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‘ Introduction
o Grammatical Evolution

. Genetic Operators

@ cauwceE
e Chorus

° Degeneracy
@ Wrapping

° Search Techniques

@ Function/terminal set must have “closure”

@ Single types only
@ Trees grow, or “bloat”
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@ Function/terminal set must have “closure”
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@ Single types only
@ Trees grow, or “bloat”




Introduction

Biological Phenomena

@ No simple one to one mapping
e Genes produce proteins

o Proteins combine to create phenotype

@ Linear strings
@ Genomes are always held on strings

@ Unconstrained search
@ Repair not performed

Grammatical Evolution

Grammatical Evolution

@ Grammatical Evolution (GE)
e GA to evolve programs
e Morphogenetic Effect:
e Genotype mapped to phenotype
e Phenotype is a compilable program
@ Genome governs mapping of a BNF/attribute grammar definition
to the program
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Grammatical Evoluion Grammatical Evoluion  Grammars
Grammatical Evolution Language Definition
@ Backus Naur Form (BNF)
e Notation for expressing a languages grammar as Production Rules
@ Here genome (a binary string) is mapped to compilable C code @ BNF Grammar consists of the tuple < T,N,P,S > where
@ Can potentially evolve programs in any language, with arbitrary @ Tis Terminals set
N @ Nis Non-Terminals set
complexity !
o . @ P is Production Rules set
@ Any structure than be specified with a grammar, e.g. graphs, @ Sis Start Symbol (a member of N)
neural networks, etc. @ BNF Example
T ={8Sin,Cos, Tan, Log.+.—, /., X.(,)}
S =< expr >
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Grammatical Evolution  Grammars.

BNF Definition

N = {expr, op, pre_op}
@ And P can be represented as:
(1) <expr> ::= <expr> <op> <expr> (A)
| ( <expr> <op> <expr> ) (B)
| <pre-op> ( <expr> ) (C)
| <var> (D)

(2) <op> ::= + (A)
| = (B)
I/ (©)
I+ (D)
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Grammatical Evolution  Grammars.

BNF Definition

(3) <pre-op> ::= Sin (A)
| Cos (B)
| Tan (C)
(4) <var> ::= X (A)

@ A Genetic Algorithm is used to control choice of production rule

(University of Limerick) Grammatical Evolution July 12,2008 9/82

Grammatical Evolution  Architecture

Architecture

| Problem I .
ar Program
| Search Algorithim -
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Grammatical Evolution  Comparison

Related GP Systems
Name Genome | Representation
Koza Tree Direct
Banzhaf et al Linear Direct
Gruau Tree Graph Grammar
Whigham Tree Derivation Tree
Wong & Leung | Tree Logic Grammars
Paterson Linear Grammar

@ Repair mechanisms..

@ Koza - none needed

@ Banzhaf - required for syntactically legal individuals
@ Gruau - none needed

@ Whigham - all crossovers subject to repair

@ Wong & Leung - all crossovers subject to repair

@ Paterson - under/overspecification.
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| | eXpr op expr
var 4+ var var + | F |
| | | var + var
X X X | |
X X

@ In contrast GE uses
@ BNF - Paterson/Whigham/Wong etc.
@ Variable Length Linear Cl -t 1zhaf
° encodes pseud: dom numbers
@ Degenerate Genetic Code
@ Several genes map to same phenotype
e Wrap individuals
@ Use 8 bit codons
e Each codon represents at least one Production Rule
@ Gene contains many codons
@ Pseudo-random numbers determine what production rule will be

used

@ Expression of a Codon results in an Amino Acid
(choice in the derivation sequence)
@ Amino acids can combine to form a functional protein (i.e.
Terminals such as -+, X or Sin, can combine)
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@ Expression of a Codon results in an Amino Acid
(choice in the derivation sequence)
@ Amino acids can combine to form a functional protein (i.e.
Terminals such as +, X or Sin, can combine)
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Grammatical Evolution  Example

Example Individual

@ To complete BNF definition for a function written in a subset of C
we include.....

