S medeien
R. Muhammad Atif Azad and Conor Ryan

Biocomputing and Developmental Systems Group
Department of Computer Science and Information Systems
University of Limerick

July 12, 2008

Copyright is held by the author/owner(s).
GECCO'08, July 12, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

‘ Introduction
o Grammatical Evolution

. Genetic Operators

@ cauwceE
e Chorus

° Degeneracy
@ Wrapping

° Search Techniques

@ Function/terminal set must have “closure”

@ Single types only
@ Trees grow, or “bloat”

2339

@ Function/terminal set must have “closure”

+ !

. - /‘\\.
S

S AN
gigiiEg i -

+ !
/\-4 N
2/\3 /*\Ir PN
A

41

@ Single types only
@ Trees grow, or “bloat”

Introduction

Biological Phenomena

@ No simple one to one mapping
e Genes produce proteins

o Proteins combine to create phenotype

@ Linear strings
@ Genomes are always held on strings

@ Unconstrained search
@ Repair not performed

Grammatical Evolution

Grammatical Evolution

@ Grammatical Evolution (GE)
e GA to evolve programs
e Morphogenetic Effect:
e Genotype mapped to phenotype
e Phenotype is a compilable program
@ Genome governs mapping of a BNF/attribute grammar definition
to the program

(University of Limerick) Grammatical Evoluion iy 12,2008 4782 (University of Limerick) Grammatical Evoluion iy 12,2008 5/82
Grammatical Evoluion Grammatical Evoluion Grammars
Grammatical Evolution Language Definition
@ Backus Naur Form (BNF)
e Notation for expressing a languages grammar as Production Rules
@ Here genome (a binary string) is mapped to compilable C code @ BNF Grammar consists of the tuple < T,N,P,S > where
@ Can potentially evolve programs in any language, with arbitrary @ Tis Terminals set
N @ Nis Non-Terminals set
complexity !
o . @ P is Production Rules set
@ Any structure than be specified with a grammar, e.g. graphs, @ Sis Start Symbol (a member of N)
neural networks, etc. @ BNF Example
T ={8Sin,Cos, Tan, Log.+.—, /., X.(,)}
S =< expr >
682 (University of Limerick) Grammatical Evoluion iy 12,2008 7082

(University of Limerick) Grammatical Evolution July 12, 2008

2340

Grammatical Evolution Grammars.

BNF Definition

N = {expr, op, pre_op}
@ And P can be represented as:
(1) <expr> ::= <expr> <op> <expr> (A)
| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) (C)
| <var> (D)

(2) <op> ::= + (A)
| = (B)
I/ (©)
I+ (D)
(Universiy of Limerick) Grammatical Evolution iy 12,2008 8/82

Grammatical Evolution Grammars.

BNF Definition

(3) <pre-op> ::= Sin (A)
| Cos (B)
| Tan (C)
(4) <var> ::= X (A)

@ A Genetic Algorithm is used to control choice of production rule

(University of Limerick) Grammatical Evolution July 12,2008 9/82

Grammatical Evolution Architecture

Architecture

| Problem I .
ar Program
| Search Algorithim -
(Universtyof Limerick) Grammatical Evoluion July 12,2008 10/82

2341

Grammatical Evolution Comparison

Related GP Systems
Name Genome | Representation
Koza Tree Direct
Banzhaf et al Linear Direct
Gruau Tree Graph Grammar
Whigham Tree Derivation Tree
Wong & Leung | Tree Logic Grammars
Paterson Linear Grammar

@ Repair mechanisms..

@ Koza - none needed

@ Banzhaf - required for syntactically legal individuals
@ Gruau - none needed

@ Whigham - all crossovers subject to repair

@ Wong & Leung - all crossovers subject to repair

@ Paterson - under/overspecification.

