
Evolving Graphs by Graph Programming

Timothy Atkinson

PhD

Computer Science

University of York

March 2020

Abstract

Graphs are a ubiquitous data structure in computer science and can be used to represent

solutions to difficult problems in many distinct domains. This motivates the use of Evolu-

tionary Algorithms to search over graphs and efficiently find approximate solutions. However,

existing techniques often represent and manipulate graphs in an ad-hoc manner. In contrast,

rule-based graph programming offers a formal mechanism for describing relations over graphs.

This thesis proposes the use of rule-based graph programming for representing and im-

plementing genetic operators over graphs. We present the Evolutionary Algorithm Evolving

Graphs by Graph Programming and a number of its extensions which are capable of learning

stateful and stateless digital circuits, symbolic expressions and Artificial Neural Networks.

We demonstrate that rule-based graph programming may be used to implement new and ef-

fective constraint-respecting mutation operators and show that these operators may strictly

generalise others found in the literature. Through our proposal of Semantic Neutral Drift,

we accelerate the search process by building plateaus into the fitness landscape using domain

knowledge of equivalence. We also present Horizontal Gene Transfer, a mechanism whereby

graphs may be passively recombined without disrupting their fitness.

Through rigorous evaluation and analysis of over 20,000 independent executions of Evolu-

tionary Algorithms, we establish numerous benefits of our approach. We find that on many

problems, Evolving Graphs by Graph Programming and its variants may significantly out-

perform other approaches from the literature. Additionally, our empirical results provide

further evidence that neutral drift aids the efficiency of evolutionary search.

3

Contents

Abstract 3

List of Figures 13

List of Tables 16

List of Acronyms 17

Acknowledgements 19

Declaration 21

1 Introduction 23

1.1 Motivation . 23

1.2 Thesis Aims . 25

1.3 Thesis Contributions . 25

1.4 Thesis Outline . 27

2 Context 31

2.1 Introduction . 32

2.2 Graph Programming . 34

2.2.1 Graphs and Graph Transformation 34

2.2.2 Double-Pushout Approach . 36

2.2.3 GP 2 . 42

2.2.4 Probabilistic Approaches to Graph Transformation 49

2.3 Evolutionary Computation . 50

2.3.1 Genetic Algorithms . 53

2.3.2 Evolution Strategies . 54

2.3.3 Genetic Programming . 55

2.3.4 Neuroevolution . 58

5

Contents

2.4 Graphs in Evolutionary Computation . 61

2.4.1 Cartesian Genetic Programming . 62

2.4.2 Parallel Distributed Genetic Programming 64

2.4.3 Neuroevolution of Augmenting Topologies 67

2.4.4 Other Graph-Based Evolutionary Algorithms 69

2.5 Conclusions and Directions for Research . 73

3 Probabilistic Graph Programming 75

3.1 Introduction . 76

3.2 Probabilistic Graph Programming . 78

3.2.1 Syntax and Semantics . 78

3.2.2 Existence of a Markov Chain . 81

3.2.3 Implementation of P-GP 2 . 83

3.3 Example Probabilistic Graph Programs . 85

3.3.1 Probabilistic Vertex Colouring . 85

3.3.2 Karger’s Minimum Cut Algorithm . 88

3.3.3 G(n, p) model for Random Graphs . 90

3.3.4 D(n,M) model for Directed Random Graphs 92

3.4 Related Work . 93

3.5 Conclusions and Future Work . 95

4 Function Graphs 97

4.1 Introduction . 98

4.2 Intuition and Example Function Graphs . 99

4.2.1 1-Bit Adder: Multiple Outputs and Intronic Material 101

4.2.2 Newton’s Law of Gravitation: Ordered Edges 102

4.2.3 Fibonacci Sequence: Recurrent Edges and Stateful Programs 103

4.2.4 A Simple Neural Network: Weighted Edges and Biased Nodes 105

4.3 Semantics of Function Graphs . 107

4.3.1 Definition of Function Graphs . 107

4.3.2 Behaviour of Function Graphs . 111

4.4 Conclusions and Future Work . 112

5 Evolving Graphs by Graph Programming 117

5.1 Introduction . 118

5.2 Initialisation . 119

6

Contents

5.3 Mutation . 124

5.3.1 Edge Mutation . 125

5.3.2 Node Mutation . 129

5.3.3 Binomial Mutation . 132

5.4 1 + λ Evolutionary Algorithm . 134

5.5 Example: Learning an XOR Gate . 136

5.6 Related Work . 137

5.6.1 Cartesian Genetic Programming . 137

5.6.2 Comparison with Cartesian Genetic Programming 138

5.7 Conclusions and Future Work . 140

6 Benchmarking EGGP 143

6.1 Introduction . 144

6.2 Statistical Comparison throughout this Thesis 145

6.3 Digital Circuit Experiments . 145

6.4 Digital Circuit Results . 148

6.5 Digital Circuit Discussion . 151

6.6 Symbolic Regression Experiments . 153

6.7 Symbolic Regression Results . 156

6.8 General Discussion . 159

6.9 Conclusions and Future Work . 160

7 Evolving Recurrent Graphs by Graph Programming 163

7.1 Introduction . 164

7.2 Initialisation . 166

7.3 Mutation . 169

7.3.1 Non-Recurrent Edge Mutation . 172

7.3.2 Recurrent Edge Mutation . 175

7.4 Comparison with Recurrent Cartesian Genetic Programming 176

7.5 Digital Counter Experiments . 177

7.6 Digital Counter Results . 179

7.7 Mathematical Sequence Experiments . 181

7.8 Mathematical Sequence Results . 182

7.9 Generalising n-bit Parity Check Experiments 183

7.10 Generalising n-bit Parity Check Results . 184

7

Contents

7.11 Conclusions and Future Work . 185

8 Evolving Graphs with Semantic Neutral Drift 187

8.1 Introduction . 188

8.2 Neutrality in Genetic Programming . 190

8.3 Semantic Neutral Drift . 192

8.3.1 The Concept . 192

8.3.2 Designing Semantic Neutral Drift . 194

8.3.3 Variations on our approach . 197

8.4 Digital Circuit Experiments . 199

8.5 Digital Circuit Results . 201

8.6 Analysis . 203

8.6.1 Neutral Drift or Neutral Growth? . 203

8.6.2 DMN and ID in Combination . 205

8.6.3 {AND, OR, NOT}: A Harder Function Set? 206

8.7 Conclusions and Future Work . 208

9 Evolving Graphs with Horizontal Gene Transfer 211

9.1 Introduction . 212

9.2 Depth Control . 215

9.3 Horizontal Gene Transfer in Evolving Graphs by Graph Programming 216

9.3.1 Active-Neutral Transfer . 216

9.3.2 The µ× λ Evolutionary Algorithm 218

9.4 Symbolic Regression Experiments . 219

9.4.1 Experimental Settings . 220

9.4.2 Implementation . 221

9.5 Symbolic Regression Results . 221

9.5.1 Building EGGPHGT : H1, H2, H3, H4 221

9.5.2 EGGPHGT vs. TGP & CGP: H4, H6 224

9.6 Neuroevolution Experiments . 225

9.6.1 Pole Balancing Benchmarks . 225

9.6.2 Representation and Genetic Operators 228

9.6.3 Experimental Settings . 229

9.7 Neuroevolution Results . 230

9.8 Conclusions and Future Work . 233

8

Contents

10 Conclusions and Future Work 237

10.1 Overall Conclusions . 237

10.2 Future Work . 244

10.2.1 New Domains . 244

10.2.2 Evolving Hierarchical Graphs . 248

10.2.3 Meta-Learning of Landscapes . 249

References 251

9

List of Figures

2.1 A simple graph. 34

2.2 A simple double-pushout rule. 37

2.3 The commutative diagram formed by the application of a double-pushout rule. 38

2.4 Application of a simple double-pushout rule to a graph. 39

2.5 An attempted rule application that fails the dangling condition. 40

2.6 Application of a simple double-pushout rule with relabelling. 42

2.7 Abstract syntax of GP 2’s label expressions. 44

2.8 Abstract syntax of GP 2’s rule conditions. 44

2.9 Application of a simple GP 2 rule. 45

2.10 Abstract syntax of GP 2 programs . 46

2.11 A GP 2 program for copying an unmarked graph. 48

2.12 Example application of the graph copying program. 48

2.13 A simple model of Evolutionary Algorithms 51

2.14 A model of Genetic Programming. 57

2.15 A simple tree representation of a formula. 58

2.16 An example encoding of a neural network in EANT2. 60

2.17 Genotype-phenotype mapping of a simple CGP individual. 63

2.18 A PDGP individual. 65

2.19 SAAN crossover in PDGP. 66

2.20 An example encoding of a neural network in NEAT. 68

3.1 A P-GP 2 rule declaration with associated weight. 79

3.2 The modified abstract syntax of P-GP 2’s programs. 80

3.3 The modified abstract syntax of P-GP 2’s expressions. 81

3.4 A 5× 3 grid graph. 86

3.5 A probabilistic vertex colouring program. 86

3.6 Example application of the probabilistic vertex colouring program. 87

3.7 The contraction procedure of Karger’s algorithm implemented in P-GP 2. . . 89

11

List of Figures

3.8 Karger’s contraction algorithm applied to a simple graph. 90

3.9 P-GP 2 program for sampling from the G(n, p) model for some probability p. 91

3.10 The G(n, p) program applied to a complete 4-node graph with p = 0.4. 91

3.11 P-GP 2 program for sampling from the D(n,E) directed random graph model. 92

3.12 The D(n,E) program applied with n = 3 and E = 2. 93

3.13 A PGTS rule with multiple right-hand sides. 94

4.1 An example Function Graph implementing an XOR gate. 99

4.2 An example Function Graph implementing a 1-bit adder. 100

4.3 An example Function Graph implementing Newton’s Law of Gravitation. . . 102

4.4 An example Function Graph generating the Fibonacci sequence. 104

4.5 An example Function Graph implementing a simple neural network. 106

4.6 A Type Graph for Typed Function Graphs. 113

4.7 An example Typed Function Graph. 114

4.8 An example ‘flat’ Hierarchical Function Graph. 115

4.9 An example embedded Hierarchical Function Graph. 116

5.1 A simple Acyclic Function Graph. 119

5.2 A program for generating our simplified Acyclic Function Graphs. 120

5.3 A generic rule for adding function nodes. 121

5.4 An input graph for initialisation. 122

5.5 A rule for adding AND function nodes. 122

5.6 A trace of the application of the initialisation program. 123

5.7 A program for mutating Acyclic Function Graphs’ edges. 125

5.8 A trace of the application of the edge mutation program. 126

5.9 A program for mutating a function node in an Acyclic Function Graph. . . . 130

5.10 A generic rule for mutating function nodes. 131

5.11 A rule for mutating function nodes into AND nodes. 132

5.12 A trace of the application of the node mutation program. 133

5.13 A visualisation of an EGGP evolutionary run learning an XOR gate. 135

5.14 The genotype-phenotype mapping of a simple CGP individual. 138

5.15 An acyclicity preserving edge mutation. 139

5.16 An example of subgraph copying in a modular extension of EGGP. 141

6.1 Box-plots of digital circuit benchmark results. 150

6.2 Box-plots for symbolic regression benchmark results. 157

12

List of Figures

7.1 A simple Recurrent Function Graph . 166

7.2 A program for generating Recurrent Function Graphs 167

7.3 A program for non-recurrent edge mutation. 170

7.4 Trace of a non-recurrent edge mutation. 171

7.5 A program for recurrent edge mutation. 173

7.6 Trace of a recurrent edge mutation. 174

7.7 Box-plots for digital counter results. 180

8.1 A simple visualisation of Semantic Neutral Drift. 193

8.2 A program for performing semantics-preserving mutations. 195

8.3 The rules copy 2 and collapse 2. 198

8.4 Results from varying solution size with various neutral rule-sets. 204

8.5 Box-plots showing the introduction of neutral rule-sets. 207

9.1 An example of edge mutation preserving acyclicity and depth. 214

9.2 An example of Active-Neutral transfer. 217

9.3 Pole balancing simulations. 226

9.4 Box-plots of neuroevolution results. 231

10.1 A suggestion for how edges may be swapped in a quantum circuit. 245

10.2 A plausible model of a Hierarchical Function Graph. 247

10.3 A notion of how subgraph copying might be used in a modular variant of EGGP.248

10.4 A higher-order double-pushout diagram. 250

13

List of Tables

2.1 Different approaches to probabilistic decision making in graph transformation. 50

3.1 Results from sampling the vertex colouring program on grid graphs. 88

3.2 Different approaches to decision making in graph transformation. 93

4.1 Functions introduced in the description of Function Graphs. 110

4.2 A simple set of typed inputs, functions and outputs. 112

6.1 Digital circuit benchmark problems. 147

6.2 Results from digital circuit benchmarks for CGP and EGGP. 149

6.3 Results from digital circuit benchmarks for O-EGGP. 152

6.4 Symbolic regression benchmark problems. 154

6.5 Results from symbolic regression benchmarks for EGGP, TGP and CGP. . . 156

6.6 Statistical tests for symbolic regression benchmarks. 158

7.1 Digital counter benchmark problems. 178

7.2 Digital counter benchmark results. 179

7.3 Mathematical sequence benchmark problems. 181

7.4 Mathematical sequence benchmark results. 182

7.5 Generalising n-bit parity check results. 184

8.1 The studied semantics-preserving rule-sets. 197

8.2 Digital circuit benchmark problems. 199

8.3 Baseline results from digital circuit benchmarks. 200

8.4 Results from digital circuit benchmarks for the various proposed neutral rule-sets.201

8.5 Observed average solution size for various neutral rule-sets. 202

8.6 Results from digital circuit benchmarks for the DMID neutral rule-set. 206

9.1 Results from symbolic regression benchmarks. 222

9.2 Statistical comparisons for symbolic regression benchmarks. 223

15

List of Tables

9.3 Variables used in pole balancing experiments. 227

9.4 Constants used in pole balancing experiments. 227

9.5 Pole balancing benchmark results. 230

9.6 Pole balancing comparison with literature. 232

16

List of Acronyms

Acryonym Definition

ADF Automatically Defined Function

AFG Acyclic Function Graph

ANN Artificial Neural Network

CC Copy/Collapse (rule-set)

CGP Cartesian Genetic Programming

CPDAG Completed Partially Directed Acyclic Graph

CPPN Compositional Pattern Producing Network

DAG Directed Acyclic Graph

DEAP Distributed Evolutionary Algorithms in Python

DM De Morgan’s (rule-set)

DMN De Morgan’s and Negation (rule-set)

DPO Double-Pushout

DNN Deep Neural Network

EA Evolutionary Algorithm

ECGP Embedded Cartesian Genetic Programming

EGGP Evolving Graphs by Graph Programming

ES Evolution Strategies

FG Function Graph

GA Genetic Algorithm

GE Grammatical Evolution

GNARL GeNeralized Acquisition of Recurrent Links

GNP Genetic Network Programming

GP Genetic Programming

GRAPE Graph Structured Program Evolution

GTS Graph Transformation System

HFG Hierarchical Function Graph

17

List of Acronyms

HGT Horizontal Gene Transfer

ID Identity (rule-set)

IQR Interquartile Range

LGP Linear Genetic Programming

MAD Median Absolute Deviation

MAS Median Average Size

MDL Minimum Description Length

ME Median Number of Evaluations

MF Median Test Fitness

MIOST Multiple Interactive Outputs in a Single Tree

MSE Mean Square Error

NEAT Neuroevolution of Augmenting Topologies

O-EGGP Ordered Evolving Graphs by Graph Programming

P-GP 2 Probabilistic GP 2

PADO Parallel Algorithm Discovery and Orchestration

PDGP Parallel Distributed Genetic Programming

PGTS Probabilistic Graph Transformation System

R-EGGP Evolving Recurrent Graphs by Graph Programming

RCGP Recurrent Cartesian Genetic Programming

RFG Recurrent Function Graph

RNN Recurrent Neural Network

SAAN Subgraph Active-Active Node

SGTS Stochastic Graph Transformation System

SGA Simple Genetic Algorithm

SND Semantic Neutral Drift

TFG Typed Function Graph

TG Type Graph

TGP Tree-based Genetic Programming

TPG Tangled Program Graph

18

Acknowledgements

I would like to acknowledge the funding provided by the Engineering and Physical Sciences

Research Council (1789003), without whom this thesis would not have been possible.

I am immensely grateful for the insight, wisdom and support of my supervisors. The

ideas I present in this thesis have benefited immeasurably from Detlef’s intellectual rigour

and Susan’s apparently limitless knowledge. They have been both excellent supervisors and

brilliant mentors. They have fundamentally shaped the way I view problem solving, computer

science and academia. I hope that this thesis justifies their efforts.

I’d like to give thanks to my friend, Jerry Swan. He has inoculated me with healthy doses

of scepticism for as long as I have known him. I am grateful for his support, sharp mind and

general company, and for all the efforts he has put in to my future endeavours.

To my (mum and dad), I am thankful for the immense support and love with which you

have raised me. My mum has instilled in me a life-long love of reading and knowledge, without

which this would not have been possible. To her great credit, she has proof-read countless

paper drafts and reports without any knowledge of computer science. My dad has taught me

the value in hard work and shown me its purpose: love of family. No tribute to him would

be complete without a pun; if I were to reference the two people that have encouraged me

through my entire life, I would put them in Parent-Theses. I am grateful to my brother for

filling my childhood with daydreams and creativity. Somewhere along the way our imagined

worlds met with automata and this was the result.

Athena, words are not enough to describe how much I appreciate your love, support,

patience and kindness. You, and our future, are why I work so hard. You make every day

more enjoyable, and I cannot wait to see where life takes us next. Rapidash.

19

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University. All

sources are acknowledged as References.

Some parts of this thesis have been published in journals and conference proceedings; where

items were published jointly with collaborators, the author of this thesis is responsible for

the material presented here. For each published item the primary author is the first listed

author. These publications are:

[7] T. Atkinson, D. Plump, and S. Stepney, “Probabilistic graph programming,” in

Pre-Proc. Graph Computation Models, GCM 2017, 2017.

[8] T. Atkinson, D. Plump, and S. Stepney, “Evolving graphs by graph programming,”

in Proc. European Conference on Genetic Programming, EuroGP 2018, ser. LNCS,

vol. 10781. Springer, 2018, pp.35–51.

[9] T. Atkinson, D. Plump, and S. Stepney, “Probabilistic graph programs for ran-

domised and evolutionary algorithms,” in Proc. International Conference on Graph

Transformation, ICGT 2018, ser. LNCS, vol. 10887. Springer, 2018, pp. 63–78.

[10] T. Atkinson, D. Plump, and S. Stepney, “Evolving graphs with horizontal gene

transfer,” in Proc. Genetic and Evolutionary Computation Conference, GECCO 2019,

ACM, 2019, pp. 968–976.

[11] T. Atkinson, D. Plump, and S. Stepney, “Evolving graphs with semantic neutral

drift,” Natural Computing, 2019.

[12] T. Atkinson, D. Plump, and S. Stepney, “Horizontal gene transfer for recombining

graphs,” Genetic Programming and Evolvable Machines, 2020.

21

1 Introduction

1.1 Motivation

Graphs, sets of nodes and interconnecting edges, are a ubiquitous data structure in computer

science. They are a generalisation of many abstract ideas: circuits, computer programs,

Artificial Neural Networks (ANNs), Bayesian networks, quantum circuits, various forms of

automata, deep learning architectures and many other concepts that utilise underlying struc-

ture. While graphs are equivalent to bit-strings in their ability to universally represent data,

it is their ability to directly and intuitively express structure that makes them powerful.

In many areas, it is desirable to find a graph that is an optimal solution to a given prob-

lem. However, discovering such graphs can be extremely difficult. For example, it is very

likely that the problem of finding a minimal Boolean circuit that implements a given truth

table cannot be solved in polynomial time [110]. Similarly, it is known that the problem of

finding a Bayesian network which has a posterior probability (given data) greater than some

constant value is NP-Complete [38]. With the computational intractability of finding global

solutions to all instances of such problems, we often look towards methods that efficiently

find approximate solutions, or efficiently find globally optimal solutions on many real-world

problem instances.

Evolutionary Algorithms (EAs) are a family of algorithms well-suited to these tasks. An

EA maintains a ‘population’ (set) of individuals, each representing an approximate solution

to a given problem. In each iteration of the algorithm, the worst performing individuals from

the population are deleted, and replaced with permutations or recombinations of the best

performing individuals. The EA mimics Darwinian evolution, whereby the population takes

on the role of a species and the given problem takes on the role of an environment applying

selection pressure to said species thereby inducing a ‘survival of the fittest’ behaviour.

Taking these two notions together, it is unsurprising that a number of EAs have emerged

that explicitly evolve graphs [157,189,222]. Several state-of-the-art results have been achieved

23

1 Introduction

by evolutionary approaches evolving graphs. Examples of this include the optimisation of

large-scale digital circuits [249], and the synthesis of deep learning architectures [153]. A

particularly noteworthy case is found when considering the synthesis of graphs to optimise

for multiple, often conflicting, objectives. For example, the graph-based Cartesian Genetic

Programming (CGP) algorithm is a leading technique for synthesising digital circuits, also

accounting for the produced solution’s size, power consumption and delay [250].

