the total pixels of the target shape.

f =

P
pi, pi ∈ Sa ∩ StP
pj , pj ∈ St

, (3)

where f is the fitness of the individual, pi are the shape pix-
els that are present in both the aggregate and target image,
pj are the shape pixels in the target image, Sa and St are
the aggregate and the target shape images. This floating-
point number f is assigned as the fitness of the chemical
field function used to generate the aggregate shape.

4.4 Parameters
The following is a detailed description of the components

in the GP process.

• Individuals: Each individual is represented as a pre-
fix tree with a maximum depth DMax = 17.

• Function and terminal set:
F = {+,−, ∗, /, exp, log, sin, cos}
T = {E, d, t, θ}
In order to maintain the closure property of the GP
process [8, 21], we use protected division and protected
logarithm, which allows for the most general descrip-
tion of the functions. Here, E ∈ <, d is the distance
between two MPs, t is the simulation time and θ is the
angle between two MPs measured in the local coordi-
nate system of each MP.

• Selection: Parent selection is proportional to the fit-
ness value and uses tournament selection (tournament
selection size k = 7). Generational replacement is used
for survivor selection.

• Variation: A swap subtree crossover operation and
single-point mutation.

• Fitness evaluation: We compare an image of the re-
sulting aggregate with an image of the target shape.
The comparison produces a fitness value, a floating-
point number between 0 and 1, with 1 being the max-
imum fitness (similarity) value.

• population size: 100.

• maximum number of generations: 50.

• crossover probability: Pc = 0.9.

• mutation probability: Pm = 0.1.

5. RESULTS AND ANALYSIS
We have employed distributed genetic programming to

discover the local interactions that lead to a global emer-
gent behavior for shape composition. More specifically, we
have used the evolutionary process to evolve chemical field
functions that direct randomly placed MPs to aggregate into
a number of user-defined shapes. The MP simulations per-
formed during the GP process consisted of 500 primitives,
where each primitive has a radius of 4.5 or 5 (depending on
which shape was being composed) units1. The MPs move in
a toroidal computational environment of 500× 500 units on
a hexagonal grid. Each simulation is run for 1000 time steps.
The target shapes given to the MP aggregation framework
include an ellipse (Figure 10 (left)), a diamond (Figure 10

1One unit of length is equal to a pixel width.

1183

Figure 5: MPs self-organizing into an ellipse.

Figure 6: MPs self-organizing into a diamond shape.

Figure 7: MPs self-organizing into a hourglass shape.

(right middle)), an hourglass (Figure 11 (left)), a boomerang
(Figure 11 (right middle)), a wave-like structure (Figure 12
(left)), and a flattened annulus (Figure 12 (right middle)).
The best resulting MP-generated shapes are placed next to
the target shapes in these figures. The first four shapes were
the most successful, creating aggregates that reasonably re-
semble the target shapes. The field functions that produce
these shapes are listed in Table 1, along with the number of
generations needed to derive them. The last two examples
did not completely converge on the desired shape. The wave
and annulus shapes are stand-alone objects. Recall that
MPs exist in a toroidal environment. Therefore the shapes
that we generated are continuous objects, where their left
edge is connected to their right edge. Figures 5 through 8
present snapshots from cell simulations and demonstrate the
MP’s self-organizing behavior. All of these sequences began
with the MPs being randomly placed in the computational
environment, similar to Figure 1 (left).

There were a number of pleasant surprises produced dur-
ing the evolution process. These are field functions that
direct MPs to produce unwanted, but still quite interesting,
shapes and patterns. A small set of these surprise results
are included in Figure 9. The most remarkable of these “un-
wanted” shapes is the gear shape in Figure 1.

The robustness of our shape composition process was in-
vestigated by conducting 100 aggregation simulations each
for the ellipse, diamond, hourglass, boomerang and gear
shapes. The repeatability for the ellipse was 100% (i.e. ev-
ery aggregation simulation produced an ellipse-like shape),

the diamond was 99%, the hourglass shape was 10%, the
boomerang shape was 4% and the gear shape was 34%.