<func> := <header>

<header> ::= float symb(float X) <body>
<body> ::= <declarations><code><return>
<declarations> ::= float a;

<code> ::= a = <expr>;

<return> 1= return (a);

Note implementation details.....
e Function is limited to a single line of code
@ If required can get GE to generate multi-line functions.....modify
<code> ::= <line>;
| <line>; <code>
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Grammatical Evolution  Example

Example Individual

@ In this subset of C all individuals of the form

float symb(float x)
{
float a;
a = <expr>;
return(a);
}

@ Only < expr > will be evolved

@ Each non-terminal is mapped to a terminal before any others
undergo a mapping process

(University of Limerick) Grammatical Evolution July 12,2008
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Grammatical Evolution  Example

Example Individual

@ Given the individual
[220 [ 203 [ 51 [ 123 [ 2 [ 45 |....what will happen?
@ <expr> has 4 production rules to choose from

(1) <expr> = <expr> <op> <expr> (A)

| ( <expr> <op> <expr> ) (B)
| <pre-op> ( <expr> ) (C)
| <var> (D)
e Taking first codon 220 we get 220 MOD 4 = 0
e Gives <expr>< op >< expr >
@ Next choice for the first <expr>

@ Taking next codon 203 we get 203 MOD 4 = 3
e Gives <var>< op >< expr >
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Grammatical Evolution  Example

Example Individual

@ <var> involves no choice
e Mapped to X...only one production
o Now have X <op>< expr >

[220 [203 [ 51 [123[ 2] 45|

@ Read next codon to choose <op>
o Next is third codon , value 51, so get 51 MOD 4 = 3
o Now have X <expr>

@ Next choice for <expr>
@ Next codon is 123 so get 123 MOD 4 = 3
@ Now have Xx <var>

@ Again <var> involves no choice
o Finally we get X + X

@ The extra codons at end of genome are simply ignored in mapping

the genotype to phenotype

(University of Limerick) Grammatical Evolution July 12,2008
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Figure: Example Mapping Outline

<expr> :: =

<expr><op><expr> | (<expr><op><expr>) |<pre
| <var>

1 2 |57
220 | 203 | 51 [ 123 |2 | 45

3 s ]
<var> <var>
|4 |,
X X

@ Not all nodes require a choice!

@ When mapping < expr >, we calculate

220 mod 4

@ However, if we were mapping < pre — op > with 220, we would
calculate

220 mod 3
because there are just three choices

@ Meaning of a codon depends on its context
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@ No simple one to one mapping in GE

@ Mapping Process to generate programs
@ Separate Search and Solution Spaces
e Ensure validity of individuals

e Remove language dependency
e Maintain diversity
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@ Neutral Mutations
e Mutations having no effect on Phenotype Fitness
oo e @ Help preserve individual validity
[y @ Gradual accumulation of mutations without harming functionality
-
- o Revisit later
For Ruke where
codes 2 = <linex
| <code: i
L. (GE Giene Integer Value) MOD 2 = Rule Nutsher
Every

socand value gives the same phenctype

Figure: The Degenerate Genetic Code

@ Individuals are strings of random numbers
@ No guarantee that they will terminate

e Individuals can be very short.

@ Generate a spread of individual sizes.
<expr> ::i= <expr> <op> <expr> e Based on Ramped Half and Half initialisation in GP
| ( <expr> <op> <expr> ) @ For all tree depths from 2 to maximum size
@ Generate an equal number of trees of that size
| <pre-op> ( <expr> ) o Use fullfor 50%
| <var> @ Use grow for 50%
@ Production @ Similar in GE, but generate derivation trees of equivalent size
<expr>-><var>
always leads to termination
@ <expr>

is the start symbol

@ On average, a quarter of all individuals are just one point
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Grammatical Evolution  Iniialisation

Sensible Initialisation - 2

@ Record which number choice was made for each step
@ Perform an “unmod” on list of choices
@ Produce a number between 0 and 255 that produces the original
number when moded by the number of choices for that
productionrule

@ Ensures that allindividuals are valid
@ Reduces the number of clones (easier to detect)
@ Eliminates single point individuals (if desired)

Genetic Operators

Genetic Operators

@ Perform unconstrained Evolutionary Search
@ GE employs standard operators of Genetic Algorithms
e Point mutation, one-point crossover etc.
@ Sometimes modified version of one-point crossover, Sensible
Crossover, is used:
o Effective length
e Actual length
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Genetic Operalors Genelc Operators ~ Crossover
Genetic Operators Crossover
@ Perform unconstrained Evolutionary Sear.ch ) o What actually happens in crossover?
@ GE employs standard operators of Genetic Algorithms . T\ -
N ¥ X @ Preliminary : Visualisation.
@ Point mutation, one-point crossover etc.
@ Sometimes modified version of one-point crossover, Sensible
Crossover, is used:
o Effective length
e Actual length
lalbleidle|f]
[A[B[C[D
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@ What actually happens in crossover?
@ Preliminary : Visualisation.