However, existing techniques often use ad-hoc methods, both in the representation of graphs

and in their manipulation. A meaningful example of this is found in CGP. It is often desirable

to search for acyclic graphs, containing no loops, to discover circuits or programs which are

stateless. To restrict the search to acyclic graphs, CGP imposes an ordering on nodes, such

that an edge may only exist from a node to one earlier in the ordering. By modifying edges

under this constraint, it is guaranteed that no cycle will be created. However, while it is

quite clear that respecting a total ordering on nodes may imply acyclicity, the converse,

that acyclicity implies respect for a fixed total ordering does not hold. Indeed, there are

transformations of graphs which may preserve acyclicity without demanding such an ordering

on nodes. This example, and its consequences for the efficiency of evolution, are expanded

upon later.

It is the desire to design EAs working at the level of graphs with formal, correct transfor-

mations of graphs that leads us to rule-based graph programming. In graph programming,

graphs are provided as inputs to programs and new graphs are produced as outputs; these

programs are seen to transform graphs. When multiple transformations are chained together,

it is possible to explicitly express the underlying manipulations of graphical structures that

are conventionally understood in domain-specific ways. In particular, we work with the graph

programming language GP 2 [182], which is known to be computationally complete in that

it can express any computable partial function over graphs [183].

The motivation behind this thesis is, therefore, to discover new and better ways of express-

ing modifications over graphs through the use of graph programming, so that we can build

more efficient EAs and thereby discover higher quality graphs faster. This general ambition

is driven in turn by the fact that such advancements then lend themselves to searching over

the various graphical domains we have already mentioned.

24

1.2 Thesis Aims

1.2 Thesis Aims

Taking together these outline motivations and findings of our review of literature in Chapter

2, this thesis has the following aims:

1. To extend the graph programming language GP 2 to a probabilistic variant capable

of expressing probabilistic transformations of graphs necessary to implement genetic

operators for evolution.

2. To investigate whether and how these probabilistic graph programs can be used to

design genetic operators for learning graphs.

3. To establish the benefits of using probabilistic graph programs as genetic operators,

through empirical comparisons and theoretical discussion.

4. To investigate how probabilistic graph programs can be used to implement complex

domain-specific rewrites in the context of evolution.

5. To empirically study the benefits and costs of using such rewrites throughout an evo-

lutionary process.

6. To investigate how graphs can be recombined through probabilistic graph programs.

7. To empirically study the benefits and costs of using such recombinations throughout

an evolutionary process.

1.3 Thesis Contributions

Throughout this thesis, a number of contributions have been made regarding the implemen-

tation of EAs through graph programming:

1. This thesis presents P-GP 2, a probabilistic extension of the graph programming lan-

guage GP 2 that allows the programmer to specify probability distributions over out-

come graphs. This extension is core to the implementation of all EAs we present

throughout this thesis. Further, we show that it is possible to implement several algo-

rithms taken from graph theory, demonstrating that this contribution is more general

than its use in this thesis.

2. This thesis identifies a class of graphs, named Function Graphs (FGs), which generalise

digital circuits, symbolic expressions and ANNs in both stateful and stateless forms.

We also discuss how these graphs can be evaluated in the context of an evolutionary

25

1 Introduction

process. These graphs are sufficiently general to function as a domain in which we can

design EAs.

3. This thesis presents the algorithm ‘Evolving Graphs by Graph Programming’ (EGGP),

which is designed to evolve Acyclic Function Graphs (AFGs). This is the first EA

that uses rule-based graph programming as a representation of genetic operators. We

provide P-GP 2 implementations of initialisation of FGs and atomic mutation operators;

transforming a function node, and redirecting an edge while preserving acyclicity. We

argue that the algorithm strictly generalises the landscapes available in CGP.

4. This thesis rigorously evaluates EGGP by empirically comparing the approach to CGP

and Tree-based Genetic Programming (TGP). We study the approach’s ability to syn-

thesise digital circuits across 16 problems, and the approach’s ability to synthesise

symbolic expressions across 14 problems. Digital circuit comparisons show that the

approach significantly outperforms CGP under very similar conditions and that the

difference in performance increases as problem difficulty increases. Symbolic expression

comparisons are mixed, with each studied approach performing best on a subset of the

studied problems. We set out a number of plausible explanations for this, and the differ-

ence between our symbolic expression comparisons and our digital circuit comparisons.

5. This thesis extends EGGP by presenting the algorithm ‘Evolving Recurrent Graphs

by Graph Programming’ (R-EGGP), which is designed to evolve Recurrent Function

Graphs (RFGs). We provide P-GP 2 implementations of initialisation of RFGs and

atomic mutation operators; redirecting an edge while preserving acyclicity and redi-

recting an edge freely. We argue that the presented algorithm strictly generalises the

landscapes available in Recurrent Cartesian Genetic Programming (RCGP).

6. This thesis rigorously evaluates R-EGGP by empirically comparing the approach to

RCGP. We study the approach’s ability to synthesise digital counters on 8 problems,

mathematical sequences on 3 problems and generalising n-bit parity check circuits on

4 problems. We find that R-EGGP significantly outperforms RCGP on Digital counter

and n-bit parity check problems under very similar conditions. We find fewer statistical

differences on mathematical sequence problems.

7. This thesis extends EGGP by implementing Semantic Neutral Drift as a mechanism for

accelerating search through the use of domain-specific graph rewrites. This approach

builds upon existing theory in evolutionary computation that neutral drift, a process

whereby individuals’ genotypes can change over time without degrading fitness, aids

26

1.4 Thesis Outline

the evolutionary process. We design P-GP 2 programs that implement known logical

equivalence laws and build these programs into our EA.

8. This thesis rigorously and extensively investigates the benefits and costs of Semantic

Neutral Drift through empirical study of digital circuit synthesis. We find that in many

cases, applying equivalence laws throughout an evolutionary process can significantly

improve search efficiency. We also establish that there are circumstances where it is

preferable to choose otherwise detrimental experimental parameters if that then facili-

tates the implementation of Semantic Neutral Drift.

9. This thesis extends EGGP by implementing Horizontal Gene Transfer as a mecha-

nism for improving the performance of search through passive recombination of graphs.

This concept is inspired by biological horizontal gene transfer, a natural phenomenon

whereby members of a population share genetic material without reproducing. We ar-

gue that through Horizontal Gene Transfer and the mutation operators we have set out,

it is possible for complex graph recombinations to arise as a by-product of the system.

10. This thesis rigorously evaluates the benefits of using Horizontal Gene Transfer through-

out an evolutionary process. Experiments for synthesising symbolic expressions estab-

lish that Horizontal Gene Transfer is often beneficial, and never detrimental, in our

observations. Experiments for synthesising neural networks confirm these findings,

showing that EGGP and the Horizontal Gene Transfer mechanism readily extend to

neuroevolution tasks.

1.4 Thesis Outline

The rest of the thesis is structured as an incremental development starting from the context

in which we work, moving through the development of simple but effective EAs based on

graph programming, and finally exploring complex extensions to our proposed approaches

which improve performance of search. This thesis is broken down into the following chapters:

• Chapter 2, Context. We give overviews of graph programming and evolutionary com-

puting. We discuss several graph-based EAs in detail and describe how the literature

sets precedent and opens questions for the rest of the work in this thesis.

• Chapter 3, Probabilistic Graph Programming. Before the work in this thesis, the

graph programming language GP 2 was exclusively non-deterministic; that is, when it

was necessary to make a choice over program execution, the execution of that decision

27

1 Introduction

was determined by the compiler, rather than the program. In this chapter, we set

out a probabilistic extension to GP 2, named P-GP 2, which allows the programmer

to explicitly specify probability distributions over outcomes. This extension is used to

implement a number of classic randomised graph algorithms in order to demonstrate

its general practicality. However, the main contribution of this is to have a mechanism

whereby we can specify genetic operators over graphs for evolution, which we require

to have reproducible probabilistic behaviours.

• Chapter 4, Function Graphs. This chapter is an extended discussion of representa-

tion. Here, we identify a class of graphs, FGs, which can express a variety of domains

of interest, including digital circuits, symbolic expressions and ANNs. We discuss a

number of examples of FGs and describe how they can be executed. We also give

potential directions in which FGs could be extended to accommodate notions such as

typed functions and modularity.

• Chapter 5, Evolving Graphs by Graph Programming. This chapter sets out

an EA for evolving AFGs with mutation operators defined as P-GP 2 programs. An

initialisation program combined with a start graph is used to generate the initial popu-

lation. We give atomic edge and node mutations with arguments for their correctness.

The landscape we are inducing is shown to generalise that of CGP. Finally, we suggest

a number of extensions to EGGP, so that it would be able to handle the typed and

modular FGs described in Chapter 4.

• Chapter 6, Benchmarking EGGP. To evaluate our approach, we use various bench-

mark problems drawn from the literature. On digital circuit synthesis problems, we see

remarkable improvements in performance when using our proposed approach, EGGP,

instead of CGP. Additional experiments suggest that this is a result of the generalised

landscape described in Chapter 5. We see less significant differences on symbolic re-

gression problems when comparing to both CGP and TGP. We set out plausible expla-

nations for this. Finally, we propose further problems and experimental conditions for

benchmarking the approach and its variants.

• Chapter 7, Evolving Recurrent Graphs by Graph Programming. This chapter

sets out an extension to EGGP that supports RFGs, termed R-EGGP. An initialisation

program combined with a start graph is used to generate the initial population. We

give two atomic edge mutations; one which preserves acyclicity and one which mutates

an edge freely. The landscape we are inducing is shown to generalise that of RCGP. We

28

1.4 Thesis Outline

perform a number of empirical comparisons with RCGP on digital counter synthesis,

mathematical sequence synthesis and n-bit parity check synthesis tasks. We find that

R-EGGP outperforms RCGP on many problems, and in particular on the harder digital

counter tasks.

• Chapter 8, Evolving Graphs with Semantic Neutral Drift. Neutral drift is a

well-studied field of evolutionary computation. In this chapter, we show that P-GP 2 can

be used to effectively implement known equivalence transformations, thereby gaining

access to a new type of neutral drift based on domain knowledge of semantic equivalence.

This general idea is referred to as Semantic Neutral Drift. We demonstrate this concept

by applying logical equivalence laws to digital circuits throughout evolutionary runs.

Empirical studies demonstrate that this can often improve the efficiency of search, and

there are even cases where it is preferable to choose detrimental evolutionary parameters

if that then permits access to Semantic Neutral Drift.

• Chapter 9, Evolving Graphs with Horizontal Gene Transfer. Crossover of

graphs is a difficult task, and despite much research, no universal answer has been found.

In this chapter, we propose a new form of graph combination, inspired by biological

horizontal gene transfer observed in nature, whereby the active components of FGs

are shared between members of a population without producing a child. By copying

active components of a donor into inactive components of recipients, we gain access to

a passive form of recombination that does not disrupt elitism and is without detriment

to the fitness of either the donor or the recipient. Complex recombinations can arise

as combinations of this mechanism and the mutation operators we have described in

earlier chapters. Empirical study on symbolic regression problems finds many instances

where Horizontal Gene Transfer aids performance and none where it is detrimental to

performance. In general, EGGP equipped with Horizontal Gene Transfer outperforms

both TGP and CGP on symbolic regression problems, whereas ‘vanilla’ EGGP does

not as discussed in Chapter 6. We further show that EGGP with Horizontal Gene

Transfer can be readily extended to neuroevolution tasks, and consistently improves

performance therein, demonstrating that this technique is useful across domains.

• Chapter 10, Conclusions and Future Work. In this chapter, we summarise the

findings of this thesis. We consider the intersections of the findings of our technical

contributions and reflect on our thesis aims. We propose several areas for future work,

including various application domains, an approach to modularity based on hierarchical

graphs and a potential avenue toward higher-order learning of genetic operators.

29

2 Context

Abstract

In this chapter, we review the context of the rest of this thesis. We provide a detailed

tutorial on graph transformation and graph programming. We also describe probabilistic

approaches to graph transformation in the literature as these are particularly relevant to

our work on probabilistic graph programming. We give a broad overview of evolutionary

computation, describing major families of Evolutionary Algorithms (EAs). Finally, we give

a detailed review of EAs which use graphs as a representation.

31

2 Context

2.1 Introduction

This chapter sets out the context of the rest of the thesis. Its intention is to provide sufficient

background for the reader to understand both the evolutionary and graph programming

aspects of later technical chapters. The author is aware that it is unlikely that the reader is

familiar with both of these topics as they are generally distinct disciplines within computer

science. Hence this chapter is written with that consideration in mind and is designed to

introduce a reader to both topics under no assumptions of prior knowledge.

The reader with no experience in graph programming will find a tutorial progressively

moving from basic definitions of graphs and graph transformations (the atomic computational

unit of graph programming) to examples of simple graph programs. The reader unfamiliar

with evolutionary computation will find a brief and concise literature review on evolutionary

computation that rapidly moves from high-level concepts to the specific families of algorithms

we concern ourselves within this thesis.

This chapter is divided into the following sections:

• Section 2.2: Graph Programming. In this section we, give an introduction to graph

programming moving from the basic notions of graphs and graph morphisms to the

graph programming language GP 2 and simple graph programs.

• Section 2.3: Evolutionary Computation. In this section, we give an overview of

evolutionary computation.

• Section 2.4: Graphs in Evolutionary Computation. This section may be viewed

as a general ‘related work’ section which we will refer back to throughout the thesis.

We cover a number of EAs which utilize graphs as a representation.

• Section 2.5: Conclusions and Direction for Research. In this section, we sum-

marise our findings and describe how the literature we have covered sets context for the

rest of this thesis.

If the interested discipline-hopping reader desires to know more about a given topic, then

there are a number of helpful resources available:

• Fundamentals of Algebraic Graph Transformation by Ehrig, Ehrig, Taentzer and Prange

[61] explains graphs, graph transformation and the Double-Pushout (DPO) approach in

great detail. Later chapters on category theory and confluence may be more technical

but are perhaps out of scope of the content of this thesis regardless.

32

2.1 Introduction

• GP 2: Efficient Implementation of a Graph Programming Language by Bak [15] offers

a detailed discussion of the graph programming language GP 2 and its implementation.

• Essentials of Metaheuristics by Luke [141] is a gentle introduction to metaheuristics,

which encompasses evolutionary computation, and describes a number of EAs.

• A Field Guide to Genetic Programming by Poli, Langdon and McPhee [191] is an

intuitive textbook on genetic programming.

33

2 Context

Pet

Cat Red

Species Colour

Figure 2.1: A simple string-labelled graph representing a database object of a red, pet cat; a

particular pet is of the cat species and is coloured red.

2.2 Graph Programming

This section introduces the notion of graph programming and will primarily focus on the graph

programming language GP 2 [182]. While detailed discussion of this is left for the dedicated

Section 2.2.3, the reader may benefit from understanding why this section takes its given

form. GP 2 uses a special construct, rule schema, which allows variable-based computation

over graph labels. This is significant as, unlike in traditional graph transformation, it allows

the programmer to access and manipulate data types with infinite possible values, such as

integers. GP 2 depends on the DPO approach to graph transformation, and for this reason,

the DPO approach is described in detail rather than other approaches.

This section is divided as follows. Firstly, in Section 2.2.1, a basic notion of graphs and

graph rewriting is presented, leading to the DPO approach discussed in Section 2.2.2. Section

2.2.3 gives a description of the graph programming language GP 2, and finally, Section 2.2.4

describes probabilistic approaches to graph transformation that are absent from GP 2.

2.2.1 Graphs and Graph Transformation

Graph transformation is a computational abstraction that allows computing on graphs by

matching and updating patterns within a graph. These computations are naturally non-

deterministic: there may be multiple matches for a pattern within a graph, in which case

graph transformation does not specify which path of computation should be taken. As will

be seen, this setting allows the formulation of complex non-deterministic processes over data

structures which would otherwise be difficult to traverse and manipulate.

A graph is a form of data representation consisting of a set of nodes and a set of edges which

connect those nodes. Edges may connect any node to any other node, allowing complex data

topologies, such as cyclic and connected graphs. Depending on context, nodes and edges may

34

2.2 Graph Programming

then be labelled with data, creating a single structure for representing both concrete data

and its topology, free from the more limiting topological constraints of structures such as

trees or lists. The definition of a graph may vary, so here, graphs are assumed to be labelled

and edges are directed (from a source node to a target node, indicated by the direction of

each arrow in Figure 2.1). Parallel (multiple edges with common source and target nodes)

and looping (where the source node is also the target node) edges are also allowed. Figure

2.1 shows a simple graph representing a database object of a pet cat. For intuition, a formal

definition for a simple unlabelled graph is given in Definition 1. An unlabelled graph is a

straightforward concept; it simply consists of a set of nodes and a set of edges between those

nodes. An edge is described by its source node and its target node, and this is defined using

a source function and a target function:

Definition 1 (Unlabelled Graph). An unlabelled graph G = (V,E, s, t) consists of a finite set

of nodes V , a finite set of edges E, as well as source function s : E → V and target function

t : E → V , which associate each edge with a source and target node respectively.

The symbol G is used to represent the set of all possible graphs in this context, considered

up to isomorphism. In this work, we only consider finite graphs, although should infinite

graphs with potentially infinite node sets and edge sets be necessary they can be introduced.

With the ability to query and edit nodes and edges within a graph, a programmer may de-

vise a problem specific transformation in an imperative language but this approach struggles

to describe rewrites of complex subgraphs. In contrast, graph transformation offers an avenue

towards intuitive and abstract graph rewriting. By updating graphs according to patterns,

described using rules, it is possible to describe input-output relations on graphs that execute

according to a given input graph’s internal structure and data values. We consider here the

DPO approach in Section 2.2.2 as this is the approach used in GP 2 and is the most commonly

used approach more generally. However other approaches such as single-pushout [140] and

sesqui-pushout [45] exist.

It is worth noting the obvious similarities between graph transformation and other rule-

based approaches to computation, such as formal languages [151]. A particular relationship

exists with L-systems [197], as both techniques use pattern-matching and rule-based rewrites

to transform structure. However, L-systems are in general spacial, rather than relational,

and are typically executed by applying all matches for all rules in parallel; a process that is

not in general possible in graph transformation due to the existence of rule-sets with critical

35

2 Context

pairs (see [62]).

2.2.2 Double-Pushout Approach

The DPO approach to graph transformation is an intuitive abstraction for manipulating

graphs. This section is based on a number of works; the helpful monographs [61, 62], the

dedicated chapter for the DPO approach in [46] and the original publication of the approach

[63], but these are not referenced throughout the text as we intend this section to be a

brief tutorial on the topic for a graph programmer, rather than a theoretician. For graph

transformation with relabelling, this text uses the theory set out in [86] and developed for

rule-based graph programming in [185, 224], although the underlying principles of natural

pushouts and pullbacks are left for the reader. We firstly discuss this in the context of

unlabelled graphs before introducing the concept of relabelling.

This section relies heavily on the following definitions of graph morphisms and particularly

injective graph morphisms. An injective graph morphism can be understood as a function that

maps elements of one graph to elements of another while preserving structure and without

merging any two elements.

Definition 2 (Graph Morphism). A graph morphism f : G → H is a mapping from graph

G = (VG, EG, sG, tG) to graph H = (VH , EH , sH , tH) that preserves structure. f consists of

two functions: a node mapping fV : VG → VH and an edge mapping fE : EG → EH . The

following conditions must hold:

1. f preserves sources (fV ◦ sG = sH ◦ fE).

2. f preserves targets (fV ◦ tG = tH ◦ fE).

Definition 3 (Injective Graph Morphism). A graph morphism f : G → H is an injective

graph morphism when node mapping fV and edge mapping fE are injective.

Additionally, we will use the notion of an inclusion: rules in the DPO approach consist of

pairs of inclusions, where an inclusion maps each member of a subset to itself in a superset

of that subset.

Definition 4 (Inclusion). A function f : A → B is an inclusion when A ⊆ B and ∀x ∈
A, f(x) = x.

36

2.2 Graph Programming

1
1

1

Figure 2.2: A simple DPO rule r : L ← K → R. This rule matches a node with a looping

edge, deletes that looping edge, and inserts a new node with an edge from the

original node to that new node. The identifiers of nodes, indicated by integers to

the bottom-right of each node, are used to visualise the inclusions K → L and

K → R.

DPO approach for unlabelled graphs

The key construct of the DPO approach is the rule. A rule r is given by

r = L← K → R (2.1)

where L, K and R are unlabelled graphs and K → L and K → R are inclusions. The

intuition is that L is a pattern to match which will then be rewritten to R. Once a match

for L has been found, K describes the elements of that match which will not be deleted,

and R describes new elements to add to the match. Informally, a rule is applied to a graph

by matching a subgraph, deleting some elements of that subgraph and inserting some new

elements to that subgraph. Figure 2.2 shows a simple rule for transforming unlabelled graphs.

A rule r is applied to a graph G using a graph morphism g to produce some new graph

H. This graph transformation is denoted G ⇒r,g H. The graph morphism g : L → G is a

mapping from r’s L graph to the graph G, describing the match for L to apply r to. A rule

r is applied as follows:

1. Choose an (injective) morphism g : L → G that satisfies the dangling condition (see

below)

2. Delete elements according to r. This is done by deleting the elements of g(L−K) from

G.

