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Abstract

This paper discusses work in progress that

uses genetic programming to evolve edge de-

tectors for petrographic images. Microscopic

images of thin sections from mineral samples

are obtained using a rotating polarizer mi-

croscope. These images are then processed

using a number of �lters, resulting in a set

of nine �ltered image parameters. In order

to be useful for higher{level analysis, such

as automatic mineral identi�cation, the grain

boundaries within these images must be iden-

ti�ed. Using genetic programming, edge de-

tecting functions are evolved for this purpose.

The edge detectors may use as any of the �l-

tered image parameters as input. Since the

source images are large, a subset of the im-

ages is sampled for training, and the remain-

der of the image is used for testing. This

training data is selected with a biased ran-

dom sampling strategy. The complexity of

the images dictates that a generic edge de-

tector for all mineral specimens is infeasible.

Rather, the most useful edge detectors will

be those that are specialized for particular

families of mineral specimens.

1 INTRODUCTION

Microscopic images of thin sections from mineral

samples are useful for identifying mineral specimens.

While inspecting a thin section, a geologist will visu-

ally identify the grains resident on the image. Each

grain in turn will have implicit visual characteristics

dependent upon the specimen of mineral comprising

it. Viewing the sample under polarized light can aid

in the identi�cation of grains, since polarization en-

hances the visual characteristics of grains. Manually

inspecting thin sections and identifying grain features

is a time-consuming and error-prone process, even for

an experienced geologist.

This paper discusses work in progress that is in-

vestigating the use of genetic programming (GP) to

evolve edge detectors for petrographic images. Recent

work has investigated the automatic analysis of petro-

graphic thin sections using computers (Goodchild and

Fueten 1998, Thompson et al. 1999, Ross et al. 1999).

To satisfy this goal, grain boundaries must be au-

tomatically identi�ed. Using genetic programming,

edge detecting programs are evolved that delineate

the boundaries between distinct grains on a thin sec-

tion image. An edge detecting program will draw the

boundaries between grains when passed over an im-

age �le. Care must be taken that the program is not

too liberal (erroneously identify grain areas as edges)

nor too conservative (miss identi�cation of true grain

edges). Since the source images are large, not all the

image data can be used for training, and hence a bi-

ased random sampling strategy is used.

Section 2 discusses petrographic thin section images

and their preparation before use in the GP system.

Details about the genetic programming experiments

are given in section 3. Results of the experiments are

discussed in section 4. A summary discussion and com-

parisons to other work conclude the paper in section

5.

2 IMAGE PROCESSING OF

PETROGRAPHIC THIN

SECTIONS

The petrographic microscope is a basic tool employed

by many geologists to identify minerals, estimate grain

size or shape and to obtain modal percentages of min-

erals in thin sections. In plane-polarized light many

minerals are colourless, which makes it impossible



Table 1: Image parameters from polarizing microscope

Cross-polarized light Plane polarized light

p1: gradient p6: min. position

p2: max. position p7,p8,p9: min. intensity

p3,p4,p5: max. intensity

to distinguish grain boundaries between two adjacent

colourless grains. Similarly, in cross-polarized light

the interference colour displayed depends on the min-

eral type, the orientation of the grain with respect to

the polarizers and the thickness of the thin section.

Hence, two adjacent grains may have similar interfer-

ence colours at some orientations of the thin section

with respect to the polarizers. This problem of lack of

contrast is commonly overcome by rotating the micro-

scope stage with respect to the �xed polarizers. The

human brain and vision system have no problem keep-

ing track of individual grains as they rotate around

the �eld of view. Unfortunately this procedure is a

major obstacle for an image processing system, as the

computer has to track the behaviour of a point within

a grain in colour space, as well as the motion of that

point as the thin section is rotated.