(University of Limerick) Grammatical Evolution July 12,2008 11782

3 3

AN BB+
- -
- =

N N
P P

2342

| | eXpr op expr
var 4+ var var + | F |
| | | var + var
X X X | |
X X

@ In contrast GE uses
@ BNF - Paterson/Whigham/Wong etc.
@ Variable Length Linear Cl -t 1zhaf
° encodes pseud: dom numbers
@ Degenerate Genetic Code
@ Several genes map to same phenotype
e Wrap individuals
@ Use 8 bit codons
e Each codon represents at least one Production Rule
@ Gene contains many codons
@ Pseudo-random numbers determine what production rule will be

used

@ Expression of a Codon results in an Amino Acid
(choice in the derivation sequence)
@ Amino acids can combine to form a functional protein (i.e.
Terminals such as -+, X or Sin, can combine)

2343

@ Expression of a Codon results in an Amino Acid
(choice in the derivation sequence)
@ Amino acids can combine to form a functional protein (i.e.
Terminals such as +, X or Sin, can combine)
e gty
FOOCOOCOO

TuvRETON J‘

[

%*
§

~ (1)~

=
'
g

Grammatical Evolution Example

Example Individual

@ To complete BNF definition for a function written in a subset of C
we include.....

<func> := <header>

<header> ::= float symb(float X) <body>
<body> ::= <declarations><code><return>
<declarations> ::= float a;

<code> ::= a = <expr>;

<return> 1= return (a);

Note implementation details.....
e Function is limited to a single line of code
@ If required can get GE to generate multi-line functions.....modify
<code> ::= <line>;
| <line>; <code>

(University of Limerick) Grammatical Evolution July 12,2008 16182

Grammatical Evolution Example

Example Individual

@ In this subset of C all individuals of the form

float symb(float x)
{
float a;
a = <expr>;
return(a);
}

@ Only < expr > will be evolved

@ Each non-terminal is mapped to a terminal before any others
undergo a mapping process

(University of Limerick) Grammatical Evolution July 12,2008

17/82

Grammatical Evolution Example

Example Individual

@ Given the individual
[220 [203 [51 [123 [2 [45 |....what will happen?
@ <expr> has 4 production rules to choose from

(1) <expr> = <expr> <op> <expr> (A)

| (<expr> <op> <expr>) (B)
| <pre-op> (<expr>) (C)
| <var> (D)
e Taking first codon 220 we get 220 MOD 4 = 0
e Gives <expr>< op >< expr >
@ Next choice for the first <expr>

@ Taking next codon 203 we get 203 MOD 4 = 3
e Gives <var>< op >< expr >

(University of Limerick) Grammatical Evolution July 12,2008 18182

2344

Grammatical Evolution Example

Example Individual

@ <var> involves no choice
e Mapped to X...only one production
o Now have X <op>< expr >

[220 [203 [51 [123[2] 45|

@ Read next codon to choose <op>
o Next is third codon , value 51, so get 51 MOD 4 = 3
o Now have X <expr>

@ Next choice for <expr>
@ Next codon is 123 so get 123 MOD 4 = 3
@ Now have Xx <var>

@ Again <var> involves no choice
o Finally we get X + X

@ The extra codons at end of genome are simply ignored in mapping

the genotype to phenotype

(University of Limerick) Grammatical Evolution July 12,2008

19/82

Figure: Example Mapping Outline

<expr> :: =

<expr><op><expr> | (<expr><op><expr>) |<pre
| <var>

1 2 |57
220 | 203 | 51 [123 |2 | 45

3 s]
<var> <var>
|4 |,
X X

@ Not all nodes require a choice!

@ When mapping < expr >, we calculate

220 mod 4

@ However, if we were mapping < pre — op > with 220, we would
calculate

220 mod 3
because there are just three choices

@ Meaning of a codon depends on its context

2345

@ No simple one to one mapping in GE

@ Mapping Process to generate programs
@ Separate Search and Solution Spaces
e Ensure validity of individuals

e Remove language dependency
e Maintain diversity

GENETIC CODE PARTIAL FHENOTVPE

conms v AT
[P ey
osc

[T S
asn

@ Neutral Mutations
e Mutations having no effect on Phenotype Fitness
oo e @ Help preserve individual validity
[y @ Gradual accumulation of mutations without harming functionality
-
- o Revisit later
For Ruke where
codes 2 = <linex
| <code: i
L. (GE Giene Integer Value) MOD 2 = Rule Nutsher
Every

socand value gives the same phenctype

Figure: The Degenerate Genetic Code

@ Individuals are strings of random numbers
@ No guarantee that they will terminate

e Individuals can be very short.