3. Add elements according to r. This is done by adding elements of R−K to G. Should

an edge e ∈ R −K be added that uses a previously existing node n ∈ K as a source,

the edge added to G uses g(n) as its source; the same holds if n is used as a target.

A graph morphism g is typically injective in the DPO approach and consistently injective

in the context of GP 2. One reason for this is that matching via injective morphisms is

37

2 Context

L K R

G D H

g d h

Figure 2.3: The commutative diagram formed by the application of a DPO rule r = L ←
K → R applied to graph G producing intermediate graph D and then resultant

graph H.

more expressive [85]; some behaviour describable with rules applied with injective morphisms

cannot be simulated with non-injective morphisms, for example producing the set of all loop-

free graphs. Conversely, the behaviour of a rule r = L← K → R applied with non-injective

morphisms can be simulated with a finite rule-set Q(r), describing the possible merges of

items in L, applied with injective morphisms.

This process of deletion and addition of graph elements according to a morphism can be

shown to give rise to the commutative diagram of graph morphisms shown in Figure 2.3. The

two squares are pushouts in the category of graphs in the sense of category theory. A direct

derivation can be constructed by constructing a pushout complement of graph morphisms

K → L and L →g G (deleting elements) and then constructing a pushout of K → R and

K →d D (inserting elements). However, the reader may not need to understand the underly-

ing category theory aspects to understand the intuition of the approach or the given diagram.

Across the top, the component graphs of the rule applied are given. Morphism g maps of

elements of L into G, and across the bottom, G ← D → H describes the transformation of

G into H according to r and g.

As an example, consider the simple rule r given in Figure 2.2 applied to some graph,

visualised as a commutative diagram in Figure 2.4. This rule matches a node with a looping

edge, deletes that looping edge, and inserts a new node with an edge from the original node

to that new node. Applying this to the given graph, there are two nodes with loops (with

identifiers 2 and 4) where r could be applied, and so there are two possible morphisms to

choose from. Choosing g, where g(1) = 2 such that node 2 is matched, gives a transformation

where the loop on node 2 is removed and a new node is inserted with an edge from node 2

to that new node.

The example given in Figure 2.4 highlights the non-determinism of this approach. To apply

38

2.2 Graph Programming

1
1

1

2 3 4 2 3 4
2 3 4

g

Figure 2.4: A simple DPO rule application G ⇒r,g H. Morphism g matches node 1 of r to

node 2 of G, with the looping edge on 1 matched to the looping edge on 2.

r a choice must be made over the two possible matches. Should the possible matches share

common elements, and some of those elements be deleted by either transformation, then the

choice of match would then “destroy” the other match, so this choice can effectively decide

a path of computation.

Additionally, the DPO approach uses the dangling condition described in Definition 5. In

informal terms, the dangling condition guarantees that any node deleted is not the source or

target or any edge that is not deleted; no edge is left “dangling” when its source or target

is removed. This condition limits which morphisms are available, such that if a morphism g

would act as a match for r except that it fails the dangling condition, g is not considered a

valid match for r.

39

2 Context

1

5
1

1

2 3 4

6

2 3 4

g?

Figure 2.5: An attempted transformation that fails the dangling condition. For the rule

r = L← K → R and graph G, we have morphism g with g(1) = 2 and g(5) = 6.

When the transformation is attempted, the deletion of node 6 leaves an edge with

no target, and the resultant object clearly is not a graph.

Definition 5 (Dangling Condition). A graph morphism g : L→ G for a rule r = L← K →
R and graph G = (V,E, s, t) satisfies the dangling condition if no edge in G − g(L −K) is

incident to a node in g(L−K).

To see why the dangling condition is required, consider the diagram in Figure 2.5. The

morphism g matches node 5 to node 6. If we attempt to construct the pushout complement

thereby deleting node 6, we produce an object that is not a graph (there is an edge with

no defined target), and clearly this cannot work as a valid transformation. Given a rule

L← K → R and graph morphism g : L→ G, graph D (as shown in Figure 2.3) only exists if

g satisfies the dangling condition. Moreover, in this circumstance D is uniquely determined

up to isomorphism.

Of course, these rules are not used alone or in single steps. A Graph Transformation System

(GTS) is a finite set of rules R = {r1, r2, ..., rn}. GTSs are also referred to as rule-sets. A

GTS R is applied to a graph G by firstly non-deterministically choosing some rule r ∈ R and

then executing that rule according to the steps previously described.

As a final note, throughout this thesis we may use the term confluent when referring to

rules and rule-sets. While we don’t describe the underlying theory behind confluence here

(see [61]), the reader may understand it as meaning deterministic. That is, when a confluent

40

2.2 Graph Programming

rule-set is applied to an input graph until there are no more matches for any of its constituent

rules then that process is guaranteed to terminate and will always produce the same result

graph for a given input graph.

Double-Pushout approach for labelled graphs

With the basic notion of graph transformation by the DPO approach, the idea of labels can

be introduced. A labelled graph is defined over some label set L, the set of possible labels

which can be associated with nodes and edges. Each node or edge in a labelled graph is

associated with a label from L, causing the graph to describe structured data. A labelled

graph is defined:

Definition 6 (Labelled Graph). A labelled graph G = (V,E, s, t, lV , lE) over some label set

L consists of a finite set of nodes V , a finite set of edges E, source function s : E → V ,

target function t : E → V , node label function lV : V → L associating each node with a label

and edge label function lE : E → L associating each edge with a label.

An unlabelled graph, as given in Definition 1, can be considered as a labelled graph where

all items have the same distinguished label.

With labelled graphs, there are implications for graph morphisms; they must be label-

preserving. If lLV is L’s node label function and lGV is G’s label function, then for all nodes

n ∈ L’s node set VL, lLV (n) = lGV (g(n)): the same holds for edges.

In this context, rules of the form r = L← K → R now consist of labelled graphs. From our

current definitions, however, there is a possibility of relabelling preserved items. Additionally,

simply treating relabelling as deletion of one node and creation of another is problematic as

certain transformations would be forbidden by the dangling condition. To overcome this, we

allow K to be partially labelled, that is, K ′s label functions lV and lE are partial functions

and some nodes and edges are unlabelled. In practical terms, when a node or edge in L is

relabelled, it firstly has its label removed and then a new label is added.

Consider Figure 2.6 as an example of a rule with relabelling. Here, a rule describes a node

labelled 1 being relabelled to 2 In the interface K and intermediate graph D, the node is

unlabelled, but at the end of the rule execution, all nodes are labelled.

41

2 Context

1
1 1

2
1

1
2

2
3

2
4 2

2
3

2
4

2
2

2
3

2
4

g

Figure 2.6: A simple DPO rule application G⇒r,g H with relabelling. Morphism g matches

node 1 of r to node 2 of G, so that node’s label is removed and updated to 2.

2.2.3 GP 2

GP 2 is a rule-based graph programming language. The original language definition, in-

cluding an operational semantics, is given in [182]; an updated version can be found in [15].

There are currently two implementations of GP 2, a compiler generating C code [17] and an

interpreter for exploring the language’s non-determinism [16]. An introduction, rather than

a full language definition, is offered here. For a full definition and more detail, refer to [15].

GP 2 programs transform input graphs into output graphs, where graphs are labelled and

directed and may contain parallel edges and loops. The key construct for this is that of

conditional rule schemata. These function as conventional DPO rules, except that we allow

them to contain labels with expressions. This means that a rule schema may contain variables

and produce new labels by performing computation (e.g. arithmetic) on those variables. GP 2

host graphs (see Definition 5), however, may only be labelled with lists of constant values

such as strings and integers. The application of conditional rule schemata is controlled

through a language that allows looping and branching execution. By allowing a program to

chain together multiple rules and rule-sets, complex graph transformations become expressible

which would be difficult or impossible to express with individual GTSs.

A few terms are commonly used when discussing GP 2:

• Host graph: The input graph of a GP 2 program. When the program is running, the

intermediate results that it has produced so far are also referred to as host graphs.

• Result graph: The final host graph produced by a GP 2 program.

42

2.2 Graph Programming

• Match: Where a match meant a morphism for conventional DPO rules, here it refers

to a pair of items (g, α) where g is a pre-morphism and α is an assignment (see below).

• Rule: When it is clear that we are discussing GP 2, we use rule to refer to GP 2’s

conditional rule schemata.

Conditional rule schemata

Definition 7 (GP 2 Conditional Rule Schema). A conditional rule schema r = (L← K →
R, c) is a rule L← K → R consisting of graphs L, K and R labelled with GP 2 expressions

and a GP 2 application condition c.

GP 2 rules may be labelled with any valid GP 2 expression. A grammar for GP 2 expressions

is given in Figure 2.7. All expressions are lists, with an optional mark. Lists consist of

atoms, integers and strings, and these can be expanded to integer and string expressions

with operators such as basic arithmetic. There are constraints on the expressions used in the

left-hand-side of a rule; all expressions must be simple (see [15]) so that variable assignments

are unique.

Formally, there are 5 types in GP 2 expression: int, char, string, atom and list,

and these have corresponding variables in Figure 2.7; IVariable, CVariable, SVariable,

AVariable and LVariable respectively. In terms of type hierarchy, all types are lists, and

int and string are both ‘atomic’ lists. Characters are seen as a subtype of string. This means

that integers and strings are treated as lists of length 1 and that characters are treated of

strings of length 1. This clarification is important for the matching of labels.

Conditions exist to allow the application of rule schema to be controlled and to forbid

certain matches. A grammar is given for GP 2 conditions in Figure 2.8. These conditions

may compare integers and variables or query notions such as variable type and the edge

degree of a node. A match is only considered valid for a GP 2 rule if its assigned variables

satisfy its condition.

Unlike conventional rules, matching for rule schema r = (L← K → R, c) to some graph G

has two phases. First, a pre-morphism is found that acts as a graph morphism but does not

check for label preservation (as the domain, L, of a pre-morphism g : L → G contains un-

evaluated expressions). Once a pre-morphism has been found, an assignment is constructed

for variables in L using the labels of mapped nodes and edges in g. This assignment α provides

43

2 Context

〈Label〉 ::= 〈List〉 [〈Mark〉]

〈List〉 ::= empty | 〈Atom〉 | LVariable | 〈List〉 : 〈List〉

〈Mark〉 ::= red | green | blue | grey | dashed | any

〈Atom〉 ::= 〈Integer〉 | 〈String〉 | Avariable

〈Integer〉 ::= Digit {Digit} | Ivariable | - 〈Integer〉
| 〈Integer〉 〈ArithOp〉 〈Integer〉 | (indeg | outdeg) (Node)

| length((AVariable | SVariable | LVariable))

〈ArithOp〉 ::= + | - | * | /

〈String〉 ::= " {Character} " | CVariable | SVariable | 〈String〉 . 〈String〉

〈Char〉 ::= " Character " | CVariable

Figure 2.7: Abstract syntax of GP 2’s label expressions [15]. LVariable, AVariable,

IVariable, SVariable and CVariable represent the sets of variables for each

type provided with the rule schema.

〈Condition〉 ::= 〈Type〉 (〈List〉) | 〈List〉 (= | !=) 〈List〉 | 〈Integer〉 〈RelOp〉 〈Integer〉
| edge(Node , Node [, 〈Label〉])
| not 〈Condition〉 | 〈Condition〉 (and | or) 〈Condition〉

〈Type〉 ::= int | char | string | atom

〈RelOp〉 ::= > | >= | < | <=

Figure 2.8: Abstract syntax of GP 2’s rule conditions [15]. The Label, Integer and List

nonterminals refers back to Figure 2.7.

each variable in L a value, meaning that Lα now contains concrete values and a check can be

made to ensure that g is label preserving for the rule induced by this assignment, rg,α. Once

α is known, the condition can then also be evaluated.

The complete rule application process is:

1. Find a pre-morphism g : L→ G that satisfies the dangling condition.

2. Check if there is an assignment α of variables in L such that g : Lα → G is a valid

morphism.

3. Check if the condition holds under α.

44

2.2 Graph Programming

update(x:int)

x
1

x+1
1

3
2

4
3

5
4

4
2

4
3

5
4

g

Figure 2.9: A simple GP 2 rule application of rule update to Host Graph G, G⇒updateg,α,g H.

Pre-morphism g matches node 1 of update’s left graph L to node 2 of G such

that α(x) = 3.

4. Create concrete rule instance rg,α by evaluating expressions in R with respect to α.

Execute rg,α with pre-morphism g using the DPO approach to produce result graph H:

G⇒rg,α,g H.

An example rule and its application is given in Figure 2.9. In the rule update across the

top, a node labelled with an integer x is found, and its value is incremented by 1. Across the

bottom, the host graph G has node 2 matched for r’s node 1 and node 2’s value is updated

from 3 to 4. The K interface and D intermediate graph are excluded for simplicity.

The reader should note the use of marks. Marks group nodes and edges into different

“colours”, and a node with a certain mark in a rule’s left hand graph L can only be matched

to a node with that same mark in the host graph G. This effectively allows the programmer

to split their graph into subgraphs by colour, and exclusively compute on those subgraphs.

Additionally, programmers may use the any mark which permits a node in L to be matched

to any marked node, but not unmarked nodes.

Syntax and semantics

GP 2 uses syntax to control the application of conditional rule schemata. A program executes

according to its Main procedure. This procedure may then call other procedures. Overall, a

45

2 Context

〈Prog〉 ::= 〈Decl〉 {〈Decl〉}

〈Decl〉 ::= 〈MainDecl〉 | 〈ProcDecl〉 | 〈RuleDecl〉

〈MainDecl〉 ::= Main = 〈ComSeq〉

〈ProcDecl〉 ::= ProcId = [〈LocalDecl〉] 〈ComSeq〉

〈LocalDecl〉 ::= (〈RuleDecl〉 | 〈ProcDecl〉) { 〈LocalDecl〉 }

〈ComSeq〉 ::= 〈Com〉 {; 〈Com〉}

〈Com〉 ::= 〈RuleSetCall〉 | 〈ProcCall〉
| if 〈ComSeq〉 then 〈Comseq〉 [else 〈ComSeq〉]
| try 〈ComSeq〉 [then 〈Comseq〉] [else 〈ComSeq〉]
| 〈ComSeq〉 ‘!’

| 〈ComSeq〉 or 〈ComSeq〉
| (〈ComSeq〉)
| break | skip | fail

〈RuleSetCall〉 ::= RuleId | { [RuleId { , RuleId}] }

〈ProcCall〉 ::= ProcId

Figure 2.10: Abstract syntax of GP 2 programs [15].

GP 2 program takes a graph G as input and either produces some result graph H, diverges,

or produces a fail result. The fail result is a legitimate result that may occur when there

are no matches for a given rule-set; this is distinct from run time errors, such as division by

0, that may occur.

The construct for calling rules is the rule-set; a rule-set {r1, r2, ...rn} when called may apply

any rule ri, i ∈ 1, 2, . . . , n and the choice of rule is made non-deterministically. If no rule in

a rule-set is executable, by having no matches, then the rule-set call fails. Single rules can

also be called without brackets, although this is simply shorthand for a rule-set containing

one rule: {r1}. A rule-set may also be applied as long as possible (until there are no more

matches for any of its component rules) using the ! operator, but calls made in this way will

not produce a fail result once terminated.

Commands are executed sequentially, and a program may branch to different sequences

of commands using the if and try statements. These statements attempt to execute a

command sequence, and should it succeed, follow one path of execution, and should it fail

46

2.2 Graph Programming

follow another path of execution. The distinction between the two statements, then, is that

if reverts any changes made by the conditional sequence of statements, whereas try keeps

them when the condition succeeds; a programmer can view this as a normal if statement

(checking a condition) in comparison to attempting a change to the host graph and keeping

that change should it succeed with try.

Procedures can be declared and re-used, although these are effectively macros that must

be non-recursive. The ! may also be used for a Procedure, applying a Procedure as long as

possible, and terminating the execution of that command when that Procedure produces a

fail result.

Full syntax is given as a grammar in Figure 2.10, for a full formal semantics of this syntax,

rather than the informality offered here, refer to [15].

Example program: graph copying

In Figure 2.11 we present a GP 2 algorithm, CG, for copying a graph. The input graph is

assumed to be unmarked and contain no loops, and the output graph contains two subgraphs:

the original graph, now marked blue, and a copy of that graph, marked red.

CG consists of 3 conditional rule schemata: copy node, copy edge and disconnect. Each

of these is applied as long as possible, after each other in that order. The idea of the algorithm

is to apply copy node as long as possible with the ! operator to duplicate all nodes in

the original graph, marking the original nodes blue and the newly created nodes red, and

maintaining an auxiliary edge between the original and its copy to identify the origin of each

copy. The label x is a list, which as discussed earlier is the most general type in GP 2’s

type hierarchy, so this rule will copy nodes with any unmarked label. When a node is marked

blue, once it has been copied, it cannot be a match for the unmarked node in the left hand

graph of copy node so cannot be copied again, causing copy node! to be a terminating

statement.

After all nodes have been copied, all edges are copied by applying copy edge as long as

possible. Each unmarked edge between blue marked (original) nodes is copied by creating an

edge, marked red, with the same label between those blue nodes’ copies (which are identified

by the auxiliary edges between blue nodes and red nodes created by copy node). Once an

edge is copied, it is also marked blue to prevent it being copied again by matching the

unmarked edge (labelled z) in copy edge’s left hand graph, causing copy edge! to also be

a terminating statement. As the edge to be copied is between nodes marked blue, auxiliary

47

2 Context

Main := copy node!; copy edge!; disconnect!

copy node(x:list)

x
1

x
1

x

copy edge(x,y,z:list)

x
1

x
2

y
3

y
4

z x
1

x
2

y
3

y
4

z

z

disconnect(x:list)

x
1

x
2

x
1

x
2

Figure 2.11: CG: A GP 2 program for copying an unmarked graph. The Main state-

ment consists of calling copy node, copy edge and disconnect rules each

as long as possible, in that order, to copy a graph, marking the original blue

and the duplicate graph red. An equivalent program can also be given as

Main := {copy node, copy edge}!; disconnect!

12

7

3 12

7

3 12

7

3copy node!

12

7

3 12

7

3 12

7

3 12

7

3copy edge!

12

7

3 12

7

3 12

7

3 12

7

3
disconnect!

Figure 2.12: CG applied to a simple cyclic graph. The execution of the program is visu-

alised according to the execution of each of its 3 as long as possible statements,

copy node!, copy edge! and disconnect!.

48

2.2 Graph Programming

edges identifying node copies (which are between a blue marked node and a red marked

node) and copied edges (which are between red marked nodes) cannot be copied by this rule.

Once all nodes and edges are copied, the final step is to disconnect the two graphs so

that there are no auxiliary edges between blue marked nodes and red marked nodes. The

rule disconnect is applied as long as possible to remove the auxiliary edges. As the edge

is between a blue marked node and a red marked node, the rule cannot delete any of the

original or copied edges as these are exclusively between pairs of blue nodes or pairs of

red nodes. Trivially, each auxiliary edge can only be deleted once, so disconnect! is a

terminating statement.

Figure 2.12 shows the application of CG to a simple cyclic graph with 3 nodes labelled with

integers. The produced graph contains the original nodes and edges of the input graph, now

marked blue, and a duplicate of that graph, marked red.

2.2.4 Probabilistic Approaches to Graph Transformation

This thesis focuses on evolutionary computation, an inherently probabilistic approach to

problem solving. However, although it has been repeatedly identified that graph transfor-

mation creates non-deterministic computation capable of taking multiple routes, that non-

determinism is not typically associated with concrete probabilistic decisions. GP 2’s definition

leaves open how to resolve the non-determinism of choosing rules from rule-sets and matches.

This is seen in the existing C-generating GP 2 compiler [15], where decisions are made on

a first-come first-served basis and there is no probabilistic guarantee of any given outcome.

Here, we briefly review approaches to introducing probabilities to the graph transformation

domain.

There are two main approaches to the probabilistic operation of GTSs; stochastic and

probabilistic. The former describes a Stochastic Graph Transformation System (SGTS),

where each rule in a GTS’s rule-set is associated with a real positive value, known as a

rule’s application rate [95, 97]. The probability of each match for a given rule occurring in

continuous time is typically described according to an exponential distribution parameterised

by the rule’s application rate. An implication of using SGTSs is that the probability of a

rule from the rule-set being applied in any given step is dependent on the number of matches

for that rule. SGTSs have been generalised to a model where each match for each rule,

referred to as an event, is associated with some continuous probability distribution, inducing

generalised semi-Markov schemes describing the operation of the entire system [98,123,234].

49

2 Context

Model Deciding Rule &

Match Choice

Time

Model

Probabilistic Rule

Execution

Classical Graph

Transformation

non-deterministic — No

Probabilistic Graph

Transformation [132]

non-deterministic D Yes

Stochastic Graph

Transformation [97]

Probabilistic C No

Table 2.1: Different approaches to probabilistic decision making in graph transformation. D

indicates discrete time, C indicates continuous time.