(Fueten 1997) presents the design of a fully automated

polarizing stage for a petrographic microscope, which

allows a thin section to remain �xed while the polar-

izers are rotated. Hence any point within a grain is

registered to the same pixel at all positions of the

polarizers, greatly simplifying the computational re-

quirements. The stage is used in conjunction with

a computer with a video capture board. By selec-

tively obtaining data from images with di�erent polar-

izer positions, the stage greatly enhances the potential

for petrographic image processing. Each image cap-

tured requires approximately 1 Mb of storage space,

hence a complete set of images for a 180 degree rota-

tion of the polarizers under both plane and crossed-

polarized light would require approximately 400 Mb.

To reduce storage requirements, a composite data set

is constructed that contains selected information ob-

tained during a 180 degree rotation of the polarizers,

�rst under crossed-polarized, then under plane light.

Combining data from di�erent images into a compos-

ite image is possible as each pixel remains registered

to the same point within a grain in the stationary thin

section for all orientation of the polarizers.

The data computed for each pixel is listed in Table 1,

and will now be described. All the data take the form

of �ltered images, and are used as input parameters

for the genetic programming system in Section 3. The

entries a single parameter are monochromatic, while

those with 3 parameters are RGB values.

The data collected using crossed-polarized light in-

clude the average, maximum intensity, maximum po-

sition and gradient. They are computed as follows.

Gradient (p1): This �lter is of primary importance

for detecting grain edges. A gradient operator, which

compares the intensity of a pixel with that of its neigh-

bours in both the positive x and y directions is passed

over each incremental image. For each pixel the maxi-

mum gradient value is added to an incremental gradi-

ent array. The gradient at visible boundaries between

grains is larger than gradient values in the interior of

grains. A total gradient array is built up by addition of

incremental gradient values while the polarizing �lters

are rotated through 180 degrees. Following the acqui-

sition of a complete data set, the total gradient array

is scaled to an 8 bit range, with values in the range

of 0 - 255. This image is viewed as a gray-scale image

with high/bright values representing grain boundaries

while low/dark areas form the interior of grains.

Maximum position (p2): Position values record the

rotational orientation of the polarizing �lters when a

pixel reaches its maximum and minimum value. For a

180 degree rotation of the polarizers, position values

have a range of 1-200 as a pixel can reach its maximum

or minimum value at any one of the 200 steps. Position

values are represented as 8 bit grey scale images.

Maximum intensity (p3, p4, p5): The maximum in-

tensity value corresponds to the maximum interfer-

ence colour of a pixel within a grain during rotation

of the polarizers through 180 degrees. The inten-

sity of a pixel is calculated using the intensity value

in Hue, Saturation, Intensity (HSI) colour space (I=

(red+green+blue)/3) (Gonzalez and Woods 1992).

For observations under plane polarized light, a neutral

density �lter is rotated into the light path. The data

collected under plane-polarized light includes and min-

imum position (p6) and the minimum plane intensity

(p7, p8, p9). The procedures to obtain these data are

similar to those described above.

Two other parameter sets, average cross polarized and

maximum intensity plane polarized, were available.

However, experiments showed that they contributed

negligibly to the overall results, and hence were not

used in subsequent runs.



Table 2: GP Parameters

Parameter Value

Functions 
oat: if, avg, amin, amax,

sdev, min, max, -, +, *, /

integer: inc

Terminals 
oat: ephem, p1, ..., p9

integer: ephem

Fitness function biased random sampling

Population size 2000

Max. generations 75

Max. runs 6

Prob. crossover 0.95

Prob. mutation 0.05

Prob. leaf mutation 0.90

Max. depth initial 6

Max. depth o�spring 17

Tournament size 5

3 EVOLVING EDGE DETECTORS

3.1 System design

Table 2 lists the main parameters used. The GP sys-

tem used is the typed version of the lilGP 1.1 system

(Zongker and Punch 1995). Typing is useful since we

use both integer and 
oating point data types in the

programs (Montana 1995).

The program will be passed across the pixels for an

image, and will indicate whether each pixel should be

drawn as an edge or not. The root expression for the

program trees is a 
oating point expression. If the

expression evaluates to a value greater than zero, then

that pixel of the image is considered to be an edge,

and should be drawn as such. Otherwise, the pixel is

not an edge, and should be skipped.