@ Generate a spread of individual sizes.
<expr> ::i= <expr> <op> <expr> e Based on Ramped Half and Half initialisation in GP
| (<expr> <op> <expr>) @ For all tree depths from 2 to maximum size
@ Generate an equal number of trees of that size
| <pre-op> (<expr>) o Use fullfor 50%
| <var> @ Use grow for 50%
@ Production @ Similar in GE, but generate derivation trees of equivalent size
<expr>-><var>
always leads to termination
@ <expr>

is the start symbol

@ On average, a quarter of all individuals are just one point

2346

Grammatical Evolution Iniialisation

Sensible Initialisation - 2

@ Record which number choice was made for each step
@ Perform an “unmod” on list of choices
@ Produce a number between 0 and 255 that produces the original
number when moded by the number of choices for that
productionrule

@ Ensures that allindividuals are valid
@ Reduces the number of clones (easier to detect)
@ Eliminates single point individuals (if desired)

Genetic Operators

Genetic Operators

@ Perform unconstrained Evolutionary Search
@ GE employs standard operators of Genetic Algorithms
e Point mutation, one-point crossover etc.
@ Sometimes modified version of one-point crossover, Sensible
Crossover, is used:
o Effective length
e Actual length

(Universit of Limerick) Grammaical Evolution July 12,2008 28782 (Univrsit of Limerick) Grammatical Evolution duly 12,2008 29782
Genetic Operalors Genelc Operators ~ Crossover
Genetic Operators Crossover
@ Perform unconstrained Evolutionary Sear.ch) o What actually happens in crossover?
@ GE employs standard operators of Genetic Algorithms . T\ -
N ¥ X @ Preliminary : Visualisation.
@ Point mutation, one-point crossover etc.
@ Sometimes modified version of one-point crossover, Sensible
Crossover, is used:
o Effective length
e Actual length
lalbleidle|f]
[A[B[C[D
(Univrsily of Limerick) Grammaical Evolution July 12,2008 29782 (Univrsit of Limerick) Grammatical Evolution July 12,2008 30782

2347

@ What actually happens in crossover?
@ Preliminary : Visualisation.

@ What actually happens in crossover?
@ Preliminary : Visualisation.

AL
i

[» BN

i DIEi

@ What actually happens in crossover?
@ Preliminary : Visualisation.
A

AT
F

]

AR

2348

@ What actually happens in crossover?
@ Preliminary : Visualisation.

@ Analyse 1-point crossover in terms of derivation & syntax trees
@ Use a closed grammar

E::= (+ E E) {0}
I (- EE) {1}
| (x E E) {2}
1 (3 EE) {3}
X {4}
Y {5}
@ No polymorphism, because there is only one non-terminal, i.e.
one context

[8[6]4[5794]5[2]0]

g (Bmod6=2)

e

A

8[6[4[57974]5[2]0]

E

(6 maod 6 =0)

2349

[8[6[4]5[9]4[5[2]0]

g (@med6=4)

E T

e

A

x

‘8[6[4]s]o[4]5[2T0’

[8l6]a[5[[4]5[210]

@ Parent left with “spine”

@ Tail swapped with other parent
4594520522

@ Unmapped E terms must be mapped
@ Use tail from other parent

@ With more than one non-terminal, a codon could be used
differently in the offspring

100201 100201

100201

var | expr op expr
+*=1%

-3 oae
2350

@ With more than one non-terminal, a codon could be used
differently in the offspring

10020 100201 100201

_ﬁk
o o
|

expr 1= wvar | expr op expr
I #

2

@ With more than one non-terminal, a codon could be used
differently in the offspring

109 39 100201 100201
% ‘;ll:.r

EApT O

g i

vlnr = ! expr u= var|exprop expr
g ¥y opr u= +1*|=1%
war xly

@ With more than one non-terminal, a codon could be used
differently in the offspring

10020 100201 roo2o01

. .

c?w o)

X

u.rr y

var - var

o—

expr 1= wvar | expr op expr
opr u= +1*|=1%
var

xly

@ Symbolic Regression Grammars
Closed Grammar
E :1:= x

| (+ E E)

| (x EE)

2351

| (-EE) | (/EE)
And the context free grammar:
Exp ::=
Var
Op :

Var | Exp Op Exp

* =1/

@ Santa Fe ant trail grammars
Closed grammar

E ::= move() | left() | right()
| iffoodahead(E E) | prog2(E, E)
Context free grammar:

Code : Line | prog2(Line, Code)
Line ::= Condition | Action

Action move () | right() | left()
Condition : iffoodahead (Code, Code)

Both ripple crossovers again start more slowly, but reach similar
fitness.