A Probabilistic Graph Transformation System (PGTS) walks a middle ground between

classical graph transformation’s freedom of choice and more probabilistic notions. PGTSs

are GTSs where the choice of rule and match are open non-deterministic decisions but rules

have different possible executions (based on a common left hand side) which occur with

different probabilities [132]. This mixture of non-determinism and probabilities over discrete

space is shown to induce Markov decision processes. The Markovian processes induced by the

stochastic and probabilistic notions are distinct; PGTSs cannot be encoded in SGTSs and

the converse is also true [132]. Table 2.1 explains the distinction between conventional graph

transformation, stochastic graph transformation and probabilistic graph transformation.

Other approaches to probabilistic graph rewriting include [21], where a rule-algebra frame-

work is proposed for the study of stochastic rewrite systems, and [49], where stochastic rewrite

systems are used in the simulation and study of molecular biological systems. However, these

works focus on the modelling, simulation and analysis of stochastic systems, whereas we are

interested in generic probabilistic approaches to graph transformation.

2.3 Evolutionary Computation

This section gives a broad review of the field of evolutionary computation, describing at

a high-level a number of ‘standard’ families of Evolutionary Algorithms (EAs). For this

50

2.3 Evolutionary Computation

Stochastic mutations

(hopefully) introduce

innovation

Survivors

repopulate

Fitness function

selects and removes

least fit individuals

Figure 2.13: A simple model of Evolutionary Algorithms

reason, this section generally refers to older source material, rather than the state-of-the-art

techniques built upon these. By introducing concepts in this manner, we hope that the reader

will acquire a general notion of what EAs are and how they work, independent of specific

representations and concrete algorithms.

Evolutionary computation is a family of algorithms inspired by Darwinian evolution. Typ-

ically these hold a population of potential solutions in memory, evaluate their ability to solve

a given problem, and then generate a new population as recombinations and stochastic vari-

ations of those potential solutions in the previous population that best solved the problem.

This is analogous to differential evolution in nature; the beings most suited to their envi-

ronment are most likely to survive and reproduce and thus, over time, a species as a whole

becomes more adapted to its environment. The basic model of this analogy is outlined in

Figure 2.13. This might be characterised in pseudo-code as given in Algorithm 1.

Algorithm 1 Generic EA

1: procedure EA

2: population← randomised set of individuals

3: while True do

4: survivors← selected from population according to quality

5: population← re-populated from survivors

6: end while

7: end procedure

This family of “EAs” can be characterised as meta-heuristics: strategies for guiding a

search process (heuristic) through a search space to produce (near) optimal solutions to a

51

2 Context

given problem [25]. This is a splintered family of closely related algorithms separated by

application domain. For example; Genetic Programming (GP) [130] and high-level neuroevo-

lution techniques such as Neuroevolution of Augmenting Topologies (NEAT) [222] have com-

mon elements of population, mutation, cross-over and fitness-based selection and yet there is

currently no discernible way to represent both in a common concrete framework. The root

of this issue is complex, but a key point of divergence is the use of different representations;

both for potential solutions and mutation operators. This divergence manifests itself in the

application of EAs to some new domain; a state-of-the-art domain-specific algorithm may

require substantial work to be applicable elsewhere.

That is not to claim that the field is entirely divided, as a number of attempts to unify

known algorithms exist. For example, [229] presents a model, Adaptive Memory Program-

ming, which attempts to unify meta-heuristics (Genetic Algorithms (GAs), as well as others

such as Ant Colony optimisation and Tabu Search) using memory that is updated with provi-

sional solutions. Taking a different view, [25] argues that meta-heuristics are searches in a 3D

plane (called the I&D Frame) of intensification (exploitation), diversification (exploration)

and randomness. However, these attempts typically rely on abstract concepts of individu-

als, rather than a common representation. For a search algorithm to be considered general

purpose it must free its user from the demands of providing a representation for solutions

and mutations, as specifying such parameters effectively means specifying a domain-specific

algorithm. See [227] for more thoughts in this direction. This motivates the search for a

common representation of these parameters in evolutionary computation, but it should be

noted that this is a separate, if related, problem to unification, which attempts to put EAs

(and other meta-heuristics) within a common framework.

Historically, this domain might have been split up into two approaches; GAs and Evolution

Strategies (ES) which are discussed in Sections 2.3.1 and 2.3.2, respectively. These techniques

use fixed encodings to represent individuals and then rely on some decoder to translate

genomes into potential solutions which can be evaluated. GP, discussed in Section 2.3.3,

emerged later and typically uses a direct tree representation of a computer program. A

discussion is also given to the domain-specific field of neuroevolution, where EAs are used to

evolve ANNs, in Section 2.3.4.

52

2.3 Evolutionary Computation

2.3.1 Genetic Algorithms

GAs are EAs which manipulate a population of strings of variables, often bit-strings, using

mutation operators and crossover. The field can draw its history from many lines of simulated

evolution in the 1950s and 1960s, although Holland’s 1975 book on the subject [101] is

considered a landmark that offered formality and commonly agreed GA design. The GA

proposed by Holland is commonly referred to as the Simple Genetic Algorithm (SGA) [50,

150, 252]; a classic survey by Srinivas [216] describes this SGA using pseudo-code given in

Algorithm 2.

Algorithm 2 Simple GA [216]

1: procedure SGA

2: initialise population;

3: evaluate population;

4: while termination criterion not reached do

5: select solutions for next population;

6: perform crossover and mutation;

7: evaluate population;

8: end while

9: end procedure

Srinivas also notes several component parts of the SGA that complete the notion given in

Algorithm 2:

• A population of strings of variables, corresponding to the population variable.

• Control parameters which describe behaviour such as the rate of mutations, population

size, the maximum number of generations before termination or the minimum fitness

required for termination.

• A fitness function, which evaluates each solution within the population according to its

ability to solve a given problem. This is used to evaluate the entire population in lines

3 and 7.

• Genetic operators. These are operators which describe crossover and mutations on

members of the population.

• A selection mechanism to select solutions for the next population in line 5. This is

separate from though driven by the fitness function; it is not simply a matter of choosing

the very best performing solutions as that may eliminate solutions which show potential

53

2 Context

novelty.

• A mechanism to encode/decode solutions as strings of variables. This allows the SGA

to be applied to domain-specific problems, by translating between string genotypes and

concrete solution phenotypes which can then be evaluated by the fitness function.

In contrast, Harvey describes a minimal version of the GA, the Microbial GA [92], which

is more specific than the SGA. In the Microbial GA, a population of bit-strings is updated

by picking pairs of individuals from the population and replacing the worst performing with

a child of the two. This simplified approach may be useful when introducing graph transfor-

mation to EAs.

A number of optimisations exist for GAs beyond the SGA, for example, parallelisation [32].

Whereas a master-slave model that allocates work to sub-processes offers possible efficiency

savings [33], the island model of parallel GAs proposes a new paradigm. In this model, there

are several populations which are evolved separately, although some individuals are passed

between populations to allow useful genes to spread [256]. The intuition is that by maintaining

multiple populations, more diversity is achieved as the algorithm searches multiple spaces

simultaneously, with more diversity assumed to improve the chance of finding novelty and

better optima. Further optimisations include elitism [51] and adaptive GAs [146], although

these are not discussed in further detail here.

While suited to a diverse range of problems, for example, general assignment [139] and

flowshop sequencing [194], GAs are not without flaws. If an EA has low locality, a measure

which describes how similar new individuals are to their parent individuals, then it may

struggle [196]. This is apparent in GAs when using a poorly chosen encoding/decoding

mechanism. More importantly, in the context of graphs, we see no benefit to representing

GAs as graph programs, as this would mean graph transformations over strings of variables

- structures with simple linear topologies. For this reason, GAs are not discussed further.

2.3.2 Evolution Strategies

ES is a numerical approach to EAs where individuals are treated as vectors of real values

and mutations alter these vectors according to, typically Gaussian, distributions [13]. ES was

first implemented as a simple algorithm where each generation has one parent individual and

one child individual; this is known as (1 + 1)-ES. This algorithm, outlined in Algorithm 3,

serves as an intuitive introduction to ES.

54

2.3 Evolutionary Computation

Algorithm 3 (1 + 1)-ES, a simple evolution strategy [13]. parent corresponds to the parent

individual’s real vector representation and θ is a vector of standard deviations for mutations.

N (j) takes a real vector j as input and produces a vector of real values k where k(i) is drawn

from a normal distribution with mean 0 and standard deviation j(i).

1: procedure (1 + 1)-ES(θ)

2: initialise parent

3: child = parent + N (θ);

4: evaluate parent, child;

5: while termination criterion not reached do

6: parent = highest fitness solution from parent, child;

7: child = parent + N (θ);

8: evaluate child;

9: end while

10: end procedure

Here a number of components, such as fitness functions and control parameters are required

to provide a concrete (1 + 1)-ES implementation, as was the case with the SGA discussed in

Section 2.3.1.

Iterating upon (1 + 1)-ES, there are several ES variants to address different concerns.

Multimembered ES introduces multiple parents for each generation, allowing the notion of

crossover to be introduced [152]. By dividing a population into several sub-populations which

are evolved in parallel [198], it is possible to parallelise ES in a similar manner to the island

model for GAs.

As with GAs, we see no benefit to representing ES with graph programs, as this would

mean graph transformations over vectors - again, these are structures with simple topologies.

For this reason, ES is not discussed further.

2.3.3 Genetic Programming

GP was initially introduced as an application of EAs to computer programs. In its earliest

iteration, individuals were represented as either strings of integers or trees that were then

parsed to produce simple programs [48]. However, this tree representation rapidly became

the convention [130] and to some readers it may even be synonymous with general GP.

The tree-based approach is discussed below, followed by discussion of another approach,

55

2 Context

Linear Genetic Programming (LGP), which attempts to apply EAs to imperative programs.

Koza [130] outlines the general notion of GP free from representations as given in Figure

2.14, which does not significantly differ from the general approach of EAs given in Algorithm

1.

Tree-based Genetic Programming (TGP) In the tree-based representation, a tree is used

to represent the structure and operation of a program. Nodes represent functions, variables

or constants, and child nodes represent inputs to their parent. As an example, Figure 2.15

shows a tree representation of a program for the formula (y + (z − 1))× (3× x).

Crossover is usually achieved by exchanging subtrees between two parent solutions [130].

Nodes within each parent are selected as cross-over points; once a cross-over point has been

selected in each parent tree, the entire subtree of the crossover nodes and their children can

be swapped into the other tree. A number of mutation operators are viable, for example,

headless chicken crossover involves crossover between a solution and a randomly generated

tree [3]. Point mutations, where a node is relabelled with a new function, constant or vari-

able, incorporate more fine-grained changes to a given solution. Regardless of the approach

taken, there is evidence that crossover alone is not sufficient for exploration, as Koza initially

postulated [130], and that random mutations offer additional avenues of exploration [3,143].

As with GAs, many optimisations are possible for TGP; the island model described in

Section 2.3.1 is applicable here [68]. In Strongly Typed GP, each variable and constant

is associated with a type, allowing crossover to target subtrees of the same data type and

prevent the production of invalid individuals [160]. Meta GP describes a context in which a

GP system can be evolved through GP [59].

As a field, TGP has been plagued by the issue of bloat. As trees have unbounded size

individuals often grow in size without meaningful gains upon reaching a local optimum [142].

This growth can then slow the GP system down and wastefully consume additional memory.

Several techniques exist to overcome bloat; larger-than-average individuals can have their

fitness artificially reduced [190], destructive mutations can be favoured for larger individuals

[122] or the total size of the population can be limited [208].

As this tree-based representation is inherently a graph, considering TGP as graph-based GP

appears straight-forward; individual representations can remain as they are, while mutations

and crossover operators can be represented as relatively simple graph programs.

56

2.3 Evolutionary Computation

Figure 2.14: A model of GP, figure taken from [130]. M is the number of reproductions to

perform in a given generation. Pr is the probability of a reproduction being a

conventional mutation, whereas Pc is the probability of a reproduction being a

crossover operation.

57

2 Context

×

+ ×

y − 3 x

z 1

Figure 2.15: A tree representation of the formula (y + (z − 1))× (3× x).

Linear Genetic Programming (LGP) LGP [18, 26] techniques evolve linear sequences of

instructions; these programs typically have a shallow or flat structure which is not intuitively

described by a deep tree. There are a number of reasons for evolving linear sequences of

instructions, for example: by evolving machine code the cost of evaluating programs may

be several orders of magnitude faster than interpreting trees [171] and it becomes possible

to evolve machine code specifically targeting some physical device [135] or virtual machine

[60]. In conventional LGP, each instruction in an individual may access and manipulate the

contents of a globally available set of registers. Unlike TGP, LGP may produce intronic code

which offers no functional purpose but remains within an individual’s genome. There are cases

where this intronic code may improve the overall performance of the system [103]. LGP offers

an intuitive approach to evolved concurrency, with concurrent programmings represented as

multiple sequences of linear instructions [36]. There are also attempts to implement meta-

learning with LGP, by evolving instruction sequences which describe ES [174].

In a graph setting LGP appears to show the same lack of advantage as GAs discussed in

Section 2.3.1 due to the linear representation of individuals. However, we could view evolved

programs as graphs in the sense of data-flow diagrams with nodes representing instructions

and edges representing the flow of information from a previously executed instruction e.g.

by accessing the same register. Additionally, there are works which introduce additional

structure to LGP: Linear-Tree GP [113] represents individuals as trees where each node

contains a sequence of instructions, and Linear-Graph GP [114] extends this notion to graphs.

2.3.4 Neuroevolution

Neuroevolution is a somewhat unique sub-section of this contextual review; rather than focus-

ing on a common algorithmic approach, this field is unified by its problem domain: Artificial

58

2.3 Evolutionary Computation

Neural Networks (ANNs). Here, the reader is assumed to be familiar with ANNs, but if this

is not the case, refer to [24].

The first division one can make in neuroevolution is which aspects of a given ANN are

evolved. An ANN can be seen as a topology with weights attached to edges; the topology

can be evolved, the weights can be evolved, and these two aspects can potentially be evolved

in conjunction.

A number of works focus on ANNs with fixed topologies. As the topology is fixed, the

number of connections is fixed and as such, the number of weights which must be evolved

is fixed. This lends itself to GAs; each weight can be associated with a fixed number of

bytes meaning that the entire neural network’s connection weights can be represented as

a fixed-length bit string [22, 161, 257]. Some domain-specific approaches focus on evolving

weights directly rather than through some encoding [81]. These approaches, on the surface,

appear well justified: conventional training of ANNs through the back-propagation technique

also keeps topologies fixed [255] and this evolutionary approach appears analogous. However,

there is evidence suggesting that evolution of ANN topology contributes significantly to the

learning process [222] and, in particular, topology evolution alone may in some circumstances

out-perform weight evolution alone [239].

In contrast, ICONE [195] evolves neural networks by treating neurons and connections

as separate entities that describe an overall architecture. By grouping elements according

to tags and groups, cross-over is achieved and a network can be broken down into modular

components. In EANT and EANT2 [117, 207], neural networks are encoded as a linear

sequence of genes that describe neurons and connection that construct an individual network.

Figure 2.16 shows the comparison between a neural network, a tree interpretation of that

network, and a linear sequence of genomes representing that network as used in EANT2;

this representation is evolved using ES for weights and dedicated structural mutations. In a

similar manner to EANT, NEAT [222] constructs neural networks from linear sequences of

genes. As the authors view this as manipulating a graph structure, this algorithm and its

variations are discussed in further detail in Section 2.4.3, although graphical interpretations

could be provided for others such as EANT and ICONE.

Neuroevolution has found success for complex real-time problems, particularly where re-

currence is relevant. For example, some applications of NEAT focus on evolution of agents for

games such as racing [34,35] and strategy and intelligent behaviour [219]. Cartesian Genetic

Programming (CGP), an approach discussed in Section 2.4.1, similarly developed recurrent

59

2 Context

Figure 2.16: An example encoding of a neural network in EANT2, figure taken from [207].

(a) shows the neural network in full, and (b) shows a tree format representation

of this neural network; recurrence is represented as a node appearing in its own

subtree as with node 0. Across the bottom, a sequence of genomes describe

the construction of (b), with N genes adding nodes, I genes adding connections

from inputs, JF genes adding feed-forward connections and JR genes adding

recurrent connections. W in each gene represents a corresponding connection

weight.

game agents for a real-time pole balancing problem [126]. Because of the natural interpreta-

tion of a neural network as a graph, with neurons as nodes and connections as edges, and the

apparent application to problems that conventional machine learning struggles to address,

this is a highly motivating field for further study.

60

2.4 Graphs in Evolutionary Computation

2.4 Graphs in Evolutionary Computation

Graphs are a commonly used structure in evolutionary computation. This section addresses

work where graphs have been explicitly used as a representation in evolutionary computation

and is effectively a general purpose ‘related work’ section of this thesis that we refer back to.

Due to the universality of graphs as a data structure, this section could bloat without some

restrictions, so we will make the following constraints:

1. The graph representation used in a given work should be sufficiently complex. It would

be possible to include TGP [129] here as trees are a well-defined subset of graphs,

but this is perhaps not the most fruitful direction of thought due to trees’ structural

simplicity.

2. The graph representation should be either direct or close to direct. As an example,

various works attempt to learn quantum circuits (which are in some sense graphs) via

TGP and a domain-specific language that can be decoded into a circuit [213]. But from

the perspective of the EA, it is the tree that is assigned the fitness value, so in some

sense, this falls under our first constraint. In contrast, the work in [6] uses ant colony

optimisation to directly generate quantum circuits as subgraphs of a Cartesian graph,

which would be more relevant with respect to our discussion of representation.

Several we discuss, such as CGP [157] and NEAT [222], effectively describe their individuals

as lists that directly encode nodes and edges, but this does not fall under our second constraint

as this is simply another way of notating a graph under Definition 1.

In the following sections, we describe in detail 3 significant graph-based EAs. In Section

2.4.1 we describe CGP, a generic EA for learning Directed Acyclic Graphs (DAGs) with

many graph-based applications. In Section 2.4.2 we describe Parallel Distributed Genetic

Programming (PDGP), an extension to TGP with many similarities to CGP. In Section 2.4.3

we describe NEAT, a neuroevolution system which explicitly learns a graph-based represen-

tation of ANNs. Finally, in Section 2.4.4 we will cover a number of other graph-based EAs

in less detail, discriminating between those approaches which learn graphs, and those ap-

proaches which learn graph-like solutions to domain-specific problems without the use of an

obfuscating encoding.

61

2 Context

2.4.1 Cartesian Genetic Programming

CGP is a graph-based EA with a wide variety of applications. In this section, we describe

the basic approach and a number of extensions to CGP that have been proposed. For more

detail and an up-to-date survey on the status of CGP, refer to [158].

The main principle (from our graph-based perspective) of CGP is that an individual is

represented by a graph with a fixed and ordered set of nodes [157]; a node may only be the

source of edges that target nodes with an earlier position in the ordering. Each node represents

a function that is applied to its inputs (given by its outgoing edges). In many modern works,

this is a total ordering where one can imagine nodes arranged in a line with connections

allowed only to the left. However, earlier works [154, 157] often used a partial ordering

where one can imagine nodes arranged in a 2-dimensional grid, again with connections only

allowed to the left. For our discussion, we use the former notion, as this is more prevalent

in modern CGP usage e.g. [165, 226, 245]. In CGP publications such as [154, 157], this is

often implemented via an encoding where solutions are linear sequences of integers that are

decoded into DAGs. We give a typical genotype/phenotype mapping in CGP in Figure 2.17.

The most commonly used mutations take two forms; they can either re-label a node with a

different function, or they can redirect edges while respecting the given ordering. A number

of other mutation operators have been proposed in the literature which have various benefits

and costs [76, 77]. The current advice is to use CGP with mutations only, rather than with

crossover [155, 243], alongside the 1 + λ EA. This approach1 sees a single individual survive

in each generation which is then copied and mutated to generate λ children. However, a

number of works have explored the use of crossover in CGP, including uniform crossover [154],

arithmetic crossover on a vector representation [41], and subgraph crossover [112]. Empirical

comparison [106] shows that crossover operators do not always aid performance and that

CGP with mutation only can sometimes be the best performing approach.

Figure 2.17 highlights that a node (in this case, the AND node) may be the input of no

other node in the graph, and therefore contribute nothing to the output. These inactive nodes

can build substructures which can effectively undergo random walks, allowing a property

referred to as neutral drift to occur, which is believed to allow CGP to escape local optima

by exposing the search algorithm to new neighbourhoods [244,251,266]. The claim that this

process always aids performance has been contested [43]. There is evidence suggesting that

the performance of CGP can be further accelerated by increasing the amount of redundant

1Which I have heard called ‘glorified hillclimbing’, but works remarkably well.

62

2.4 Graphs in Evolutionary Computation

Node 1 Node 2 Node 3 Output

Genotype: 0 0 1 1 0 2 0 1 0 2

Phenotype:

i0 OR NOR AND o0

Figure 2.17: The genotype-phenotype mapping of a simple CGP individual consisting of 1

input, 3 nodes and 1 output and arity 2. Each node is represented by 3 genes;

the first 2 describe the indices of the node’s inputs (starting at index 0 for the

individual’s input i0) and the third describing the node’s function. Function

indices 0, 1 and 2 correspond to AND, OR and NOR respectively. The final

gene describes the index of the node used by the individual’s output o0.

material present [156].