The computation time needed to perform the genetic pro-
cess that defines the chemical field functions is quite sub-
stantial. Each 1000-time-step MP simulation requires ap-
proximately 4-CPU minutes on a 1.8 GHz Opteron proces-
sor. We perform our GP calculations on an 8-node Linux
cluster. Therefore each 100-individual generation requires
approximately one hour of actual time to compute on our
cluster. Since the overhead of distributing the computation
over the nodes is quite small compared to the simulation
times themselves, we found that we achieved nearly an 8×
speed-up by performing the calculations on an 8-node clus-
ter. Since the GP process usually produces the desired func-
tion by the 20th generation, we can derive a shape-specific
field function in approximately one day. Of course, once we
have the correct function it only requires approximately 4
CPU-minutes to simulate the desired aggregation behavior.

6. CONCLUSION
We have presented a new approach to shape composition

using self-organizing primitives whose behaviors are based
on cell biology. The key concept is that local interactions
between the 2D primitives, called Morphogenic Primitives
(MPs), direct them to aggregate into a user-defined macro-
scopic shape. The interactions are based on the chemotaxis-
driven aggregation movements exhibited by actual living
cells. Here, cells emit a chemical into their environment.
Each cell responds by moving in the direction of the cumu-

1184

Figure 8: MPs self-organizing into a gear-like shape.

Figure 9: Unexpected patterns and shapes produced during the GP process.

lative chemical field gradient detected at its surface. MPs,
though, do not completely mimic the behavior of real cells.
The chemical fields are explicitly defined as mathematical
functions and are derived via genetic programming. A fit-
ness measure, based on the shape that emerges from the
aggregation process, directs the evolution of the function.
We have implemented a distributed GP system that paral-
lelizes the cell simulation and fitness evaluation components
of our system. We make use of an 8-node Linux cluster to
implement an 8-slave, 1-master model, which provides us
with nearly an 8× speed-up. We have used the technique to
discover chemical field functions that lead to the creation of
several 2D shapes including an ellipse, a diamond, an hour-
glass, a boomerang, and a gear.

7. REFERENCES
[1] L. Bai, M. Eyiyurekli, and D.E. Breen. Self-organizing

primitives for automated shape composition. In Proc.
IEEE International Conference on Shape Modeling &
Applications, 2008.

[2] P.J. Bentley and D.W. Corne, editors. Creative
Evolutionary Systems. Morgan Kaufman, San
Francisco, CA, 2002.

[3] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm
Intelligence: From Natural to Artificial Systems.
Oxford University Press, 1999.

[4] E. Bonabeau, S. Guerin, D. Snyers, P. Kuntz, and
G. Theraulaz. Three-dimensional architectures grown
by simple stigmergic agents. Biosystems, 56(1):13–32,
2000.

[5] C. Brown. UNIX Distributed Programming. Prentice
Hall, New York, 1994.

[6] J.A. Davies. Mechanisms of Morphogenesis. Elsevier,
Amsterdam, 2005.

[7] P. Eggenberger. Evolving morphologies of simulated
3D organisms based on differential gene expression. In
Proc. 4th European Conference on Artificial Life,
pages 205–213, 1997.

[8] A.E. Eiben and J.E. Smith. Introduction to
Evolutionary Computing. Springer, 2003.

[9] E. Eisenbach et al. Chemotaxis. Imperial College
Press, London, 2004.

[10] M. Eyiyurekli. A Computational Model of
Chemotaxis-based Cell Aggregation. Master’s thesis,
Drexel University, 2006.

[11] M. Eyiyurekli, P. Lelkes, and D. Breen. A
computational system for investigating
chemotaxis-based cell aggregation. In Proc. European
Conference on Artificial Life, pages 1034–1049, 2007.

[12] M. Eyiyurekli, P. Lelkes, and D. Breen. Simulation of
chemotaxis-based sorting of heterotypic cell
populations. In Proc. IEEE / NIH BISTI Life Science
Systems & Applications Workshop, pages 47–50, 2007.

[13] K.W. Fleischer. A Multiple-Mechanism Developmental
Model for Defining Self-Organizing Geometric
Structures. PhD thesis, California Institute of
Technology, 1995.

[14] K.W. Fleischer and A.H. Barr. A simulation testbed
for the study of multicellular development: The
multiple mechanisms of morphogenesis. In Artificial
Life III, pages 389–408. 1994.