2352

Success rates on the Santa Fe ant trail problem, averaged over 100
runs, for 250 generations. Ripple crossovers start slowly, but reach
higher fitness.

@ Homologous Crossover

e Try not to cross in identical areas
@ Uniform

@ Same size homologous
@ Same size two point

@ Record rule histories for each individual
Codon fuagers T 11 48 | 7 280 0 31
Mol

raRENT L
a0 iy g

Cobubungen 711 @ T4 3

Rbws 81 8 483

@ Align rule histories of parents

@ Record rule histories for each individual
o banagers

IR R]
[

FARENT |
a0 iy g

Cidsluegees 018 T4 3 | W0
[.

@ Align rule histories of parents

*HIJIIIIIWI
Melm DL £0 3 1 @ PANENTZ

2353

@ Choose second point outside of area of similarity

[
o

o
a
w
K
»
?

Ratio of the average fragment size being swapped and the average
chromosome length at each generation averaged over 20 runs.
(os @y zs 2 2 9ac
| Unwesioilme) GammalcalEwhion iy12.2008 45/e2

@ Appears Crossover works
@ 50% material exchange with 1-point over entire runs

@ If useful material exchanged then swapping random fragments
should degrade performance?

s oac
2354

@ Take a cue from GP crossover - The “Eve” Effect :
e Allindividuals in the final generation tend to evolve from the same

ancestor
(higher)
Gen. of
or Level of

AN AN .
ATV |

(lower)

@ The upper parts of individuals tend to come from the same
individual

@ Individuals grow from left to right

%
Decreasing prob, of identical
decoded values

2355

@ Area immediately beyond region of similarity is “region of

discovery” :
J
1§
e — |
Inds. ————
I
[——

Region of Region of
Similarity Discovery

Garet O] Explanaion
Size of region of similarity increases over time

@ Area immediately beyond region of similarity is “region of
discovery” :

Inds.]

[
Region of Region of
Similarity Discovery

GaretOpeaiaR| Explanaion
Size of region of similarity increases over time

@ Area immediately beyond region of similarity is “region of
discovery” :

]

— - —
Inds.]

| B FH]

[
Region of Region of
Similarity Discovery

(University of Limerick) Grammatical Evoluion July 12,2008 50/62 (University of Limerick) Grammatical Evoluion July 12,2008 50/62
GAUGE Introduction GAGE Mapping
The GAuGE System Mapping in the GAUGE System
Transform binary string into integer string:
Genetic Algorithms using Grammatical Evolution o Problem has 4 variables (¢ = 4), with range 0. 7;
@ Choose position field size (pfs = 2);
Purpose: @ Choose value field size (vfs = 4);
@ Position independent genetic algorithm; @ Calculate binary string length:
@ No under- or over-specification; .
@ Independent of search engine. L = (pfs + vfs) x { = (2+4) x 4 = 24 bits
Based on mapping process (similar to GE):
@ Specify position and value of each variable at genotypic level;
@ Map genotype strings into functional phenotype strings.
(Universityof Limerick) Grammatical Evoluion Juy12,2008 5162 (University of Limerick) Grammatical Evoluion Jiy12,2008 52/

2356

GAGE Mapping
Mapping in the GAUGE System
Transform binary string into integer string:
@ Problem has 4 variables (¢ = 4), with range 0...7;
@ Choose position field size (pfs = 2);

@ Choose value field size (vfs = 4);
@ Calculate binary string length:

L = (pfs + vis) x { = (2 +4) x 4 = 24 bits

(University of Limerick) Grammatical Evolution July 12,2008

52/82

GAGE Mapping
Mapping in the GAUGE System
Transform binary string into integer string:
@ Problem has 4 variables (¢ = 4), with range 0...7;
@ Choose position field size (pfs = 2);

@ Choose value field size (vfs = 4);
@ Calculate binary string length:

L = (pfs + vis) x { = (2 +4) x 4 = 24 bits

(University of Limerick) Grammatical Evolution July 12,2008

52/82

Mapping in the GAUGE System

Transform binary string into integer string:
@ Problem has 4 variables (¢ = 4), with range 0...7;
@ Choose position field size (pfs = 2);
@ Choose value field size (vfs = 4);
@ Calculate binary string length:

L = (pfs + vis) x { = (2 +4) x 4 = 24 bits

Binary string
[ooT1Tofo]1 a0 a1 o1 o1 o1 oo o1 oo x]0]

RS s

[0T9T2]

Integer string

(University of Limerick) Grammatical Evolution July 12,2008

52/82

2357

GAUGE Mapping

Calculating Phenotype

Integer string

Phenotype
0123

(University of Limerick) Grammatical Evolution July 12,2008

53/82

Calculating Phenotype

GAUGE Mapping

Phenotype

Integer string

0123

Calculating Phenotype

GAUGE

Mapping

Integer string
v p v

(Universit of Limerick) Grammaical Evolution July 12,2008 54782 (Univrsit of Limerick) Grammatical Evolution July 12,2008 55782
GAUGE Mapping GAUGE Mapping
Calculating Phenotype The GAuGE System
Integer string Integer string
Phenotype Phenotype
(Univrsily of Limerick) Grammaical Evolution July 12,2008 56782 (Univrsit of Limerick) Grammatical Evolution July 12,2008 57782

2358

@ GAUGE adapts the representation to the problem
@ Useful where interactions between genes not known
@ GAuUGE is cheap
e Far less complicated than algorithms that try to model gene
interactions/relationships
@ GAuUGE discovers saliency
@ Most important genes end up on left side of strings.

@ Mapping Independent Codons - no ripple effect
@ Codon % Total number of rules in the grammar
@ Competition between the Genes

@ Concentration Table

@ Variable length binary strings

@ 8 bit codons

S= <expr>

(0) <expr> ::= <expr> <op> <expr>
(1) | (<expr> <op> <expr>)
(2) | <pre-op> (<expr>)
(3) | <var>

(4) <op> ::= +

5) 1 -

(6) | =*

1/

(8) <pre-op>::= Sin

(9) | Cos

(B) | Exp

(B) | Log

(C) <var> : .0

(@) | X

2359

Four non-terminals:
@ <expr>0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D48D9133

3|4 56 7|8
0[0 00 0]0

o|©

Chorus troducton Chorus ntroducton
Mapping - 2 Mapping - 3
Four non-terminals: Four non-terminals:

@ <expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D @ <expr> 0.3, <op> 4..7, <pre-op> 8..B, <var> C..D
209 102 190 55 65 15 255 87 209 102 190 55 65 15 255 87
D48D9 133 D48D9133

0123|456 7|89 AB[CD 0123|456 7|89 AB[CD
<e> 0 0O0O0l0OO0OOO[OOOO|[O O <e> 00O0O|0OO0O0O|0OO0O0O0|O0 O
<e><o><e> 0 0 0 O[1 0 O O|1 1 0O O[O0 2 <e><o><e> 0 0 0 Of1 0 O Oj1 1 0 0|0 2
<v><o><e> 0 0 0 0|1 0 O Oj1 1 0 0|0 2
(University of Limerick) Grammatical Evoluion July 12,2008 62/62 (University of Limerick) Grammatical Evoluion Sy 12,2008 6362
Chorus Itroducton Chorus Itroducton

Mapping - 4 Mapping - 5
Four non-terminals: Four non-terminals:

@ <expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D @ <expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D
209 102 190 55 65 15 255 87 209 102 190 55 65 15 255 87
D48D9133 D48D9133