Many extensions to CGP exist in the literature. A modular variant of CGP named Em-

bedded CGP has been proposed where modules (subgraphs) are automatically acquired and

reused throughout the evolutionary process, often accelerating the search [253, 254]. Recur-

rent CGP [241,242] allows the existence of recurrent connections which can target any node

in a graph, facilitating the induction of recursive solutions to problems such as generating

the Fibonacci sequence or time-series forecasting. Self-modifying CGP [90] facilitates the in-

clusion of nodes that can create and delete other nodes, thereby allowing a graph to develop

to solve a class of problems, such as computing π or e to arbitrary precision [91].

Using a graphical structure, CGP has demonstrated its capability as a cross-domain op-

timisation algorithm. Initially, it was proposed as a means to evolve circuits for Boolean

functions [154], but this was generalised to the concepts described in [157]. A number of

works have extended its application to search over approximate circuits by employing a multi-

objective EA and exploring the tradeoff between accuracy, with respect to a target truth table,

and cost, with respect to power consumption, circuit delay and size [165,249,250]. With the

introduction of edge weights, CGP has been shown to effectively evolve ANNs [124,126,238].

By relaxing the requirement for a CGP individual to be feed-forward, it is possible to evolve

63

2 Context

Recurrent Neural Networks (RNNs) capable of solving real-time problems [125, 245]. An

interesting application can be found in [137], where a two-tiered version of CGP was used

to evolve an abstract sequence of instructions with repetition of instructions occurring as a

function of numerical parameters. Other application areas include (but are not limited to)

convolutional neural network architecture design [226], multi-step forecasting [58], crypto-

graphic circuit design [179,180] and image processing [88,89,201].

To summarise, CGP is a graph-based EA that uses a direct2 encoding of graphs as a

representation. Since its inception, it has spawned a broad field of research with many

extensions both in terms of genetic operators and representation. The empirical observations

of neutral drift in CGP and related theory have since spilt over into more general evolutionary

research and should be a consideration in any discussion of neutral drift, e.g. [72]. Perhaps

the most relevant observation in relation to our work is the generality shown by CGP, with a

wide range of application areas unified by the common representation of solutions as graphs.

2.4.2 Parallel Distributed Genetic Programming

PDGP is an extension of TGP that bears much resemblance to CGP with respect to represen-

tation and emerged independently at around the same time [187]. The main representation

concept in PDGP is that, rather than single output trees, an individual is a multiple output

program existing as a ‘graph on a grid’ [186,188,189]. Figure 2.18 shows an example PDGP

solution.

In PDGP, nodes may connect to nodes one layer previous in the grid. To allow deeper con-

nections, inputs may be passed through layers via ‘wire’ functions which compute identities of

their inputs, and an example of this (a node with a vertical line through it) is given in Figure

2.18. Unlike mainstream CGP thought, most genetic operations in PDGP are done through

crossover. In particular, crossover operators such as Subgraph Active-Active Node (SAAN)

crossover are used to recombine parts of solutions while attempting to minimise disruption to

the rest of the solution. A diagram visualising SAAN crossover is given in Figure 2.19. Here

the subgraph induced by an active node in parent 1 replaces the subgraph induced by an

active node in parent 2. To ensure that the solution still fits on the grid, it is wrapped around

as shown. A particular difference between PDGP and CGP is the lack of atomic mutations in

PDGP; instead, mutation is achieved by crossover with randomly generated solutions [186].

PDGP has been shown empirically to perform favourably in comparison to TGP [188]

2Or, very close to direct, depending on perspective.

64

2.4 Graphs in Evolutionary Computation

Figure 2.18: A PDGP individual representing the solution max(x × y, 3 + x × y), placed on

a 2 dimensional grid. Figure taken from [186]. The node with a vertical line

represents a ‘wire’ function, computing an identity function on its input.

65

2 Context

Figure 2.19: SAAN crossover in PDGP, figure taken from [186]. An active subgraph induced

by a single node (the crossover point) in parent 1 replaces an active subgraph in

parent 2. The inserted content is wrapped around to ensure that it still correctly

fits on the 2D grid.

66

2.4 Graphs in Evolutionary Computation

and has been used to evolve ANNs [192]. However, despite its apparent generality and

efficiency and notable similarity to CGP (which the creators of CGP have often pointed

out [155, 158]), PDGP has not seen the same degree of wide-spread research interest. While

the reasons for this are debatable, it is quite clear that due to the shared representation, many

of the applications of CGP would also be target applications for PDGP. PDGP is interesting,

from our perspective, because it in many ways represents an open question in graph-based

evolution; what are good crossover operators for graphs, and do these improve upon simple

mutation operators? There is a lack of direct empirical comparison between CGP and PDGP

in the literature.

2.4.3 Neuroevolution of Augmenting Topologies

NEAT is a form of neuroevolution explicitly constructing a graph representation of a neural

network. The philosophy of the algorithm is to keep networks minimal and use historical

changes to find points of crossover [222]. Figure 2.20 shows the relationship between a NEAT

genome representation, a linear sequence of genes, and its corresponding neural network.

In NEAT, structural mutations are additive, instead of varying or deleting existing com-

ponents. Structural mutations take two forms; adding a node, and adding an edge. Adding

a node is done by disabling a previous connection gene, and inserting a connection from that

previous connection’s source to a new node, labelled with weight 1, and a connection from

that new node to the previous connection’s target, with the previous connection’s weight.

This is done in this way to minimise disruption to the network behaviour. Adding a connec-

tion is done simply by choosing a new source and target node. These structural changes are

recorded as ‘innovations’ which are used to track common history of two individuals; if they

share an innovation number then they have a common ancestor up until that innovation,

and so crossover can take place by lining up these common genes and thereby avoiding using

expensive topological analysis while attempting to establish coherent crossover points.

NEAT makes extensive use of ‘speciation’. Rather than having the entire population of

networks compete with each other, networks instead compete within ‘niches’ which are defined

by the distance between networks. The distance between networks is, in part, computed using

the historical markings we have already discussed. By doing this, NEAT protects topological

innovations, giving new topologies time to adapt before discarding them.

NEAT has the noteworthy ability to solve hard, often real-time, neuroevolution problems.

For example, beyond classic control problems such as pole balancing [222], NEAT has also

67

2 Context

Figure 2.20: An example encoding of a neural network in NEAT, figure taken from [222]. The

network is described by a set of node and connection genes which are used to

construct a neural network that can then be evaluated.

been used to discover car controllers [34, 35]. A real-time version of NEAT has been used in

coordination with a custom game NERO so that agents could be trained to play against a

human player in real-time [219]. NEAT is also used extensively in fields such as evolutionary

robotics [52,53] and swarm robotics [57,78].

A number of notable variants of NEAT have been proposed. HyperNEAT [73, 220] is

a variant of NEAT where the networks evolved are more complex Compositional Pattern

Producing Networks (CPPNs). The main distinction between these CPPNs and ANNs is the

use of activation functions [218]. These CPPNs can then be used to generate the weights of

a larger neural network, by effectively generating a hyper-cube of real values. By doing this,

it becomes possible to use HyperNEAT as a reinforcement learning algorithm for training

large Convolutional Neural Networks which can perform complex tasks such as playing video

games from raw pixel information [94] or playing GO [74]. However, there is evidence to

suggest that traditional TGP can replace NEAT in HyperNEAT and perform similarly [29].

68

2.4 Graphs in Evolutionary Computation

Another variant, CoDeepNEAT [153], substitutes neurons with Deep Neural Network (DNN)

layers. By evolving architectures with the NEAT methodology, alongside hyper-parameters,

it is possible to evolve architectures capable of competing with human-designed architectures

[136,153]. However, several other deep neural architecture search techniques have been set out

[5,193,226], and without empirical comparisons available, it is unclear whether CoDeepNEAT

is particularly effective.

NEAT is capable of evolving a wide variety of neural-inspired graphs; ANNs [222], CPPNs

[220] and DNNs [153]. It is not unimaginable, then, that it would be possible to extend NEAT

to evolve the range of graph-like structures studied with CGP, such as digital circuits [157]

or forecasting solutions [58]. This direction of thought is encouraged by the fact that CGP

has indeed been used to evolve neural networks [126] and DNNs [226]. A major distinction

between CGP and NEAT is that CGP uses a fixed size representation and a highly elitist

EA, whereas NEAT grows solutions while attempting to maintain diversity. If the comparison

between CGP and PDGP is one of mutation vs. recombination of graphs, then the comparison

between NEAT and CGP may be one of fixed size graphs vs. growing graphs, and elitism vs.

diversity.

2.4.4 Other Graph-Based Evolutionary Algorithms

In this section we discuss various other graph-based EAs from the literature. This section is

not exhaustive; many works could be viewed as relevant and compiling such an exhaustive

list would be a research endeavour in itself. Instead, the intention is to give the reader an

overview of the varied and extensive use of graphs in evolutionary computation.

Graph-based Genetic Programming. There have been a number of other extensions to GP

that utilise a graph-like structure.

Multiple Interactive Outputs in a Single Tree (MIOST) [71,138] proposes using trees with

multiple output nodes and sharing to extend traditional GP to domains where problems have

multiple, related outputs. Sharing is created via ‘p’ function nodes, which may point to other

nodes in the graph. All other nodes are structured as trees as in conventional TGP. Then

traditional tree-based genetic operators (with small modifications to account for p nodes)

may be used such as crossover or subtree mutation. While the representation used in MIOST

appears to approach that of CGP or PDGP, the use of p nodes as an ad-hoc extension of

TGP and the reuse of tree-based genetic operators suggest that this approach is further from

69

2 Context

our interests.

Linear-graph GP [114] can be viewed as a graph-based extension of LGP where individuals

are represented as graphs. Each node in the graph contains a linear sequence of instructions

which are executed when the node is reached. After these instructions are executed, an if-

then-else branching instruction is evaluated which selects which node should be evaluated

next. Individuals may then be recombined by exchanging linear sequences of instructions

between nodes, or by identifying and exchanging entire subgraphs. Experimentally, Linear-

graph GP was shown to outperform an LGP system [114].

Tangled Program Graphs (TPGs) [120] is a modular extension of GP whereby nodes in

a graph represent cooperating programs which, collectively, constitute an agent capable of

interacting with an environment. Each of these nodes is labelled with a sequence of instruc-

tions, in the manner of LGP, and therefore the representation of TPGs appears quite similar

to Linear-Graph GP. However, as TPGs are generally used to represent agents, it is there-

fore often necessary for them to be stateful; it then follows TPGs may contain cycles, unlike

Linear-Graph GP. TPGs has been used extensively to learn agents capable of playing video

games [120,121,210].

Evolution of neural network topology As we have discussed in Sections 2.3.4 and 2.4.3

there are various approaches to neuroevolution which incorporate evolution of topology, such

as NEAT [222], ICONE [195] and EANT2 [117]. There are further works which could be

considered relevant here.

GeNeralized Acquisition of Recurrent Links (GNARL) [4] instantiates a population of re-

current networks by choosing a random number of hidden units chosen from a user-defined

range and then adding a random number of connections chosen from a user-defined range3.

GNARL primarily modifies networks via mutation, rather than crossover, and distinguishes

between weight mutation, which permutes connection weights, and structural mutation.

Structural mutations may add or remove hidden units and connections, which is a relatively

straightforward process due to the fact that purely RNNs have very few structure constraints.

EPNet [264] is a hybrid method which combines structural mutations of topology with

backpropagation training of weights. In each iteration of the evolutionary process, network

weights are trained by backpropagation. Networks are then replaced with their children,

3In some sense, initialisation of these networks resembles sampling from a variety of D(n, p) directed random

graph models as described in [82].

70

2.4 Graphs in Evolutionary Computation

which are structurally mutated with hidden unit addition/deletion and connection addi-

tion/deletion. In some sense, EPNet utilises a form of ‘Lamarckian’ evolution, whereby the

population develops (via backpropagation), and their developed features, e.g. connection

weights, are passed to the next generation.

Evolution of automata A number of works have investigated the evolution of automata with

a view of individual solutions as graphs. In fact, some of the earliest work on evolutionary

computation was on the evolution of automata [69]. Some of these works could have been

placed in the earlier ‘Graph-Based Genetic Programming’ section as the authors themselves

view their contributions as extensions of GP. However, as they evolve domain-specific forms

of automata, rather than arbitrary programs, they are described here instead. In the context

of the work undertaken here, they are perhaps less useful as points of inspiration as they

work with specific forms of automata rather than more generic graph structures, but there is

clearly value in examining how they represent and modify graphs.

Graph Structured Program Evolution (GRAPE) [206] combines a graph-like structure with

a custom branching functions to evolve automata capable of accessing and modifying an

internal register. When a node is evaluated, the register is used in a computation, and then

a decision is made over which node should be evaluated next. Special functions are added to

the function set which determine branching behaviour based on the contents of the register.

GRAPE has been used to induce sorting algorithms [203] and various recursive functions such

as factorials [205]. It has also been extended to support Automatically Defined Nodes [204]

which take on a similar role as Automatically Defined Functions (ADFs) in TGP [129].

Genetic Network Programming (GNP) [118] proposes an EA over graph-like automata

consisting of ‘judgement’ nodes (which operate as if-then-else statements) and ‘processing’

nodes which perform some action. Mutation in GNP is quite similar to that of Recurrent

CGP [241], in that with a certain probability, each edge is redirected to point anywhere in

the structure. Crossover in GNP bears some resemblance to early work on uniform crossover

in CGP [154], where nodes are selected from each parent independently of the rest of the

structure. GNP is often used in a reinforcement learning context, to induce agents capable

of reading and interacting with some environment; see for example its application to elevator

controls [100] and stock-market trading [37].

Parallel Algorithm Discovery and Orchestration (PADO) [231, 232] proposes an EA over

graph-like automata which are very similar to those used in GNP. In PADO, nodes have both

functional behaviour and branching behaviour, both of which are governed by a stack and

71

2 Context

indexed memory. The main application of PADO is to synthesise object recognition systems.

Various works in the literature have considered the evolution of Turing machines e.g. [144,

167, 230], although many of these fall under the second constraint we placed on relevant

literature. A particular work of interest is found in [177], where the authors represent Turing

machines as graphs encoded in a linear genome and develop a crossover operator based on

the structure of the underlying graph. Here, crossover is achieved by picking a node in each

graph as a crossover point and then exchanging subgraphs reachable within a certain number

of connections from the crossover points.

Evolution of Bayesian networks Various approaches have been set out that target the

optimisation of Bayesian network structure. For a more detailed review and discussion,

see [133]. A number of these approaches focus on modifying the connectivity matrix of a

Bayesian network via a GA [66, 134, 148], which, while a valid representation of a graph, is

perhaps less interesting in our context. However, several works directly modify the Bayesian

network as a graph and therefore are of interest.

In [261], Bayesian networks are treated as DAGs. In each iteration of the EA, offspring

are produced by mutation. Mutation operators include edge addition/deletion, edge rever-

sal, edge relocation and a knowledge-guided mutation which adds and deletes edges based

on minimising the Minimum Description Length (MDL). If an offspring is produced which

contains a cycle, it is corrected by deleting the set of edges which induce that cycle.

Bayesian networks have been also been evolved as Completed Partially Directed Acyclic

Graphs (CPDAGs) [166]. In this circumstance, individuals in the population represent not

only one solution but entire equivalence classes of solutions. Mutation operators may insert

and delete both directed and undirected edges, and reverse directed edges. A special mutation

operator used appears to resemble a rewrite rule, where a structure of the form X − Y − Z
is rewritten to X → Y ← Z. In this work, acyclicity is maintained by checking if a mutation

would introduce a cycle before it is applied, rather than the correction process used in [261].

Similarly, [47] proposes a variety of EAs learning Bayesian networks represented both as

CPDAGs and DAGs, also utilising this operator.

72

2.5 Conclusions and Directions for Research

2.5 Conclusions and Directions for Research

In this chapter, we have described the general notion of graph transformation and the rule-

based graph programming language GP 2. We have covered GP 2’s syntax and semantics

and described a simple GP 2 program. We have also given an overall view of evolutionary

computation, covering the significant areas of GAs, ES, GP, and Neuroevolution. We have

paid particular attention to graph-based EAs, giving detailed descriptions and comparative

discussions of CGP, PDGP and NEAT. We have also described a number of other graph-based

EAs.

This chapter is a discussion of the context in which this thesis operates. We have seen that

graph-based EAs can be used to solve problems in a broad and varied set of domains:

1. Digital circuits [154,157,253,254].

2. Approximate digital circuits [165,250].

3. Cryptographic circuits [179,180].

4. Symbolic expressions [155,188,189,253].

5. Forecasting [37,58,241,264].

6. Various forms of automata [118,177,206,232].

7. Sequences of instructions [114,137].

8. Image processing [88,89,201].

9. Video-game agents [120,121,210].

10. ANNs [4,117,124,126,192,195,222,238,245].

11. CPPNs [73,74,94,220].

12. DNN architectures [136,153,226].

13. Bayesian networks [47,166,261].

This list is not exhaustive, and there are further domains which have been approached

from the perspective of graph-based evolution.

We have also seen that, in many of these works, much of the contribution of the research

is to propose new genetic operators over graphs. See, for example, the representation and

modification of CGP solutions [157], the history-based genetic crossover used in NEAT [222],

or the proposed crossover operator in [177]. We can, therefore, see a clear precedent in the

73

2 Context

literature of interest in the general evolution of graphs and therefore the design of genetic

operators over graphs. Further, we often see that correctness of evolution is achieved through

constraints on the representation [138,157,189], or even correction of the phenotype [261].

It is here that we find the intersection between our literature on graph-based evolution and

our description of rule-based graph programming. On one hand, we have a clear problem-

driven desire to express correct functions over graphs to use as genetic operators. On the

other hand, the graph programming language GP 2 provides a concise and formal paradigm

to describe relations over graphs. This brings us back to the motivations and aims we set

out in Chapter 1, with the literature we have covered justifying our ambitions to design EAs

using graph programs as a paradigm for describing genetic operators.

74

3 Probabilistic Graph Programming

Abstract

To implement probabilistic genetic operators as rule-based graph programs, we require

access to a probabilistic variant of graph programming. In this chapter, we describe an

extension of GP 2, termed Probabilistic GP 2 (P-GP 2), which supports both probabilistic

rule choice and probabilistic matching. We outline the implementation of this extension as

a modification of the existing GP 2 compiler. A number of probabilistic graph programs are

given: probabilistic graph colouring, Karger’s algorithm for graph cutting and two models of

random graphs. We stress that these examples are independent of our motivating application

to Evolutionary Algorithms (EAs), highlighting the versatility of the work undertaken.

Relevant Publications

Content from the following publications is used in this chapter:

[7] T. Atkinson, D. Plump, and S. Stepney, “Probabilistic graph programming,” in

Pre-Proc. Graph Computation Models, GCM 2017, 2017.

[9] T. Atkinson, D. Plump, and S. Stepney, “Probabilistic graph programs for ran-

domised and evolutionary algorithms,” in Proc. International Conference on Graph

Transformation, ICGT 2018, ser. LNCS, vol. 10887. Springer, 2018, pp. 63–78.

75

3 Probabilistic Graph Programming

3.1 Introduction

The semantics of GP 2 are non-deterministic in two respects: to execute a rule-set {r1, . . . , rn}
on a host graph G, any of the rules applicable to G can be picked and applied; and to apply a

rule r, any of the valid matches of r’s left-hand side in the host graph can be chosen. GP 2’s

compiler [17] has been designed by prioritising speed over completeness, thus it simply chooses

the first applicable rule in textual order and the first match that is found.

For some algorithms, compiled GP 2 programs reach the performance of hand-crafted C

programs. For example, [17] contains a 2-colouring program whose run-time on input graphs

of bounded degree matches the run-time of Sedgewick’s program in Graph Algorithms in C.

Clearly, this implementation of GP 2 is not meant to produce different results for the same

input or make random choices with pre-defined probabilities.

However, probabilistic choice is a powerful algorithmic concept which is essential to both

randomised and Evolutionary Algorithms (EAs). Randomised algorithms take a source of

random numbers in addition to input and make random choices during execution. There are

many problems for which a randomised algorithm is simpler or faster than a conventional

deterministic algorithm [164]. EAs, on the other hand, can be seen as randomised heuristic

search methods employing the generate-and-test principle. They drive the search process

by variation and selection operators which involve random choices [64]. The existence and

practicality of these probabilistic algorithms motivates the extension of graph programming

languages to the probabilistic domain. Note that our motivation is different from existing

simulation-driven extensions of graph transformation [97, 132]: we propose high-level pro-

gramming with probabilistic constructs rather than specifying probabilistic models.

To cover algorithms on graphs that make random choices, we define Probabilistic GP 2 (P-

GP 2) by extending GP 2 with two constructs: (1) choosing rules according to user-defined

probabilities and (2) choosing rule matches uniformly at random.

We present four case studies in which we use P-GP 2 to implement randomised algorithms.