@ What actually happens in crossover?
@ Preliminary : Visualisation.
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@ What actually happens in crossover?
@ Preliminary : Visualisation.
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@ What actually happens in crossover?
@ Preliminary : Visualisation.




@ Analyse 1-point crossover in terms of derivation & syntax trees
@ Use a closed grammar

E::= (+ E E) {0}
I (- EE) {1}
| (x E E) {2}
1 (3 EE) {3}
X {4}
Y {5}
@ No polymorphism, because there is only one non-terminal, i.e.
one context

[8[6]4[5794]5[2]0]

g (Bmod6=2)

e

A

8[6[4[57974]5[2]0]

E

(6 maod 6 =0)
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‘8[6[4]s]o[4]5[2T0’

[8l6]a[5[[4]5[210]

@ Parent left with “spine”

@ Tail swapped with other parent
4594520522

@ Unmapped E terms must be mapped
@ Use tail from other parent

@ With more than one non-terminal, a codon could be used
differently in the offspring

100201 100201

100201

var | expr op expr
+*=1%

-3 oae
2350




@ With more than one non-terminal, a codon could be used
differently in the offspring

10020 100201 100201

_ﬁk
o o
|

expr 1= wvar | expr op expr
I #

2

@ With more than one non-terminal, a codon could be used
differently in the offspring

109 39 100201 100201
% ‘;ll:.r

EApT O

g i

vlnr = ! expr u= var|exprop expr
g ¥y opr u= +1*|=1%
war xly

@ With more than one non-terminal, a codon could be used
differently in the offspring

10020 100201 roo2o01

. .

c?w o)

X

u.rr y

var - var

o—

expr 1= wvar | expr op expr
opr u= +1*|=1%
var

xly

@ Symbolic Regression Grammars
Closed Grammar
E :1:= x

| (+ E E)

| (x EE)
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| (-EE) | (/EE)
And the context free grammar:
Exp ::=
Var
Op :

Var | Exp Op Exp

* =1/




@ Santa Fe ant trail grammars
Closed grammar

E ::= move() | left() | right()
| iffoodahead(E E) | prog2(E, E)
Context free grammar:

Code : Line | prog2(Line, Code)
Line ::= Condition | Action

Action move () | right() | left()
Condition : iffoodahead (Code, Code)

Both ripple crossovers again start more slowly, but reach similar
fitness.
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Success rates on the Santa Fe ant trail problem, averaged over 100
runs, for 250 generations. Ripple crossovers start slowly, but reach
higher fitness.




@ Homologous Crossover

e Try not to cross in identical areas
@ Uniform

@ Same size homologous
@ Same size two point

@ Record rule histories for each individual
Codon fuagers T 11 48 | 7 280 0 31
Mol

raRENT L
a0 iy g

Cobubungen 711 @ T4 3

Rbws 81 8 483

@ Align rule histories of parents

@ Record rule histories for each individual
o banagers

IR R ]
[

FARENT |
a0 iy g

Cidsluegees 018 T4 3 | W0
[ .

@ Align rule histories of parents

*HIJIIIIIWI
Melm DL £0 3 1 @  PANENTZ
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@ Choose second point outside of area of similarity
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Ratio of the average fragment size being swapped and the average
chromosome length at each generation averaged over 20 runs.
(os @y zs 2 2 9ac
| Unwesioilme)  GammalcalEwhion  iy12.2008  45/e2

@ Appears Crossover works
@ 50% material exchange with 1-point over entire runs

@ If useful material exchanged then swapping random fragments
should degrade performance?

s oac
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@ Take a cue from GP crossover - The “Eve” Effect :
e Allindividuals in the final generation tend to evolve from the same

ancestor
(higher)
Gen. of
or Level of

AN AN .
ATV |

(lower)

@ The upper parts of individuals tend to come from the same
individual

@ Individuals grow from left to right

%
Decreasing prob, of identical
decoded values
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@ Area immediately beyond region of similarity is “region of

discovery” :
J
1§
e — |
Inds. ————
I
[ ——

Region of Region of
Similarity Discovery




Garet O] Explanaion
Size of region of similarity increases over time

@ Area immediately beyond region of similarity is “region of
discovery” :

Inds. ]

[
Region of Region of
Similarity Discovery

GaretOpeaiaR| Explanaion
Size of region of similarity increases over time

@ Area immediately beyond region of similarity is “region of
discovery” :

]

— - —
Inds. ]

| B FH]