[15] K.W. Fleischer, D.H. Laidlaw, B.L. Currin, and A.H.
Barr. Cellular texture generation. In Proc.
SIGGRAPH, pages 239–248, 1995.

[16] C. Gagné and M. Parizeau. Genericity in evolutionary
computation software tools: Principles and case-study.
International Journal on Artificial Intelligence Tools,
15(2):173–194, 2006.

[17] S.F. Gilbert. Developmental Biology. Sinauer
Associates, Inc., Sunderland, MA, 8th edition, 2006.

[18] P.E. Hotz. Combining developmental processes and
their physics in an artificial evolutionary system to
evolve shapes. In Kumar S. and P.J. Bentley, editors,
On Growth, Form and Computers, pages 302–318.
Academic Press, 2003.

[19] H. Juille and J.B. Pollack. Parallel genetic
programming and fine-grained SIMD architecture. In
Working Notes for the AAAI Symposium on Genetic
Programming, pages 31–37. AAAI, 1995.

[20] J. Klein and L. Spector. Unwitting distributed genetic
programming via asynchronous JavaScript and XML.
In Proc. 9th Annual Conference on Genetic and
Evolutionary Computation, pages 1628–1635, 2007.

[21] J.R. Koza. Genetic Programming: On the

1185

Figure 10: Ellipse: (left) Target shape. (left middle) Self-organized MPs. Diamond: (right middle) Target
shape. (right) Self-organized MPs.

Figure 11: Hourglass: (left) Target shape. (left middle) Self-organized MPs. Boomerang: (right middle)
Target shape. (right) Self-organized MPs.

Figure 12: Approximately correct wave and annulus shapes produced by MPs.

Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

[22] J.R. Koza and D. Andre. Parallel Genetic
Programming on a Network of Transputers. Dept. of
Computer Science, Stanford University, 1995.

[23] C.H. Messom and G Walker. Evolving cooperative
robotic behaviour using distributed genetic
programming. In Proc. 7th Int. Conference on Control,
Automation, Robotics and Vision, volume 1, 2002.

[24] R. Poli, University of Birmingham, and Cognitive
Science Research Centre. Parallel Distributed Genetic
Programming. University of Birmingham, Cognitive
Science Research Centre, 1996.

[25] P.B.B. Rao and RC Hansdah. Extended Distributed
Genetic Algorithm for Channel Routing. In Proc. 5th
IEEE Symposium on Parallel and Distributed
Processing, pages 726–733, 1993.

[26] K. Sims. Artificial evolution for computer graphics. In
Proc. SIGGRAPH, pages 319–328, 1991.

[27] K. Sims. Interactive evolution of equations for
procedural models. The Visual Computer,
9(8):466–476, 1993.

[28] K. Sims. Evolving virtual creatures. In Proc.
SIGGRAPH, pages 15–22, 1994.

[29] G. Theraulaz and E. Bonabeau. Coordination in
distributed building. Nature, 269:686–688, 1995.

[30] G. Theraulaz and E. Bonabeau. Modeling the
collective building of complex architectures in social
insects with lattice swarms. Journal of Theoretical
Biology, 177:381–400, 1995.

[31] G. Theraulaz and E. Bonabeau. A brief history of
stigmergy. Artificial Life, 5:97–116, 1999.

[32] M. Tomassini. Parallel and distributed evolutionary
algorithms: A review. In Evolutionary Algorithms in
Engineering and Computer Science, pages 113–133.
John Wiley & Sons, Chichester, 1999.

[33] M. Tomassini, F. Fernández, L. Vanneschi, and
L. Bucher. An MPI-Based Tool for Distributed
Genetic Programming. In Proc. IEEE Int. Conference
on Cluster Computing, pages 209–216, 2000.

[34] M. Tomassini, L. Vanneschi, F. Fernandez, and
G. Galeano. Experimental investigation of three
distributed genetic programming models. In Proc.
Parallel Problem Solving from Nature-PPSN VII,
volume 2439, pages 641–650. Springer, 2002.

[35] T. Weise and K. Geihs. DGPF-an adaptable
framework for distributed multi-objective search
algorithms applied to the genetic programming of
sensor networks. In Proc. 2nd Int. Conference on
Bioinspired Optimization Methods and their
Application, pages 157–166, 2006.

1186