Some functions (sdev, amin, amax, avg) work on a

square area of adjacent pixels surrounding the current

pixel being processed. One of the integer arguments to

these area functions indicates the size of grid to pro-

cess. The integer value modulo 3 will indicate whether

to process a 5x5, 7x7 or 9x9 grid. The other integer

argument speci�es which one of the 9 parameters in

Table 1 to use in the computation. The function sdev

computes the standard deviation of the grid of pixels

surrounding the current pixel:

rP
(vi � a)2

n

where vi are the parameter values of the entries in the

grid, a is the average of the grid area, and n is the

number of entries in the grid. The amin and amax

functions compute the area minimum and maximum

values, while avg computes the area average.

The if function has 4 arguments { two 
oating point

expressions to be used in a relational test, and two

result expressions. If the �rst argument is less than

the second, then the value of the third argument is re-

turned as a result. Otherwise the fourth expression's

value is returned. The remaining 
oating point func-

tions are the usual arithmetic functions. The 
oating

point terminals include the twelve parameters from the

image data in Table 1, and ephemeral random con-

stants (Koza 1992).

Integer expressions consist of either ephemeral random

constants or the function inc, which increments an in-

teger expression. The inc function permits variable

integer values without needlessly complicating the in-

teger expression syntax. Any function using an integer

expression argument will convert it to the required in-

teger value modulo K { either for grid sizes (K=3), or

parameter reference (K=9).

Contrary to other's experiences (Poli 1996), we did

not �nd it desirable to preprocess the image data to

compute the �ltered results as denoted by functions

such as sdev and avg in Table 2. It is too expensive

in time and memory resources to pre-calculate these

function values for all the possible combinations of in-

put images and parameters. Given that the training

uses a sampled subset of the image data, the overhead

in computing these functions during evolution is not

prohibitive.

3.2 Fitness strategy

Table 3: Biased Sampling Parameters

Parameter Value

Within edge: 700

Border edge: 700

Adjacent to edge: 700

Not edge: 800

Total pixels per sample: 2900

Resampling rate: 5 generations

A biased random sampling strategy is used for select-

ing image data for training. A classi�cation scheme

is used that permits sampling from speci�c categories

of pixels from the training data. Each set of training

data has supplied with it a solution image, which in-

dicates all the true edges in the data. Pixels on this

solution image are either edges or non-edges. Based

on this information, each pixel in the training data is

classi�ed into one of the following four categories:



1. Within edge: This is a pixel within the bound-

aries of an edge. All the pixels surrounding it are

classi�ed as edges in the solution image.

2. Border edge: This is a pixel on an edge, but

some of the surrounding pixels are not classi�ed

as edges in the solution image.

3. Adjacent to edge: The pixel is not on an edge,

but it is adjacent to one.

4. Not edge: The pixel is not on an edge, nor is it

adjacent to one.

The rationale behind this classi�cation is that the criti-

cal training cases are those in or near edges, and these

categories are used to identify such occurrences. In

addition, because the majority of the pixels on an im-

age comprise grain areas, this classi�cation will permit

sampling to be biased against over-selection of grain

area data.

Table 3 shows the parameters used for directed sam-

pling. Resampling of the training data is undertaken

every 5 generations. A large enough set of represen-

tative data is sampled in each training set to prevent

problematic hill climbing (Ross 2000).

The �tness value for a program is computed as:

Fitness = 1�
�
ce

te

�

cn

tn

�

where ce is the number of correctly identi�ed edges, te

is the total number of edges, cn is the number of cor-

rectly identi�ed non-edges, and tn is the total number

of non-edges.

4 RESULTS

Two 640 by 480 pixel thin section images of granitic

gneisses were used, along with their �ltered parame-

ters of Table 1. Figures 1 and 2 shows their grey-scale

maximum intensity cross polarized images (a), the in-

tended target edge solution (b), and edge detection

results (c, d, e). The specimen in Figure 1 is consid-

ered to be the more di�cult of the two sets. A number

of di�erent experiments were undertaken on each set

of image data. A \best" GP edge detector from 6 GP

runs was determined for the mineral specimens in (c).