The first algorithm is a probabilistic program which produces graph colourings. Empirical

data shows that the effectiveness of this program at finding globally optimal solutions decays

rapidly as input graphs grow in size. The second example is Karger’s randomised algorithm

for finding a minimum cut in a graph [115]. The algorithm comes with a probabilistic analysis,

which guarantees a high probability that the cut computed by the program is minimal. The

third example is sampling from Gilbert’s G(n, p) random graph model [75]. The program

generates random graphs with n vertices such that each possible edge occurs with probability

76

3.1 Introduction

p. The final example is sampling from the D(n,E) random directed graph model. The

program generates random directed graphs with n vertices and E edges.

This chapter is organised as follows. In Section 3.2 we describe the syntax and semantics

of P-GP 2. We also discuss the probabilistic models induced when using P-GP 2, and the

implementation of P-GP 2. In Section 3.3 we describe our four example probabilistic graph

programs. We draw comparisons with other approaches to probabilistic behaviour in graph

transformation in Section 3.4. Finally, we conclude our findings and set out directions for

future work in Section 3.5.

77

3 Probabilistic Graph Programming

3.2 Probabilistic Graph Programming

3.2.1 Syntax and Semantics

We present a conservative extension to GP 2, P-GP 2, where a rule-set may be executed

probabilistically by using additional syntax. Rules in the set are picked according to proba-

bilities specified by the programmer, while the match of a selected rule is chosen uniformly

at random. When the new syntax is not used, a rule-set is treated as non-deterministic

and executed as in GP 2’s implementation [17]. This is preferable when executing confluent

rule-sets where the discovery of all possible matches is expensive and unnecessary.

To formally describe probabilistic decisions in P-GP 2, we consider the application of a

rule-set R = {r1, . . . , rn} to some host graph G. The set of all possible rule-match pairs from

R in G, denoted by GR, is given by

GR = {(ri, g) | ri ∈ R and G⇒ri,g H for some graph H}. (3.1)

We make separate decisions for choosing a rule and a match. The first decision is to choose

a rule, which is made over the subset of rules in R that have matches in G, denoted by RG,

given by

RG = {ri | ri ∈ R and G⇒ri,g H for some match g and graph H}. (3.2)

Once a rule ri ∈ RG is chosen, the second decision is to choose a match with which to apply

ri. The set of possible matches of ri in G, denoted by Gri , is given by

Gri = {g | G⇒ri,g H for some graph H}. (3.3)

We assign a probability distribution (defined below) to GR which is used to decide particular

rule executions. This distribution, denoted by PGR , has to satisfy

PGR : GR → [0, 1], such that
∑

(ri,g)∈GR
PGR(ri, g) = 1, (3.4)

where [0, 1] denotes the real-valued (inclusive) interval between 0 and 1.

P-GP 2 allows the programmer to specify PGR by rule declarations in which the rule can

be associated with a real-valued positive weight. This weight is listed in square brackets after

the rule’s variable declarations, as shown in Figure 3.1. This syntax is optional and if a rule’s

weight is omitted, the weight is 1.0 by default. In the following, we use the notation w(r) for

the positive real value associated with any rule r in the program.

78

3.2 Probabilistic Graph Programming

grow_loop(n:int) [3.0]

n
1

n
1

1
2

Figure 3.1: A P-GP 2 declaration of a rule with associated weight 3.0. The weight is indicated

in square brackets after the variable declaration.

To indicate that the call of a rule-set {r1, . . . , rn} should be executed probabilistically, the

call is written with square brackets:

[r1, . . . , rn]. (3.5)

This includes the case of a probabilistic call of a single rule r, written [r], which ignores any

weight associated with r and simply chooses a match for r uniformly at random. Given a

probabilistic rule-set call R = [r1, . . . , rn], the probability distribution, PGR , is defined as

follows;

The summed weight of all rules with matches in G is∑
rx∈RG

w(rx), (3.6)

and the weighted distribution over rules in RG assigns to each rule ri ∈ RG the probability

w(ri)∑
rx∈RG

w(rx)
. (3.7)

The uniform distribution over the matches of each rule ri ∈ RG assigns the probability 1/|Gri |
to each match g ∈ Gri . This yields the definition of PGR for all pairs (ri, g) ∈ GR given by

PGR(ri, g) =
w(ri)∑

rx∈RG
w(rx)

× 1

|Gri |
. (3.8)

In the implementation of P-GP 2, the probability distribution, PGR , decides the choice

of rule and match for R = [r1, . . . , rn] (based on a random-number generator). Note that

this is correctly implemented by first choosing an applicable rule ri according to the weights

and then choosing a match for ri uniformly at random. The set of all matches is computed

at run-time using the existing search-plan method described in [15]. Note that this is an

implementation decision that is not intrinsic to the design of P-GP 2.

79

3 Probabilistic Graph Programming

〈Com〉 ::= 〈RuleSetCall〉 | 〈ProbRuleSetCall〉 | 〈GlobalProbRuleSetCall〉| 〈ProcCall〉
| if 〈ComSeq〉 then 〈Comseq〉 [else 〈ComSeq〉]
| try 〈ComSeq〉 [then 〈Comseq〉] [else 〈ComSeq〉]
| 〈ComSeq〉 ‘!’

| 〈ComSeq〉 or 〈ComSeq〉
| (〈ComSeq〉)
| break | skip | fail

〈ProbRuleSetCall〉 ::= [RuleId] | [[RuleId { , RuleId}]]

〈GlobProbRuleSetCall〉 ::= [[RuleId]] | [[[RuleId { , RuleId}]]]

Figure 3.2: The modified abstract syntax of P-GP 2’s programs (see Figure 2.10).

ProbRuleSetCall denotes a probabilistic rule-set call, to be executed as we have

outlined. GlobalProbRuleSetCall denotes a global probabilistic rule-set call, also

to be executed as we have outlined.

We also add special syntax to allow a programmer to specify that a uniform distribution

should be used across all matches for all rules of a rule-set. If the programmer uses the double

square bracket syntax

[[r1, . . . , rn]] (3.9)

then we ignore rule weights and instead assign PGR as

PGR(ri, g) =
1

|GR|
. (3.10)

We refer to this as a ‘global’ probabilistic rule-set call.

If a rule-set R is called using GP 2 curly-brackets syntax, execution follows the GP 2 im-

plementation [17]. Hence our language extension is conservative; existing GP 2 programs will

execute exactly as before because probabilistic behaviour is invoked only by the new syntax.

P-GP 2 modifies GP 2’s syntax grammar. Figure 3.2 gives the modified parts of the program

grammar to include new probabilistic rule-set calls and global probabilistic rule-set calls.

As one final and relatively minor probabilistic extension to GP 2, we also introduce a new

integer operator rand int(a,b). This is called with integer arguments a and b and returns

a random integer drawn from the (inclusive) interval (a, b). This also requires a modification

of GP 2’s grammar; in this case, the integer aspects of GP 2’s expression grammar. Figure

3.3 shows the updated integer grammar.

80

3.2 Probabilistic Graph Programming

〈Integer〉 ::= Digit {Digit} | Ivariable | ’-’ 〈Integer〉
| 〈Integer〉 〈ArithOp〉 〈Integer〉 | (indeg | outdeg) (Node)

| length((AVariable | SVariable | LVariable))

| rand int(〈Integer〉 , 〈Integer〉)

Figure 3.3: The modified abstract syntax of P-GP 2’s expressions (see Figure 2.7). rand int

allows a programmer to sample a uniform distribution over the inclusive range of

its 2 input integers.

3.2.2 Existence of a Markov Chain

In this section, we describe how a P-GP 2 program can be interpreted in the context of a

Markov chain. We assume a discrete time model for P-GP 2 as we are only concerned with

the step-wise operation of a graph program, rather than a specific modelling domain.

It then becomes clear that a rule-set applied to a graph using probabilistic syntax induces

a first-order Markov chain. A Markov chain is a model in probability theory where there are

transitions between states in a countable set S occurring with fixed probabilities [173, 202].

This is viewed as a Markov process, see Definition 8, over a discrete, countable state space.

Definition 8. (Markov process) [173,202].

A Markov process is a stochastic process X = (X0, X1, X2, ...Xn) consisting of a sequence of

random variables where for each random variable Xi at time i, all future states are condi-

tionally dependent on the current state and independent from previous states:

Pr(Xi+1 = x | X0 = x0, X1 = x1, X2 = x2, ..., Xi = xi) = Pr(Xi+1 = x | Xi = xi). (3.11)

Definition 9. (Markov chain) [173,202].

A Markov chain is a Markov process X = (X0, X1, X2, ...Xn) on a countable state space S,

such that each random variable Xi at time i is a probability distribution over S.

Fixed probabilities mean that the probability of transitioning from one state to another

depends only on the current state. The transition probabilities can be represented as a

|S|×|S| transition matrix Q where for any two states s, s′ ∈ S, Q(s, s′) is the probability of

transitioning from state s to state s′. The behaviour of the process can then be simulated

by repeatedly multiplying initial distribution X0, a vector of size |S| describing a probability

distribution of the process’s initial state, by Q. After n transitions (time steps) this produces

81

3 Probabilistic Graph Programming

the vector Xn containing as elements the probabilities Xn(s) of being in a state s ∈ S. If S

is countable but infinite, there may be no natural representation for Q.

For a rule-set R applied probabilistically to graph G, the induced Markov chain’s state

space S is every graph reachable by repeatedly applying R to G given by

S = {H | G⇒∗ H}. (3.12)

For any probabilistic call to rule-set R and input graph G, the implied state space must be

a subset of the set of all possible host graphs considered up to isomorphism: S ⊂ G. As G
is countable, it entails that S must always be countable. The induced transition matrix Q

is defined according to the possible transitions between pairs of graphs A,B ∈ S and their

associated fixed probabilities given by PAR given by

Q(A,B) =
∑

(r,g)∈AR|A⇒r,gB′,B′∼=B

PAR(r, g). (3.13)

Informally speaking, the transition matrix entry for the transition between graphs A and B

is the total probability of A being transformed into B in a single step by probabilistically

executing R on A using any of the matches in AR.

The initial distribution X0 is a trivial case; the probability of being in initial state G, the

host graph, when R is called, is 1. This means that the initial distribution is defined, for any

graph G′ ∈ S, as

X0[G′] =

1 if G′ = G

0 otherwise
. (3.14)

In special cases, it may be possible to consider transition matrix Q explicitly for a proba-

bilistic rule-set call and find probabilities of its resultant graph accordingly, but more generally

the input graph to a program is not known before run-time, preventing pre-computation of

state space S and therefore Q. In this case, a step-wise execution of probabilistic rule-set

call to produce a result graph can be seen as sampling from the Markov chain induced by

the rule-set and host graph. The execution of a probabilistic single rule-set call in P-GP 2

corresponds to a single step of the corresponding induced Markov chain, whereas the as-long-

as-possible call R! corresponds to simulation of the induced Markov chain until reaching some

absorbing state (see [173] for more information).

More generally we can consider P-GP 2 programs, rather than single probabilistic rule-set

calls. The following sufficient conditions can be used to characterise a P-GP 2 program’s

behaviour:

82

3.2 Probabilistic Graph Programming

1. If a program is terminating and all rule-sets called by the program are (a) called as

long as possible, and (b) confluent then the program is deterministic.

2. If all rule-sets called by the program are either (a) called probabilistically, or (b) con-

fluent and called as long as possible then the program forms a Markov chain. The

deterministic sub-components of the program form may be treated as part of proba-

bilistic transitions of some previous probabilistic step.

If some rule-sets called by the program are called probabilistically but there are other rule-

sets called non-deterministically which are not confluent, then the program forms a Markov

Decision Process (see [202]) with non-deterministic sub-components executed according to

the implementation of the compiler. If there are no probabilistic rule-set calls in the program

and some rule-sets called non-deterministically which are not confluent, the program is in

general non-deterministic.

To see that these conditions are sufficient, but not necessary:

1. Consider a program where there are non-confluent rule-sets called non-deterministically,

but before each such rule-set call, a confluent rule-set is applied as long as possible which

prevents any possible critical pairs of the non-confluent rule-set. Then the program is

deterministic despite not meeting the above condition.

2. Consider a program with a loop (r1; [r2])!. Then there are examples of r1, r2 where

the loop induces a Markov chain when considering resultant graphs up to isomorphism

despite containing a non-deterministic rule-set call (the single call to r1) which is not

executed as long as possible. See Figure 3.9 for such an example.

3.2.3 Implementation of P-GP 2

Our implementation of P-GP 2 is a modification of the existing GP 2 compiler generating C

code described in [15]. In this section, we outline how the new features are implemented.

Probabilistic rule-set calls

The existing compiler uses the searchplan method for matching rules. As the specification

of GP 2 has that rule-sets and rules are executed non-deterministically, the existing compiler

chooses the first valid rule and match found for efficiency. We retain the existing implemen-

tation of this searchplan method and instead simply continue the search until the graph has

been exhaustively explored. Note that this method retains the same worst case time complex-

83

3 Probabilistic Graph Programming

Algorithm 4 Pseudocode for probabilistically picking a rule when a probabilistic rule-set

call is made.
1: procedure PickRule(R: rule-set, w: weight function)

2: valid rules← []

3: for r ∈ R do

4: if searchplan(r)→ first 6= NULL then

5: append r to valid rules

6: end if

7: end for

8: if |valid rules|= 0 then

9: return NULL

10: else

11: rule← probabilistic weighted choice over valid rules according to w

12: return rule

13: end if

14: end procedure

ity as the original implementation, but will always cost that complexity. In the pseudocode

listings used In this section, we will refer to the search plan method for a given rule r as an

iterable linked list searchplan(r) where match ← searchplan(r).first gives the first match

found of r in the host graph and each match returned has match.next giving the next match

found. If there are no matches of r, searchplan(r).first returns NULL and if a given match

match is the final match found in the host graph, match.next also returns NULL.

The pseudocode of the implementation of probabilistically picking a rule is given in Algo-

rithm 4. Here the procedure is passed a rule-set R and weight function w and identifies the

set of rules with valid matches, denoted valid rules. Then the procedure picks one such

valid rule according to the weighted distribution given by w. If there are no valid rules, then

the procedure returns NULL.

Once a rule r has been chosen (or the size of the rule-set is 1), then the method for prob-

abilistically choosing a match for r is implemented according to the pseudocode given in

Algorithm 5. The procedure is passed a rule r and proceeds to iterate over its searchplan

searchplan(r) until no more matches are found. Each match found is stored in valid matches,

which is drawn from uniformly at random when the host graph has been exhaustively

searched. If no valid matches are found, then the procedure returns NULL.

84

3.3 Example Probabilistic Graph Programs

Algorithm 5 Pseudocode for probabilistically picking a match for a rule.

1: procedure PickMatch(r: rule)

2: valid matches← []

3: match← searchplan(r).first

4: while match 6= NULL do

5: append match to valid matches

6: match← match.next

7: end while

8: if |valid matches|= 0 then

9: return NULL

10: else

11: match← probabilistic uniform choice over valid matches

12: return match

13: end if

14: end procedure

The implementation of the global probabilistic rule-set calls (called with double square

brackets) follows the implementation of the single rule’s matching algorithm given in Algo-

rithm 5. However, the list of valid matches is constructed over all rules in the rule-set, rather

than just a single rule r.

3.3 Example Probabilistic Graph Programs

3.3.1 Probabilistic Vertex Colouring

In this section, we discuss a probabilistic version of a very simple non-deterministic vertex

colouring program VC (taken from [183]). Computing a vertex colouring that uses the minimal

number of colours is an NP-complete problem [209], the program VC only guarantees to

compute some colouring but does this in polynomial time. We discuss the behaviour of VC

under P-GP 2 on members of a problem set, grid graphs, that have known optimal colourings.

Grid graphs

In a grid graph, nodes are organised in a square lattice. We give direction to grid graphs by

allocating one node as a source with all edges directed outwards from that source. Figure 3.4

85

3 Probabilistic Graph Programming

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 3.4: GG5,3: a 5× 3 grid graph

Main := mark!; init!; [inc]!

mark(a:list)

a
1

a
1

init(a:list)

a
1

a:1
1

inc(a,b,c:list; i:int)

a:i
1

b:i
2

c
a:i

1
b:i+1

2

c

Figure 3.5: The probabilistic vertex colouring program VC.

shows a 5 × 3 grid graph with node 1 as its source. Let GG be the family of all unlabelled

directed grid graphs and GGx,y specifically refer to an x× y unlabelled directed grid graph.

In this case study, we discuss the likelihood of VC producing an optimal colouring over

GG in terms of parameters x and y. We choose GG as a motivating example as each of its

members has a known optimal colouring. Using 2 colours, a grid graph can be coloured in a

checkerboard fashion, and GG is, therefore, a family of bipartite graphs.

Vertex colouring program VC

Figure 3.5 shows our vertex colouring program VC. The colour assigned to a particular node

is an integer which is appended to the node’s existing label. The first part of the program,

mark!;init!, is deterministic, assigning to each node the colour 1. The second part of the

program, the loop inc!, is terminating but highly probabilistic, matching adjacent pairs of

nodes that are identically coloured and incrementing the colour of the target node of the

86

3.3 Example Probabilistic Graph Programs

1 1

2

2

1 3

2

4

10 14

Figure 3.6: Applying the probabilistic vertex colouring program VC to a simple 4-node cycle.

The outcome on the left is an optimal colouring, produced after 10 rule applica-

tions. The outcome on the right is the worst possible colouring, produced after

14 rule applications.

matched connecting edge.

The time complexity of the initial part is quadratic in the number of host graph nodes; both

mark and init are applied to each node once and finding a match for either rule requires a

single search over all nodes. It can be shown that the number of inc applications is quadratic

in the number of host graph nodes [183]. Moreover, the compiled P-GP 2 code will find a

match of inc in linear time in the worst case by searching once over all edges in the host

graph. Therefore the run-time of the loop inc! is cubic in the size of the host graph and

hence VC’s overall time complexity is also cubic.

To highlight the effect of program derivation on outcome, consider Figure 3.6 which shows

two executions of VC on a small host graph. Whereas the left execution produces an optimal

colouring with 10 rule applications, the right execution returns the worst colouring after 14

steps.

Behaviour of VC on grid graphs

We study the likelihood of optimal colouring for a set of inputs, given as the cumulated

probability of samples producing an optimal colouring, which in this scenario corresponds

to samples producing a 2 colouring. Table 3.1 shows the observed behaviour of VC over grid

graphs with width in the integer interval [1, 3] and height in [1, 5]. Each result is given as

a real which describes the observed probability of samples for that input which returned

2-coloured result graphs.

As an observation, the likelihood of generating a 2 colouring for a grid graph appears

greatly reduced as the graph grows in width and height. This is perhaps unsurprising, given

87

3 Probabilistic Graph Programming

width

1 2 3

height

1 1.0 1.0 0.5

2 1.0 0.25 0.16

3 0.5 0.16 0.04

4 0.5 0.05 5e-3

5 0.25 0.02 1e-4

Table 3.1: Results from sampling the vertex colouring program on grid graphs for derivations

producing optimal colourings. Each entry represents the proportion of samples

observed returning optimal colourings.

that vertex colouring is an NP-hard problem. But as it is known that grid graphs are trivially

2-colourable, this result highlights that a naive probabilistic approach to vertex colouring is

highly ineffective on certain classes of input graphs.

3.3.2 Karger’s Minimum Cut Algorithm

Karger’s contraction algorithm [115] is a randomised algorithm that attempts to find a mini-

mum cut in a graph G, that is, the minimal set of edges to delete to produce two disconnected

subgraphs of G. The contraction procedure repeatedly merges adjacent nodes at random until

only two remain. As this algorithm is designed for undirected multi-graphs (without loops),

we model an edge between two nodes as two directed edges, one in each direction. For visual

simplicity, we draw this as a single edge with an arrow head on each end. We assume that

input graphs are unmarked, contain only simulated directed edges, and are connected. We

also assume that edges are labelled with unique integers, as this allows us to recover the cut

from the returned solution.

Figure 3.7 shows a P-GP 2 implementation of this contraction procedure. This program

repeatedly chooses an edge to contract at random using the pick_pair rule, which marks the

surviving node red and the node that will be deleted blue. The nodes’ common edges are

deleted by delete_edge and all other edges connected to the blue node that will be deleted

are redirected to connect to the red surviving node by redirect. In the final part of the

loop, cleanup deletes the blue node and unmarks the red node. This sequence is applied

as long as possible until the rule three_node is no longer applicable; this rule is an identity

rule ensuring that a contraction will not be attempted when only 2 nodes remain. The final

88

3.3 Example Probabilistic Graph Programs

Main := (three_node; [pick_pair]; delete_edge!; redirect!; cleanup)!

three_node(a,b,c:list)

a
1
b

2
c

3
a

1
b

2
c

3

delete_edge(a,b:list; n:int)

a
1

b
2

n
a

1
b

2

cleanup(a,b:list)

a
1

b
2

a
1

pick_pair(a,b:list; n:int)

a
1

b
2

n
a

1
b

2

redirect(a,b,c:list; n:int)

a
1

b
2

c
3

n

a
1

b
2

c
3

n

Figure 3.7: The contraction procedure of Karger’s algorithm implemented in P-GP 2.

graph produced by this algorithm represents a cut, where the edges between the 2 surviving

nodes are labelled with integers. The edges with corresponding integer labels in the input

graph are removed to produce a cut.