[
Region of Region of
Similarity Discovery
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GAUGE  Introduction GAGE  Mapping
The GAuGE System Mapping in the GAUGE System
Transform binary string into integer string:
Genetic Algorithms using Grammatical Evolution o Problem has 4 variables (¢ = 4), with range 0. 7;
@ Choose position field size (pfs = 2);
Purpose: @ Choose value field size (vfs = 4);
@ Position independent genetic algorithm; @ Calculate binary string length:
@ No under- or over-specification; .
@ Independent of search engine. L = (pfs + vfs) x { = (2+4) x 4 = 24 bits
Based on mapping process (similar to GE):
@ Specify position and value of each variable at genotypic level;
@ Map genotype strings into functional phenotype strings.
(Universityof Limerick) Grammatical Evoluion Juy12,2008 5162 (University of Limerick) Grammatical Evoluion Jiy12,2008 52/
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GAGE  Mapping
Mapping in the GAUGE System
Transform binary string into integer string:
@ Problem has 4 variables (¢ = 4), with range 0...7;
@ Choose position field size (pfs = 2);

@ Choose value field size (vfs = 4);
@ Calculate binary string length:

L = (pfs + vis) x { = (2 +4) x 4 = 24 bits

(University of Limerick) Grammatical Evolution July 12,2008
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GAGE  Mapping
Mapping in the GAUGE System
Transform binary string into integer string:
@ Problem has 4 variables (¢ = 4), with range 0...7;
@ Choose position field size (pfs = 2);

@ Choose value field size (vfs = 4);
@ Calculate binary string length:

L = (pfs + vis) x { = (2 +4) x 4 = 24 bits
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Mapping in the GAUGE System

Transform binary string into integer string:
@ Problem has 4 variables (¢ = 4), with range 0...7;
@ Choose position field size (pfs = 2);
@ Choose value field size (vfs = 4);
@ Calculate binary string length:

L = (pfs + vis) x { = (2 +4) x 4 = 24 bits

Binary string
[ooT1Tofo]1 a0 a1 o1 o1 o1 oo o1 oo x]0]

RS s

[0T9T2]

Integer string

(University of Limerick) Grammatical Evolution July 12,2008
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GAUGE  Mapping

Calculating Phenotype

Integer string

Phenotype
0123

(University of Limerick) Grammatical Evolution July 12,2008
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Calculating Phenotype

GAUGE  Mapping

Phenotype

Integer string

0123

Calculating Phenotype

GAUGE

Mapping

Integer string
v p v
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GAUGE  Mapping GAUGE  Mapping
Calculating Phenotype The GAuGE System
Integer string Integer string
Phenotype Phenotype
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@ GAUGE adapts the representation to the problem
@ Useful where interactions between genes not known
@ GAuUGE is cheap
e Far less complicated than algorithms that try to model gene
interactions/relationships
@ GAuUGE discovers saliency
@ Most important genes end up on left side of strings.

@ Mapping Independent Codons - no ripple effect
@ Codon % Total number of rules in the grammar
@ Competition between the Genes

@ Concentration Table

@ Variable length binary strings

@ 8 bit codons

S= <expr>

(0) <expr> ::= <expr> <op> <expr>
(1) | ( <expr> <op> <expr> )
(2) | <pre-op> ( <expr> )
(3) | <var>

(4) <op> ::= +

5) 1 -

(6) | =*

1/

(8) <pre-op>::= Sin

(9) | Cos

(B) | Exp

(B) | Log

(C) <var> : .0

(@) | X
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Four non-terminals:
@ <expr>0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D48D9133

3|4 56 7|8
0[0 00 0]0

o|©




Chorus  troducton Chorus  ntroducton
Mapping - 2 Mapping - 3
Four non-terminals: Four non-terminals:

@ <expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D @ <expr> 0.3, <op> 4..7, <pre-op> 8..B, <var> C..D
209 102 190 55 65 15 255 87 209 102 190 55 65 15 255 87
D48D9 133 D48D9133

0123|456 7|89 AB[CD 0123|456 7|89 AB[CD
<e> 0 0O0O0l0OO0OOO[OOOO|[O O <e> 00O0O|0OO0O0O|0OO0O0O0|O0 O
<e><o><e> 0 0 0 O[1 0 O O|1 1 0O O[O0 2 <e><o><e> 0 0 0 Of1 0 O Oj1 1 0 0|0 2
<v><o><e> 0 0 0 0|1 0 O Oj1 1 0 0|0 2
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Chorus  Itroducton Chorus  Itroducton

Mapping - 4 Mapping - 5
Four non-terminals: Four non-terminals:

@ <expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D @ <expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D
209 102 190 55 65 15 255 87 209 102 190 55 65 15 255 87
D48D9133 D48D9133

0 123|456 7|89 AB|CD 0 1 2 3|4586 7|89 AB|CD
<e> 000 O0(0O O OO0 O O OO0 O <e> 0 0O0O0/0O0O0O|0O0O0UO|O O
<e><o><e> 0 0 0 O[1 0 0 O|1 1 0 0|0 2 <e><o><e> 0 0 0 0|1 0 O O|1 1 0 0|0 2
<v><o><e> 0 0 0 0|1 0 0 Of1 1 0 0|0 2 <v><o><e> 0 0 0 0|1 0 O Of1 1 0 0|0 2
X<o><e> 00O0O|1 0OT O|1T 1 0 0|0 1 X<o><e> 0 0O0O|1T OOO0O|1T 1 0 0|0 1
X+<e> 0 0O0O|OOOTO|1T 1 0 0|0 1
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Four non-terminals:
@ <expr> 0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D48D9133

SR =R

<e>
<e><o><e>
<v><o><e>
X<o><e>
X+<e>
Xe<v>

cooooolo
coooool=
oo ooooln
coocooolw
cooooolon
cocoocoolo
cooooolN
B e -1
- = 2 2 a0l

C
0
0
0
0
0
0

Four non-terminals:
@ <expr>0..3, <op> 4..7, <pre-op> 8..B, <var> C..D

209 102 190 55 65 15 255 87
D48D9133

0 123|456 7|89 AB|CD
<e> 0 00 O0[0O O0OOO|[O OO O[O O
<e><o><e> 0 0 0 O|1 O O O|1 1 O OO0 2
<v><o><e> 0 0 0 0|1 0 O O|1 1 0 0|0 2
X<o><e> 0 0O0O|1T OOO|1T 1T 0 0|0 1
X+<e> 0 0O0O0OO0O0OTO O[T 1T 0 O[O0 1
X+<v> 0 0O0O|OOOTO|1T 1 0 0|0 1
X+X 0 0O0OO0OO0OO|T 1T 0 O0]0 O

o
o
W

"
"
)
2
?
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@ Conclusions:

e Improves genetic diversity
e Improves frequency of success on Santa Fe ant trail
@ Tuneable/Evolvable Degeneracy a good idea?

@ Wrap Count & Invalid Individuals

Figure: Number of indivi pped on the sy ic regression and Santa
Fe trail problems.
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Figure: The number of invalid individuals for each generation in the presence
and absence of wrapping.




@ Freq. of Success

Figure: Figure shows the cumulative frequency of success measures on both
problems with and without the presence of wrapping.

@ Actual length
o Entire length of individual
@ Effective length
@ Number of codons used
o (Note! Can be less than or greater than actual length)

g i O s
.
g i O s
[
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@ For SR (left) wrapping off has the longest actual length
@ Effective length virtually the same

@ For SF (right) wrapping on longer in both cases.

@ Conclusions:

@ Wrapping improves frequency of success on Santa Fe ant trail
e No effect on Symbolic Regression cumulative frequency
@ Provides some constraint on genome lengths




Wrapping  Wrapping & Degeneracy

Wrapping & Degeneracy

@ Removing both....
e Cumulative frequency of success degrades
e Genome lengths increase over 60% on Symbolic Regression
@ Genetic diversity no worse than without degeneracy alone

Search Techniques  Other Algorithms

Search Techniques

| Problem I .

Gi

| Search Algorithim -

Other techniques
e Simulated Annealing
e Hill Climbing
e Random Search
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Search Techniques  Comparison he Future
Comparison The Future
@ Three standard GP problems
o Santa Fe trail @ Evolving machine code (Machine Code Grammatical Evolution -

e Symbolic Integration (integrate Cos(x) + 2x + 1)
e Symbolic regression x* + x% + x2 + x
Metaheuristic

Problem RS |[HC|SA [GA
Santa Fe 54% | 7% | 14% | 81%
Symbolic Integration | 66% | 4% | 3% | 100%
Symbolic Regression | 0% | 0% | 0% | 59%

(University of Limerick) Grammatical Evolution July 12,2008 80182
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MCGE)
The Grammar (Attribute Grammars)
Search & Evolutionary Dynamics
Applications
Newest Code Release

e http://www.grammaticalevolution.org/libGE
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@ Programmer
e EUR 31,000 - EUR 33,000
@ Possible to register for part time PhD
@ PhD Students
e EUR 24,000
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