The edge detector trained on the other image data

was tested on the given mineral specimen in (d). For

comparison, the results from an arti�cial neural net-

work (ANN) edge detector is included in (e), and is

discussed below.

Although all the edge detector results have visible

noise, it is felt that it can be removed with either

Table 4: Results summary

Correct Correct Correct

Experiment Fitness edges grains overall

GP 1 image 1 0.590 0.798 0.836 0.829

GP 2 image 1 - 0.761 0.887 0.863

ANN image 1 - 0.588 0.737 0.708

GP 2 image 2 0.633 0.835 0.909 0.900

GP 1 image 2 - 0.750 0.890 0.874

ANN image 2 - 0.618 0.885 0.854

conventional �ltering or a second pass noise removal

program evolved for this purpose (more discussion of

this is in Section 5). Also note that the solution re-

sults in image (c) in Figures 1 and 2 are a combination

of training and testing, since only 2900 pixels in the

images are used for training per sample, which is less

than 1% of the entire image. Given that 25 re-samples

are used during the course of a 75 generation run, at

most 23.6% of the image is used for training. Hence

over 75% of these images can be considered \testing

data". The image in (d) is entirely testing data with

respect to the solution edge detector evolved from the

other data set.

A numerical summary of the results is given in Table

4. Note that the values in this table are somewhat

deceptive. For example, if an edge detector classi�es

all pixels as edges, then the value for correct edges will

be 100%. This similar holds for correct grains. Given

that the majority of pixels in an image are grains, the

grain value biases the correct overall value. From this

perspective, the qualitative results shown in Figures 1

and 2 are perhaps a better measure of success.

The best edge detector for set 1 is:

(* (avg 91 64)

(- (avg (Inc (Inc (Inc (Inc 23))))

(Inc (Inc (Inc 36))))

(amax (Inc (Inc (Inc (Inc 36))))

(Inc 84))))

A translation into more meaningful parameter and

grid notation is:

(* (avg p2 "7x7")

(- (avg p1 "5x5")

(amax p5 "7x7")))

This is a surprisingly simple program.

Set 2's best edge detector (translated) is:

(+ (min (+ (- (/ (if (/ p7 p4)
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Figure 1: Results for experiment 1: (a) maximum intensity crossed; (b) solution edges; (c) GP edge detector;

(d) GP edge detector from experiment 2; (e) neural network.



(a) (b) 

  
 
 
(c)  (d) 

  
 
 (e) 

  

Figure 2: Results for experiment 2: (a) maximum intensity crossed; (b) solution edges; (c) GP edge detector;

(d) GP edge detector from experiment 1; (e) neural network.



(/ p6 p8)

(avg p9 "9x9")

(amin p1 "7x7"))

(max (- p2 p9)

(+ (/ p6 p8) p1)))

0.84231) p1)

(- (amin p1 "7x7")

(sdev p1 "9x9")))

(avg p1 "5x5"))

The arti�cial neural network that produced the edge

results in image (e) in Figures 1 and 2 uses a 3-

layer feed forward architecture (Fueten and Thompson

2000). It was trained on the same image data as the

GP experiments, using approximately 2% of the im-

age data (6000 pixels) for 2000 iterations. The results

shown are considered inferior to what it is normally ca-

pable of producing, should a more judicious selection

of training data be undertaken.

5 CONCLUSION

The nature of petrographic images makes edge detec-

tion a particularly challenging problem as far as image

processing problems are concerned. Natural phenom-

ena such as microscopic images of mineral grains usu-

ally do not exhibit clean discrete signals, but rather,

are replete with noise and other unavoidable artifacts.

For example, grains often contain fractures, which vi-

sually appear to be edges, but are not considered to be

such, since the same mineral grain resides on each side

of a fracture. From this perspective, the edge detectors

evolved in our experiments exhibit promising results.

Because image data has been scarce up to now, more

extensive training and testing will be undertaken as

more data becomes available.