Karger’s analysis of this algorithm finds a lower bound for the probability of producing

a minimum cut. Consider a minimum cut of c edges in a graph of n nodes and e edges.

The minimum degree of the graph must be at least c, so e ≥ n.c
2 . If any of the edges of the

minimum cut are contracted, that cut will not be produced. Therefore the probability of

the cut being produced is the probability of not contracting any of its edges throughout the

algorithm’s execution. The probability of picking such an edge for contraction is

c

e
≤ c

n.c
2

=
2

n
, (3.15)

and therefore the probability pn of never contracting any edge in c is given by

pn ≥
n∏
i=3

1− 2

i
=

2

n(n− 1)
. (3.16)

For example, applying Karger’s algorithm to the host graph G shown in Figure 3.8 can

produce one possible minimum cut (cutting 2 edges), which happens with probability greater

than or equal to 1
28 . By using rooted nodes (see [17]) it is possible to design a P-GP 2 program

89

3 Probabilistic Graph Programming

1 2 3

4 5 6 7 8 9 10 11

12 13 14

2

13

∗

Figure 3.8: Karger’s contraction algorithm applied to a simple 8-node graph to produce a

minimal cut. The probability of producing this minimal cut is at least 1
28 ; our

implementation generated this result after seven runs.

that executes this algorithm on a graph with edges E in O(|E|2) time, with pick_pair being

the limiting rule taking linear time to find all possible matches, applied |E|−2 times.

3.3.3 G(n, p) model for Random Graphs

The G(n, p) model [75] is a probability distribution over graphs of n vertices where each

possible edge between vertices occurs with probability p. Here we describe an algorithm for

sampling from this distribution for given parameters n and p. This model is designed for

simple graphs and so we model an edge between two nodes, in a similar manner to that used

in Karger’s algorithm, as two directed edges, one in each direction.

As we are concerned with a fixed number of vertices n, we assume an unmarked input graph

with n vertices and for each pair of vertices v1, v2 exactly one edge with v1 as its source and v2

as its target – effectively a fully connected graph with two directed edges simulating a single

undirected edge. Then G(n, p) can be sampled by parameterising the GP 2 algorithm given

in Figure 3.9 by p. In this algorithm, every undirected edge in the host graph is chosen non-

deterministically by pick_edge, marking it red. Then this edge is either kept and marked

blue by keep_edge with probability p or it is deleted by delete_edge with probability 1−p.
After all edges have either been deleted or marked blue, unmark_edge is used to remove

the surviving edges’ marks. By applying this algorithm, each possible edge is deleted with

probability 1− p and hence occurs with probability p, sampling from the G(n, p) model.

Sampling from the G(n, p) model yields a uniform distribution over graphs of n nodes and

M edges and each such graph occurs with probability

pM (1− p)(
n
2)−M . (3.17)

Figure 3.10 shows a possible result when applying this algorithm to a 4-node input with

p = 0.4.

90

3.3 Example Probabilistic Graph Programs

Main := (pick_edge; [keep_edge, delete_edge])!; unmark_edge!

pick_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

unmark_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

keep_edge(a,b,c:list) [p]

a
1

c
2

b
a

1
c

2

b

delete_edge(a,b,c:list) [1.0 - p]

a
1

c
2

b a
1

c
2

Figure 3.9: P-GP 2 program for sampling from the G(n, p) model for some probability p. The

input is assumed to be a connected unmarked graph with n vertices.

1 2

3 4

1 2

3 4

∗

Figure 3.10: The G(n, p) program applied to a complete 4-node graph with p = 0.4. The

probability of producing this result is 0.0207.

91

3 Probabilistic Graph Programming

Main := (continue; [[add_edge, add_loop]])!; clean

continue()

1
1

add_edge(a,b:list)

a
1

b
2

a
1

b
2

where not edge(1, 2)

add_loop(a:list)

a
1

a
1

where not edge(1, 1)

clean()

1

Figure 3.11: P-GP 2 program for sampling from the D(n,E). The input is assumed to be an

input graph with n unmarked vertices and a single blue marked vertex with E

loops.

3.3.4 D(n,M) model for Directed Random Graphs

The D(n,M) model is a directed random graph model [82] giving a probability distribution

over graphs of n vertices with M randomly distributed edges. Here we describe an algorithm

for sampling from this distribution for given parameters n and M .

As we are concerned with a fixed number of vertices n and edges M , we assume an input

graph with n unmarked vertices and a single blue marked vertex with M loops. Then

D(n,M) can be sampled by using the P-GP 2 program given in Figure 3.11. In the main

loop of the algorithm, first, the rule continue is applied. This rule deletes a loop from the

single blue marked node. This ensures that the program terminates once all M edges have

been added. Then the rule-set [[add_edge, add_loop]] is applied, inserting a new edge

uniformly at random over all places where an edge does not exist. Here we use a global

probabilistic rule-set call (called with double square brackets) to ensure that the distribution

is uniform over both loops and edges. Once all edges have been added and continue fails,

the rule clean is applied to remove the blue node. The resultant graph has been sampled

from the D(n,M) model.

Sampling from the D(n,E) model yields a uniform distribution over graphs of n nodes and

92

3.4 Related Work

1 2

3

1 2

3

∗

Figure 3.12: The D(n,E) program applied to an input graph with n = 3 and M = 2. The

probability of producing this result is 1
36 .

Model Rule and

Match Choice

Time

Model

Probabilistic Rule

Execution

Classical Graph Transformation,

Rule-set Calls in GP 2

Non-

deterministic

— No

Probabilistic Graph

Transformation [132]

Non-

deterministic

Discrete Yes

Stochastic Graph

Transformation [97]

Probabilistic Continu-

ous

No

Probabilistic Rule-set Calls in

P-GP 2, ppick in Porgy

Probabilistic Discrete No

Table 3.2: Different approaches to decision making in graph transformation.

M edges and each such graph occurs with probability equal to(
n2

M

)−1

. (3.18)

Figure 3.12 shows a possible result when applying this algorithm to an input graph with

n = 3 and M = 2. The probability of producing this result is 1
36 .

3.4 Related Work

In this section, we address three other approaches to graph transformation which incorporate

probabilities. All three aim at modelling and analysing systems rather than implementing

algorithms by graph programs, which is our intention. Table 3.2 gives a concise description

of our comparison.

The port graph rewriting framework PORGY [67] allows to model complex systems by

93

3 Probabilistic Graph Programming

probability_edge(a,b,c:list)

p 1.0 - p

a
1

c
2

b
a

1
c

2

b
a

1
c

2

Figure 3.13: A PGTS rule with multiple right-hand sides. The probability of each right-hand

side is the value given above it.

transforming port graphs according to strategies formulated in a dedicated language. Proba-

bility distributions similar to those in this paper can be expressed in PORGY using the ppick

command which allows probabilistic program branching, possibly through external function

calls.

Stochastic Graph Transformation Systems [97] (SGTSs) are an approach to continuous-

time graph transformation. Rule-match pairs are associated with continuous probability

functions describing their probability of executing within a given time window. While the

continuous time model is clearly distinct to our approach, the application rates associated

with rules in SGTSs describe similar biases in probabilistic rule choice as our approach.

Closest to our approach are Probabilistic Graph Transformation Systems (PGTSs) [132].

This model assumes non-deterministic choice of rule and match as in conventional graph

transformation, but executes rules probabilistically. In PGTSs, rules have single left-hand-

sides but possibly several right-hand sides equipped with probabilities. This mixture of

non-determinism and probabilistic execution gives rise to Markov decision processes. There

are clear similarities between our approach and PGTSs: both operate in discrete steps and

both can express non-determinism and probabilistic behaviour. However, PGTSs are strict in

their allocation of behaviour; rule and match choice is non-deterministic and rule execution

is probabilistic. In our approach, a programmer may specify that a rule-set is executed in

either manner. It seems possible to simulate (unnested) PGTSs in our approach by applying

a non-deterministic rule-set that chooses a rule and its match followed by a probabilistic rule-

set which executes one of the right-hand sides of this rule. For example, the first loop in the

G(n, p) program in Figure 3.9 simulates a single PGTS rule; pick_edge non-deterministically

chooses a match, and [keep_edge, delete_edge] probabilistically executes some right-hand

side on the chosen match. Figure 3.13 visualises this single PGTS rule.

Other approaches to probabilistic graph rewriting include [21], where a rule-algebra frame-

94

3.5 Conclusions and Future Work

work is proposed for the study of stochastic rewrite systems, and [49], where stochastic rewrite

systems are used in the simulation and study of molecular biological systems. However, direct

comparison with these works is difficult due to differences in the representation of rewriting

and design decisions driven by the intended application areas.

3.5 Conclusions and Future Work

In this chapter we have described the probabilistic graph programming language P-GP 2.

P-GP 2 is an extension to GP 2 that allows a programmer to specify probability distributions

over the outcomes of rule-set calls through the use of rule weights and new syntax. A

programmer can specify a weighted decision over rule-choice followed by a uniform decision

over match-choice, or simply a uniform distribution over all matches for all rules. We have

demonstrated the versatility of P-GP 2 by implementing 4 randomised graph algorithms.

There are a number of possible directions for future work on P-GP 2. We would like to

explore which algorithms from the areas of randomised graph algorithms and random graph

generation can be described in P-GP 2. Obvious examples include randomised algorithms for

checking graph connectedness [164], generating minimum spanning trees [116] and generating

random graphs according to the model of [65]. Additionally, it would be interesting to

investigate the efficiency of using incremental pattern matching [23] in the implementation

as an alternative method for identifying all matches. Incremental pattern matching stores all

matches of a rule in a table which is edited every time the host graph is modified. As rules

naturally entail small local rewrites, there are likely many cases where incremental pattern

matching improves the performance of P-GP 2 as an alternative to finding all matches for a

rule in each probabilistic rule call. An additional area of potential research is investigating

whether some randomised graph algorithms cannot be readily expressed in which case we can

ask: what further extensions to P-GP 2’s syntax are necessary to make them expressible?

95

4 Function Graphs

Abstract

In this chapter, we identify a class of graphs, Function Graphs (FGs), which can represent a

number of application domains of interest: digital circuits, symbolic expressions and Artificial

Neural Networks (ANNs). These graphs concisely and directly describe acyclic (feed-forward)

and cyclic (recurrent) programs with arbitrary numbers of inputs and outputs. Alongside

example graphs in each of the listed domains, we discuss FGs’ general semantics.

97

4 Function Graphs

4.1 Introduction

Representation is crucial in computer science, and an important specific representation is

the graph. Graphs are used in a wide range of applications and algorithms, see for example

[44, 109, 209]. In Evolutionary Algorithms (EAs), graphs are used in some applications,

but are usually encoded in a linear genome, with the genome undergoing mutation and

crossover, and a later “genotype to phenotype mapping” used to decode the linear genome

into a graph structure. For example in Cartesian Genetic Programming (CGP) [155, 157],

the connections of feed forward networks are encoded in a linear genome. Neuroevolution

of Augmenting Topologies (NEAT) [221, 222] provides a linear encoding of Artificial Neural

Networks (ANNs) which are seen as graph structures. Trees (a subset of more general graphs)

are also used in EAs. Grammatical Evolution [175, 199] uses a linear genome of integers to

indirectly encode programs. Genetic Programming (GP) [129, 131] is unusual for an EA:

rather than using a linear genome, it typically uses direct manipulation of abstract syntax

trees. Poli [188, 189] uses a ‘graph on a grid’ representation: the underlying structure is

a graph, but the nodes are constrained to lie on discrete grid points. Multiple Interactive

Outputs in a Single Tree (MIOST) [138] proposes using trees with multiple output nodes and

sharing to extend traditional GP to domains where problems have multiple, related outputs.

Pereira et al [177] represent Turing machines as graphs encoded in a linear genome, and

develop a crossover operator based on the structure of the underlying graph.

There are arguments for and against linear genomes representing graphs. While standard in

EAs, able to exploit the knowledge about evolutionary operators, they can hide the problem’s

underlying structure and can have biases in the effect of evolutionary operators. There may

be advantages in evolving graphs directly, rather than via linear genome encodings or 2D

grid encodings, and defining mutation operators that respect the graph structure.

To this end, Function Graphs (FGs) are utilised as a generic representation of programs

for the purposes of evolution throughout the rest of this thesis. This chapter describes our

notion of FGs and discusses how they can be encoded in P-GP 2. We stress the obvious

similarity between FGs and term graphs [181]. It would, therefore, be possible to evaluate

FGs with term graph rewriting for both Acyclic FGs, see [181], and Recurrent FGs, see [14],

but for simplicity we will in general describe FGs in the sense of data-flow diagrams.

In Section 4.2 we discuss FGs informally and give numerous example graphs in multiple

domains. Section 4.3.1 gives a description of FGs and their semantic behaviour. Finally, in

Section 4.4, we conclude our discussion and propose possible extensions to FGs.

98

4.2 Intuition and Example Function Graphs

"INPUT":0 "INPUT":1

"NAND" "OR"

"AND"

"OUTPUT":0

Figure 4.1: An example FG implementing an XOR gate from NAND, OR and AND gates.

4.2 Intuition and Example Function Graphs

An FG is a graph consisting of:

• Input nodes. These are explicitly ordered nodes which allow global inputs to be loaded

into the FG. All input nodes have no outgoing edges.

• Function nodes. These are nodes which compute functions on their local inputs. Their

local inputs are given by their outgoing edges. The number of outgoing edges of a

function node is equal to the arity of its associated function.

• Output nodes. These are explicitly ordered nodes which return global outputs from the

FG. All output nodes have no incoming edges.

Each function node is associated with a function from some predefined function set. When

an FG is presented with an input, that input is loaded into the input nodes. Then each

function node is evaluated by applying its associated function to its inputs. Finally, the FG

returns an output according to the values of its output nodes. In general an FG need not be

acyclic nor connected.

Consider, for example, the simple FG shown in Figure 4.1. This FG implements an XOR

(⊕) gate with truth table:

i0 i1 o0 = i0 ⊕ i1
0 0 0

0 1 1

1 0 1

1 1 0

(4.1)

99

4 Function Graphs

"INPUT":0 "INPUT":1 "INPUT":2

"XOR" "AND"

"XOR""AND""AND"

"OR"

"OUTPUT":1"OUTPUT":0

Figure 4.2: An example FG implementing a 1-bit adder from XOR, AND and OR gates.

The single output o0 is given by the node labelled "OUTPUT":0. This node’s single outgoing

edge indicates that o0 returns the value associated with the node labelled "AND". This node

computes AND (∧) of its two inputs, which are given by the node’s two outgoing edges. The

first of these inputs is the node labelled "NAND" which computes NAND (↑) of its two inputs,

which are given by the two input nodes labelled "INPUT":0 and "INPUT":1 which correspond

to inputs i0 and i1. The second of these inputs is the node labelled "OR" which computes

OR (∨) of these same input nodes. Hence the overall semantics of the FG is given as

o0 = (i0 ↑ i1) ∧ (i0 ∨ i1) = i0 ⊕ i1. (4.2)

It is worth stressing the meaning of edge direction in our function graphs. Where an edge

exists from node v1 to node v2, we take that to mean that node v1 uses node v2 as input.

This is in-line with convention in term graph rewriting [181]. In contrast, other approaches

such as PDGP [186] and NEAT [222], understand an edge from node v1 to v2 to mean a flow

of data from node v1 to node v2 in the manner of a data-flow diagram.

In the following subsections we use examples to demonstrate various features of FGs. First,

we see a 1-bit adder demonstrating the use of multiple outputs and intronic material. We

then describe an FG implementing Newton’s Law of Gravitation, highlighting the ordering

on edges that prevents ambiguity with non-commutative functions. An FG implementing the

Fibonacci sequence introduces the notion of recursive edges, allowing the FG representation to

describe stateful programs. Finally, we see a simple neural network, highlighting the existence

100

4.2 Intuition and Example Function Graphs

of weighted edges that determine the strength of connections throughout the graph.

4.2.1 1-Bit Adder: Multiple Outputs and Intronic Material

Figure 4.2 shows an FG implementing a 1-bit adder from XOR, AND and OR gates. The

purpose of a 1-bit adder is to take in input bits a and b and carry bit c and compute a+ b+ c

represented as a pair of output bits o0, o1. The truth table of a 1-bit adder is:

i1 = a i2 = b i3 = c o0 o1 Description

0 0 0 0 0 0 + 0 + 0 = 0

0 0 1 0 1 0 + 0 + 1 = 1

0 1 0 0 1 0 + 1 + 0 = 1

0 1 1 1 0 0 + 1 + 1 = 2

1 0 0 0 1 1 + 0 + 0 = 1

1 0 1 1 0 1 + 0 + 1 = 2

1 1 0 1 0 1 + 1 + 0 = 2

1 1 1 1 1 1 + 1 + 1 = 3

(4.3)

For our FG, shown in Figure 4.2, we have that

o0 = ((i0 ⊕ i1) ∧ i2) ∨ (i0 ∧ i1), (4.4)

i.e., output o0 returns 1 when at least 2 inputs are equal to 1. We also have that

o1 = (i0 ⊕ i1)⊕ i2, (4.5)

i.e. output o1 returns 1 when either 1 or 3 inputs are equal to 1. Hence our FG correctly

implements the 1-bit adder function; when 0 inputs are equal to 1, the FG returns 0 (00).

When 1 input is equal to 1, the FG returns 1 (01). When 2 inputs are equal to 1, the FG

returns 2 (10). And when 3 inputs are equal to 0, the FG returns 3 (11).

There are a few noteworthy features in this example FG. Firstly, an FG can have multiple

outputs; in this case each output corresponds to a different output bit of a digital circuit.

Secondly, an FG can have intronic material. Referring to Figure 4.2, consider the node

labelled "AND" and coloured grey towards the right-hand-side of the diagram. There is no path

from either output node to this node, and it is therefore impossible for this node to contribute

to the semantics of the overall graph. It is therefore possible to remove or relabel this node,

or redirect its edges while preserving the semantics of the FG. Similarly, it is possible to insert

new nodes for which there is no path from either output node, again preserving semantics.

101

4 Function Graphs

"INPUT":0 "INPUT":1 "INPUT":2 "INPUT":3

"MUL" "MUL"

"DIV"

"MUL"

"OUTPUT":0

0

0

1

0 1

0

1

0 1

Figure 4.3: An example FG using multiplication ("MUL") and division ("DIV") nodes imple-

menting Newton’s Law of Gravitation F = Gm1m2/r
2 with i0 = G, i1 = m1,

i2 = m2 and i3 = r.

In general, any node for which there is no incoming path from an output node is referred to

as neutral, intronic or inactive. Similarly, any such node’s outgoing edges are also described

as neutral, inactive or intronic. This neutral material corresponds to ‘garbage’ in term graph

rewriting [181].

4.2.2 Newton’s Law of Gravitation: Ordered Edges

In the previous examples, all of the functions associated with function nodes are commutative.

That is, treating each 2-input logic gate we have used as a function F (a, b) of input bits a, b

it always holds that

F (a, b) = F (b, a). (4.6)

However there are many functions of interest which are non-commutative. A classic example

is the logical implication operator ⇒. For input bits a, b we have that

a b a⇒ b

0 0 1

0 1 1

1 0 0

1 1 1

(4.7)

102

4.2 Intuition and Example Function Graphs

where a⇒ b 6= b⇒ a for a = 0, b = 1. We want the execution of our FGs to be unambiguous,

and the diagrams in Figures 4.1 and 4.2 do not provide clear orderings on edges. Consider,

for example, the node labelled "AND" in Figure 4.1; if this node were instead associated with

a logical implication⇒ then the semantics of the program would not be clearly defined, with

the interpretation of the ordering of the node’s outgoing edges determining the behaviour of

the program.

In general, edges in FGs are ordered. Consider the FG shown in Figure 4.3. This FG

implements Newton’s Law of Gravitation

F = G
m1m2

r2
, (4.8)

using multiplication and division nodes. Here, the outgoing edges of each node are ordered

according to integer labels. For example, the sole division node labelled "DIV" takes as inputs

the results of computations m1m2 and r2. The edge labelled 0 indicates that m1m2 is the

first input presented to the function node, whereas the edge labelled 1 indicates that r2 is the

second input presented to the function node. Hence the division node computes m1m2/r
2

rather than r2/m1m2.

In general, if a function node has n outgoing edges, e0, . . . , en−1, then these edges are

explicitly ordered by labelling each edge with a unique integer, 0, . . . , n− 1. Note that in the

previous examples, this ordering information was implicitly present. However, as all functions

used were commutative, it was unnecessary to explicitly present this information. In general,

edges in FGs are always ordered, but the integers encoding the orderings are only shown

when at least one function used is non-commutative.

4.2.3 Fibonacci Sequence: Recurrent Edges and Stateful Programs

Every FG covered so far has been acyclic. That is, in each graph covered, for every path

v1 → v2, there does not exist a path v2 → v1. This conceptually works for problems where

the task is to learn or represent some mapping of inputs to outputs. However, in general, FGs

may be considered stateful, and are able to access their internal states via recurrent edges.