0 123|456 7|89 AB|CD 0 1 2 3|4586 7|89 AB|CD
<e> 000 O0(0O O OO0 O O OO0 O <e> 0 0O0O0/0O0O0O|0O0O0UO|O O
<e><o><e> 0 0 0 O[1 0 0 O|1 1 0 0|0 2 <e><o><e> 0 0 0 0|1 0 O O|1 1 0 0|0 2
<v><o><e> 0 0 0 0|1 0 0 Of1 1 0 0|0 2 <v><o><e> 0 0 0 0|1 0 O Of1 1 0 0|0 2
X<o><e> 00O0O|1 0OT O|1T 1 0 0|0 1 X<o><e> 0 0O0O|1T OOO0O|1T 1 0 0|0 1
X+<e> 0 0O0O|OOOTO|1T 1 0 0|0 1
(Universityof Limerick) Grammatical Evoluion July 12,2008 64/62 (University of Limerick) Grammatical Evoluion July 12,2008 65/62

2360

Four non-terminals:
@ <expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D48D9133

SR =R

<e>
<e><o><e>
<v><o><e>
X<o><e>
X+<e>
Xe<v>

cooooolo
coooool=
oo ooooln
coocooolw
cooooolon
cocoocoolo
cooooolN
B e -1
- = 2 2 a0l

C
0
0
0
0
0
0

Four non-terminals:
@ <expr>0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D48D9133

0 123|456 7|89 AB|CD
<e> 0 00 O0[0O O0OOO|[O OO O[O O
<e><o><e> 0 0 0 O|1 O O O|1 1 O OO0 2
<v><o><e> 0 0 0 0|1 0 O O|1 1 0 0|0 2
X<o><e> 0 0O0O|1T OOO|1T 1T 0 0|0 1
X+<e> 0 0O0O0OO0O0OTO O[T 1T 0 O[O0 1
X+<v> 0 0O0O|OOOTO|1T 1 0 0|0 1
X+X 0 0O0OO0OO0OO|T 1T 0 O0]0 O

o
o
W

"
"
)
2
?

2361

@ Conclusions:

e Improves genetic diversity
e Improves frequency of success on Santa Fe ant trail
@ Tuneable/Evolvable Degeneracy a good idea?

@ Wrap Count & Invalid Individuals

Figure: Number of indivi pped on the sy ic regression and Santa
Fe trail problems.

2362

Figure: The number of invalid individuals for each generation in the presence
and absence of wrapping.

@ Freq. of Success

Figure: Figure shows the cumulative frequency of success measures on both
problems with and without the presence of wrapping.

@ Actual length
o Entire length of individual
@ Effective length
@ Number of codons used
o (Note! Can be less than or greater than actual length)

g i O s
.
g i O s
[

2363

@ For SR (left) wrapping off has the longest actual length
@ Effective length virtually the same

@ For SF (right) wrapping on longer in both cases.

@ Conclusions:

@ Wrapping improves frequency of success on Santa Fe ant trail
e No effect on Symbolic Regression cumulative frequency
@ Provides some constraint on genome lengths

Wrapping Wrapping & Degeneracy

Wrapping & Degeneracy

@ Removing both....
e Cumulative frequency of success degrades
e Genome lengths increase over 60% on Symbolic Regression
@ Genetic diversity no worse than without degeneracy alone

Search Techniques Other Algorithms

Search Techniques

| Problem I .

Gi

| Search Algorithim -

Other techniques
e Simulated Annealing
e Hill Climbing
e Random Search

(University of Limerick) Grammatical Evoluion July 12,2008 78162 (University of Limerick) Grammatical Evoluion July 12,2008 70/62
Search Techniques Comparison he Future
Comparison The Future
@ Three standard GP problems
o Santa Fe trail @ Evolving machine code (Machine Code Grammatical Evolution -

e Symbolic Integration (integrate Cos(x) + 2x + 1)
e Symbolic regression x* + x% + x2 + x
Metaheuristic

Problem RS |[HC|SA [GA
Santa Fe 54% | 7% | 14% | 81%
Symbolic Integration | 66% | 4% | 3% | 100%
Symbolic Regression | 0% | 0% | 0% | 59%

(University of Limerick) Grammatical Evolution July 12,2008 80182

2364

MCGE)
The Grammar (Attribute Grammars)
Search & Evolutionary Dynamics
Applications
Newest Code Release

e http://www.grammaticalevolution.org/libGE

(University of Limerick) Grammatical Evolution July 12,2008 81/82

@ Programmer
e EUR 31,000 - EUR 33,000
@ Possible to register for part time PhD
@ PhD Students
e EUR 24,000

o
o
"
w
o
A
?

2365