An important factor in determining the success of edge

detection evolution is the training set. Our approach

permitted the selection of the relative classes (edge,

near-edge, grain, ...) of data to use, which does give

some biased control of random sampling. What is

more desirable, however, is for problematic areas of the

image to be either manually or automatically identi�-

able, and then be used for additional sampling during

training. It is typical to see di�erent edge detectors

having similar di�culties with speci�c portions of im-

ages. Future work will enhance the training procedure,

for example, by permitting the user to mark image ar-

eas for concentrated sampling.

The solution edges used were manually massaged from

the output from an edge algorithm using conventional

�ltering discussed below (Goodchild and Fueten 1998).

These solutions contain errors which negatively a�ect

training. For example, the solution edges are wide

enough that they straddle grain boundaries. Thus

there are implicit contradictions in the edge solution

images, in which similar pixels are classi�ed as both

edges and non-edges in di�erent portions of the im-

age. Although the impact of these errors is statistically

weakened with a large training set, solutions with more

re�ned grain edges are desirable, and would encourage

the evolution of better quality edge detectors.

Work has commenced on evolving noise �lters, which

attempt to correct the errors from the GP edge de-

tectors. In a sense, a noise �lter is like a second pass

edge detector, except that it expects the majority of

its input data to be correctly identi�ed. Therefore,

their evolution is simpler than that of edge detectors,

because noise �lters need only be trained on intermit-

tent errors from edge detectors, and can ignore the

majority of the image that is normally processed cor-

rectly. It is unknown whether general noise �lters can

be obtained, or if each edge detector will require its

own speci�c �lter. An alternative is to apply conven-

tional �lters to the results of the GP edge detectors in

order to remove noise.

Earlier work in (Goodchild and Fueten 1998) extracted

edges from the gradient image using a sequence of im-

age processing �lters. This edge extraction procedure

used 10 steps and 7 separate routines to extract the

edges, and is similar to the procedures implemented in

the Canny edge detector (Canny 1986). Output of this

procedure consists of closed edges only. Such edges are

ideal input for calculations of grain size or shape which

are easily calculated on closed shapes. Although most

edges are determined accurately, the solution is not

perfect. In clean thin sections, the algorithm produces

edges which require little to no editing. The proce-

dure fails, however, to determine the edges of small,

narrow grains and produces unsatisfactory results in

rocks that contain alterations or regions with a �ne

grained matrix. Boundaries must be either added or

deleted by manual editing.

The results obtained so far with the genetic program-

ming edge detectors are resolve some of the problems

of those in (Goodchild and Fueten 1998). One im-

provement is that the GP edge detectors are able to

�nd edges on narrow or �ne grains, unlike the earlier

approach. A disadvantage, however, is that the GP

edge detectors are trained to work with speci�c thin

section types. The �lter sequence approach is general-

ized to work on any thin section, but with variable re-

sults. A future research project is to use GP to evolve

edge clean-up programs which will take output from

the edge detecting in (Goodchild and Fueten 1998),



and remove erroneous or missed edges. This is a con-

siderably easier task than evolving a complete edge

detecting algorithm as done in this paper.

(Fueten and Thompson 2000) use arti�cial neural nets

to evolve petrographic edge detectors, and two exam-

ples of that work are given in this paper. One advan-

tage of the ANN approach is the ability to retrain a

given ANN edge detector at any time on problematic

areas of an image, hence improving its performance.

This is impossible in GP: although it is di�cult (but

not impossible) to stop evolution in mid-stream and

manually set a new training set, it is very di�cult to

rationalize what program or programs in the popula-

tion to use as candidates for identifying problematic

performance. The best K programs in the popula-

tion may exhibit quite variable characteristics across

an image, and reconciling their overall performance is

di�cult and arbitrary. With an ANN, there is one and

only one trained net which must be retrained, and so

it is a simple matter to incrementally supplement its

training on successive sets of data.

Examples of other related research is the use of GP for

1-D edge detection (Harris and Buxton 1996), 2D edge

detection (Lucier et al. 1998), and 2D feature detection

(Daida et al. 1996, Poli 1996, Winkeler and Manjunath

1997). It would be interesting to compare our edge

detectors with others (especially those in (Lucier et

al. 1998)) on petrographic images.
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