The edges we have seen so far are non-recurrent in that they provide their associated function

nodes with the values produced by their targets in the current execution step of the FG. A

recurrent edge instead returns that value produced by its target in the previous execution

step of the FG.

Consider the FG given in Figure 4.4. When this FG is driven with input i0 = 1 for n time

103

4 Function Graphs

"INPUT":0
i0

"ID"
v1

"ID"
v2

"MAX"
v3

"MUL"
v4

"ADD"
v5

"OUTPUT":0
o0

0:0

0:10:0

1:1

0:0

1:1

1:0

1:0

0:0

Figure 4.4: An example FG generating the Fibonacci sequence using 1-input identities ("ID"),

a 2-input max function ("MAX"), addition ("ADD") and multiplication ("MUL").

The input i0 is assumed to be fixed at 1 across all execution steps.

steps, it generates the Fibonacci sequence, Fib(0), F ib(1), . . . , F ib(n) with

Fib(x) =

1, if x < 2

Fib(x− 1) + Fib(x− 2), otherwise.
(4.9)

We can now see that each edge is associated with a pair of integers represented as a list. For

a given edge, the label a : b can be read as a indicating that the edge is recurrent (a = 1)

or non-recurrent (a = 0) and b indicating the order of the edge (as described in the previous

section. Although all functions used in the example are commutative, we here include the

ordering information to avoid confusion about the role of the integers encoding the recurrence

property.

In this example each node has been given an identifier (shown to the bottom right of each

node). This is not part of the representation, and simply serves as a reference for the following

description of the program. Now consider the 2-input max function v3. This function takes

inputs from v1 and v5. The edge v3 → v1 is labelled 0:0. The first 0 indicates that this edge

is non-recurrent. The second 0 indicates that this edge is treated as the first input to the

104

4.2 Intuition and Example Function Graphs

node. The edge v3 → v5 is labelled 1:1. The first 1 indicates that this edge is recurrent,

and therefore returns the previous value associated with v5. The second 1 indicates that this

edge is treated as the second input to the node.

Hence by using recurrent edges, it becomes possible for an FG to use values computed in

previous execution steps. If we assume that at all time steps, i0 = 1 and the initial value

associated with each node is 0, the behaviour of the example FG can be mapped through

time as follows:

Time i0 v1 v2 v3 v4 v5 o0 Description

−1 − 0 0 0 0 0 − Initial state.

0 1 1 0 1 0 1 1 Fib(0)

1 1 1 1 1 0 1 1 Fib(1)

2 1 1 1 1 1 2 2 Fib(2)

3 1 1 1 2 1 3 3 Fib(3)

4 1 1 1 3 2 5 5 Fib(4)

5 1 1 1 5 3 8 8 Fib(5)

6 1 1 1 8 5 13 13 Fib(6)

. . .

(4.10)

In initial state, every node’s value is 0. In the first execution step, v1’s and hence v3’s

values are updated to 1, causing o0 = v5 to return 1 = Fib(0). By the third executions

step, both v3 and v4 return 1, causing o0 = v5 to return 2 = Fib(2). From then on, the FG

simply computes the addition of its previous 2 outputs, with nodes v4 and v3 with recurrent

connections v4 → v3 and v3 → v5 serving as form of memory.

As before with the ordering edges, if all edges in a graph are non-recurrent (or indeed,

recurrent) then this information may not be visually shown. In all 3 previous examples

(Figures 4.1, 4.2 and 4.3), all edges were non-recurrent. Implicitly, this information was

present, but it was unnecessary to show it explicitly.

4.2.4 A Simple Neural Network: Weighted Edges and Biased Nodes

In each of the previous examples, edges were assumed to be performing as a form of ‘identity’

where they would present exactly the value of their targets to their associated function

node. In general, edges may be associated with weights. The weight associated with an edge

describes the strength (and sign) of the connection between two function nodes. We refer to

the weight of an edge e as w(e).

105

4 Function Graphs

"INPUT":0 "INPUT":1

"TANH":244

"OUTPUT":0

1000:0:0

142:0:0 -401:0:1

Figure 4.5: An example FG implementing a simple neural network. Nodes labelled "TANH" : x

are tanh neurons with a bias of x
1000 .

Similarly, nodes were assumed to have no associated local constants. In general, nodes

may be associated with biases. The bias of a function node provides a constant value for use

within the node’s computation. We refer to the bias of a function node v as b(v).

We give an example FG with weights and biases in Figure 4.5. This FG consists of 2 input

nodes, 1 function node and 1 output node. The single function node has an edge to each

input. Consider the edge labelled 142:0:0; here, the 0:0 corresponds to the information we

have already seen; the first 0 indicates that this is a non-recurrent edge and the second 0

indicates that this is the first input to the function node. The value 142 is the weight of

the edge. As P-GP 2 does not have native support for floats, we take a simple encoding of a

subset of rationals by storing our weights as integers and converting them to reals by dividing

by 1000. So in this case, the value 142 corresponds to a weight of 142
1000 = 0.142.

Similarly, the single function node is labelled "TANH":244, where "TANH" refers to a tanh

neuron whose behaviour follows

tanh_neuron(x1, . . . , xk) = tanh
(

Σk
i=1xi

)
, (4.11)

which is well defined for any number of inputs k. The second value, 244 is the bias of

the function node. We use the same encoding, so the value 244 corresponds to a bias of
244
1000 = 0.244.

The single edge from the output node to the single function node has a weight of 1, meaning

that the behaviour of the FG is determined by the single function node. Treating the function

node’s bias as one of the inputs to tanh_neuron, we can see that the overall behaviour of the

FG is given by

o0 = tanh

(
142

1000
i0 +

−401

1000
i1 +

244

1000

)
, (4.12)

106

4.3 Semantics of Function Graphs

such that when i0 = −1 and i1 = 1, o0 = −0.2904 The introduction of weights and biases

means that we can in general describe ANNs by treating neurons as function nodes with the

summation component of their behaviour contained within their associated functions. By

combining weights, biases and the recurrent edges we have seen in Section a 4.2.3, FGs can

describe Recurrent Neural Networks (RNNs).

4.3 Semantics of Function Graphs

To describe the semantics of FGs more formally, we begin with a summary definition of FGs

in Section 4.3.1. We then give the behaviour of FGs in Section 4.3.2.

4.3.1 Definition of Function Graphs

To summarise what we have observed from our examples, FGs are constructed of input nodes,

function nodes and output nodes. Input nodes are labelled

"INPUT":x, (4.13)

where x is an integer corresponding to a specific input of the problem. So, if a problem requires

solutions to accept 3 inputs, there will be input nodes labelled "INPUT":0, "INPUT":1 and

"INPUT":2 in corresponding FGs. Input nodes have no outgoing edges. In general, if some

node v is an input node, we assume the use of a function i(v) to recover the explicit input

index implied by the integer x given in Equation 4.13.

Similarly, output nodes are labelled

"OUTPUT":x, (4.14)

where x is an integer corresponding to a specific output of the problem. If a problem requires

solutions to produce 2 outputs, there will be exactly output nodes labelled "OUTPUT":0 and

"OUTPUT":1 in corresponding FGs. Output nodes have exactly 1 outgoing edge. If an FG’s

edges are explicitly ordered by labels, the single outgoing edge is given an index of 0. If

an FG’s edges are explicitly recurrent/non-recurrent then the single outgoing edge is non-

recurrent. If an FG’s edges are explicitly weighted, the single outgoing edge is given a weight

that would imply an identity relation. For the simple neural network seen in Section 4.2.4,

this weight was 1.0. In general, if some node v is an output node, we assume the use of a

function o(v) to recover the explicit output index implied by the integer x given in Equation

4.14.

107

4 Function Graphs

Function nodes are explicitly associated with functions from a function set F = {f1, f2, . . . fk}.
In this thesis we assume that all functions f ∈ F are multivariate functions over some domain

D, although we do discuss an extension to FGs to support multiple types in Section 4.4. If

FGs are being learned over a function set F then we assume the use of an arity function

a : F → N0, (4.15)

which associates each function fi ∈ F with a non-negative integer describing the number of

inputs that function expects. In the 1-bit adder seen in Section 4.2.1, all functions used 2

inputs, so for every function fi used in that example, a(fi) = 2. For the implementation of

Fibonacci sequence seen in Section 4.2.3, the 2-input multiplication function × had a(×) = 2

whereas the 1-input identity function id had a(id) = 1. We also assume the use of a naming

function

p : F → Σ∗, (4.16)

where Σ∗ corresponds to the set of strings available in GP 2. The naming function p associates

each function with a unique name by which it can be referenced within an FG. Additionally,

we assume that for any f ∈ F , p(f) 6= "INPUT" and p(f) 6= "OUTPUT" to avoid any confusion

with input and output nodes. We also assume that naming is unique e.g. for any f1, f2 ∈ F
where f1 6= f2, it holds that p(f1) 6= p(f2). In the 1-bit adder seen in Section 4.2.1 we had

that for the NAND function ↑, p(↑) = "NAND". Each function node v is labelled

sv:xv, (4.17)

where sv is a string equal to some p(f) with f ∈ F . The string sv is then uniquely associating

a function node with a function from the function set. The integer xv is the bias associated

with the node. If no such integer is present, the bias is assumed to be 1 and all functions are

assumed to ignore the bias in their semantics. In general we recover the function associated

with a function node v with the function

f(v) = p−1(sv), (4.18)

where sv is the string component of the node v’s label as given in Equation 4.17. Biases are

given as integers in FGs but can be converted to any countable domain D with a function

w rel : Z→ D. In the simple neural network shown in Section 4.2.4, integers were converted

to (a rational subset of) reals R with the function

w rel(x) =
x

1000
. (4.19)

108

4.3 Semantics of Function Graphs

In general we recover the bias associated with a function node v with the function

b(v) = w rel(xv), (4.20)

where xv is the integer component of the node v’s label as given in Equation 4.17. A function

node must have exactly as many outgoing edges as their associated functions expect e.g. a

function node v should have a(f(v)) edges. Each edge e is labelled

we:re:oe, (4.21)

where we ∈ Z, re ∈ {0, 1} and oe ∈ N0. The integer we is the integer weight associated

with an edge. Using the same w rel function as used with biases, we may be converted to

any countable domain. In general we recover the weight associated with an edge e with the

function

w(e) = w rel(we), (4.22)

where we is the first integer component of the edge e’s label as given in Equation 4.21. If the

length of an edge e’s label is 2, 1 or 0, we assume that we = 1. The integer re determines

whether an edge is recurrent or non-recurrent. In general we recover whether a weight is

recurrent with the function

r(e) =

True, re = 1;

False, re = 0,
(4.23)

where re is the second integer component of the edge e’s label as given in Equation 4.21. If

the length of an edge e’s label is 2 then re is assumed to be the first integer component of

the label. If the length of an edge e’s label is 1 or 0 then re is assumed to be 0, e.g. e is

non-recurrent. The integer oe assigns to each edge a position in a total ordering. If a function

node v has k = a(f(v)) edges, e0, e1, . . . , ek−1, with values, oe0 = 0, oe1 = 1, . . . , oek−1
= k−1.

If the length of an edge e’s label is 2 or 1 then oe is assumed to be the last integer component

of the label. If the length of an edge e’s label is 0 then we assume that the corresponding

function’s node associated function is commutative and that oe is assigned arbitrarily. In

general, the ordering index of an edge is recovered with the function

ord(e) = oe. (4.24)

We give a table summarising the functions we have introduced in Table 4.1, in the context

of an FG, G = (V,E, s, t, lV , lE), function set F and general function domain D.

109

4 Function Graphs

Symbol Trace Description

i i : V → N0 Returns the index associated with an input node.

o o : V → N0 Returns the index associated with an output node.

a a : F → N0 Returns the arity of a given function.

p p : F → Σ∗ Returns the unique name of a given function.

o o : V → N0 Returns the index associated with an output node.

f f : V → F Returns the function associated with a function node.

w rel w rel : Z→ D Translates integer weights and biases to domain D.

b b : V → D Returns the bias associated with a function node,

translated to domain D.

w w : E → D Returns the weight associated with an edge.

r r : E → {True, False} Returns whether an edge is recurrent.

ord ord : E → N0 Returns the ordering index of an edge.

Table 4.1: Functions introduced in the description of FGs. These functions are given in

the context of an FG G = (V,E, s, t, lV , lE), function set F and general function

domain D.

110

4.3 Semantics of Function Graphs

4.3.2 Behaviour of Function Graphs

FGs effectively operate as data flow diagrams with memory. We assume that for a given

FG, G = (V,E, s, t, lV , lE), at the previous time-step, n − 1, there exists a previous state,

sv(n − 1), for all nodes v ∈ V . In this section we describe the behaviour of the m-input,

n-output FG at time n to update to state sv(n) for all such nodes, when driving the FG

with inputs, I0(n), . . . , Im(n) and computing outputs, O0(n), . . . , On(n). To do this we firstly

define the value associated with each edge at time n, given by

vale(n) =

w(e).st(e)(n− 1) r(e) is True;

w(e).st(e)(n) r(e) is False,
(4.25)

i.e., multiply the weight w(e) by the previous state of e’s target if e is recurrent, or multiply

w(e) by the current state of e’s target if e is non-recurrent. We assume that inputs are ‘loaded

in’, that is, for each input node v ∈ V , sv(n) = Ii(v)(n).

To compute the updated state sv(n) of function node v, we assume that edges, e0, . . . , ek−1,

are v’s k = a(f(v)) outgoing edges, ordered in ascending order according to ord, i.e.,

∀ei, ej , i < j ⇒ ord(ei) < ord(ej). Then we can compute the update as

sv(n) = f(v)(vale0(n), . . . valek−1
(n), b(v)), (4.26)

that is, apply the function node’s function to the (ordered) values associated with each edge

at time y and the bias associated with the function node.

For any output node v, the update is simply sv(n) = vale0(n) for the output’s single

outgoing edge e0. Overall, this gives way to the update equation

sv(n) =

Ii(v) v is an input node;

f(v)(vale0(n), . . . , valek−1
(n), b(v)) v is a function node;

vale0(n) v is an output node.

(4.27)

Once the state of the entire FG has been updated, we can safely return outputs with

Oi(n) = sv(n) where v is an output node and o(v) = i. (4.28)

Note that the formulae in Equations 4.25 and 4.27 are effectively giving a recursive defi-

nition of the update to an FG, with input nodes and values associated with recurrent edges

serving as base cases. It is worth noting, then, that this definition is cyclic whenever there

111

4 Function Graphs

Node Label Argument Types Returns Description

"INPUT":0 - matrix The first input, a 2D matrix

"INPUT":1 - float The second input, a float

"ADD_M" x0:matrix, x1:matrix matrix Matrix Addition returning x0 + x1.

"ROT_M" x0:matrix, x1:float matrix Matrix Rotation, returning the rotation of

x0 around the x-axis by x1 radians.

"ADD_F" x0:float, x1:float float Float Addition returning x0 + x1.

"OUTPUT":0 x0:matrix matrix The first (and only) output, returning 2D

matrix x0

Table 4.2: A simple set of typed inputs, functions and outputs.

exists a cycle of non-recurrent edges. For this reason, FGs must be constrained so that the

subgraph induced by their non-recurrent edges is acyclic. Additionally, we assume that the

initial state sv(0) = 0 for all nodes v ∈ V , although in principle different initial states could

be used.

As a final note, a reader interested in practical implementation may benefit from the

knowledge that FGs can be evaluated in linear time (with respect to the size of the graph) by

performing a topological sort on the non-recurrent subgraph of the FG and then evaluating

each node in the sequence they appear in the topological sort, storing results for later reuse.

This assumes that the cost of evaluating individual functions is constant, which may not be

the case in practice. Evaluation can be further optimised by only evaluating active nodes,

that is, those for which there is a path to from an output node.

4.4 Conclusions and Future Work

In this chapter we have introduced FGs as a generic model of graph-like programs capable of

expressing digital programs, functional programs, stateful programs and ANNs, forming the

domain for our evolutionary experiments in the coming chapters. Further, they generalise

the phenotypic representations used in a number of existing evolutionary paradigms, e.g.:

112

4.4 Conclusions and Future Work

"INPUT":1 "ADD_F"

"INPUT":0 "ADD_M" "ROT_M"

"OUTPUT":0

000

0

0

0

11

0,1
0,1

0,1

0,10,1

Figure 4.6: A Type Graph representing the inputs, functions, outputs and valid interconnec-

tions described in Table 4.2. Where an edge is shown with a pair of labels, e.g.

0,1, this is shorthand for 2 parallel edges, 1 for each label.

1. Tree-based GP [129], where individuals are FGs with the restriction that each function

node has exactly one incoming edge.

2. Cartesian GP [155], where individuals can be directly translated to FGs once genotypic

material (such as the ordering on nodes) has been stripped out.

3. Neuroevolution techniques such as NEAT [222], once genotypic material (such as his-

torical markers) has been stripped out.

Hence investigating the evolution of FGs directly has some additional comparative value, in

clarifying the costs and benefits of genotypic design decisions made in different paradigms.

There are a number of areas in which FGs could be expanded, and we discuss 2 particular

directions here. Firstly, the extension of FGs to Typed Function Graphs (TFGs) would allow

the evolution of typed programs. Strongly Typed GP [160] and other GP approaches [175,212]

are capable of handing typed functions and typed data. Further, there are a number of

general program synthesis problems [99] where an evolutionary system must be able to handle

multiple types to effectively produce a solution. It is therefore clear that the extension of FGs

to TFGs would enable more general applicability of the ideas we explore later in this thesis.

While the exact mechanism of extension to TFGs remains to be explored, we suggest that the

approach of Strongly Typed GP, where genetic operators are designed under consideration

of the underlying type system, offers a promising direction of thought. To this end, it is then

necessary for the genotype (e.g. FG) being evolved to contain some information about the

113

4 Function Graphs

"INPUT":0 "INPUT":1

"ADD_M" "ADD_F" "ADD_F"

"ADD_M" "ROT_M" "ROT_M"

"OUTPUT":0

0

0

10 1

0

1

0

10
1

0
1

Figure 4.7: The FG shown here is a typed FG and an instance of the Type Graph shown in

Figure 4.6. This is true as there exists a non-injective morphism from the TFG

shown and the Type Graph.

type system.

Type Graphs (TGs) (and by extension, Typed Graph Transformation, see [96]) may provide

a groundwork by which this might be achieved. Here, a TG, TG, represents the underlying

concepts of a class of graphs, and a graph, G, is an instance of TG if there exists a (potentially

non-injective) graph morphism f : G→ TG. As an example, consider the constraints on an

FG which takes as inputs a 2D-matrix ("INPUT":0) and a float ("INPUT":1) and returns a 2D-

matrix ("OUTPUT":0). The FG may be constructed from matrix addition ("ADD_M"), taking

2 matrices as inputs and returning a matrix, matrix rotation around the x-axis ("ROT_M"),

taking as input a matrix and a float, and float addition ("ADD_F"), taking 2 floats as inputs.

These various functions are listed in Table 4.2. It is possible to convert this to a TG as shown

in Figure 4.6. The Typed FG in Figure 4.7 is an instance of the TG in Figure 4.6 as there

exists a (non-injective) morphism from the TFG to the TG.

Secondly, we suggest that investigation into Hierarchical FGs (HFGs) would open up a

wealth of new research directions. The evolvability of structural modularity and code reuse

has been thoroughly explored through Automatically Defined Functions (ADFs) [129], and

built upon in techniques such as Embedded Cartesian Genetic Programming (ECGP) [253]

and tag-based modules in PushGP [215]. However, we believe that existing results from graph

transformation may offer additional insight; we suggest the extension of FGs to HFGs based

114

4.4 Conclusions and Future Work

Genome

Main

i

i

m1

m2

o

o

m1

i

i

o

m2

i

i

o

⇓ Decode ⇓

i

i

o

o

Figure 4.8: A ‘flat’ HFG where the graph contains a Main graph representing the structure

of the individual, and modules m1 and m2 operating as learnt sub-structures. The

HFG can then be translated to a conventional FG by a decoding process as shown.

on the pre-existing notion of Hierarchical Graphs set out in various forms in [31,56,176]. The

common concept among these works is that graph components may contain other graphs in an

arbitrarily-deep nested structure. Perhaps the most intuitive notion is set out in [56], where

(hyper) edges in a hierarchical (hyper) graph may be associated with other hierarchical graphs

via a containment function. The view set out in ADFs could then be represented by a simple

hierarchical structure where a graph is decomposed into a ‘main’ subgraph and ‘module’

subgraphs as shown in Figure 4.8. A decoding process embeds the module subgraphs into

the main subgraph to produce a conventional FG. Perhaps more interesting is the notion of

abstraction embedded within a single structure, as in ECGP, with function nodes containing

modular subgraphs which can be created, deleted and copied. We could then represent the

115

4 Function Graphs

i

i

i

i

o

i

i

o

o

o

Figure 4.9: An embedded HFG. Modules are contained within nodes. These could then be

modified, copied and deleted with hierarchical graph transformations [56].

HFG in Figure 4.8 with the embedded structure in Figure 4.9. It is clear that more research

is required to establish the more practical representation of these options.

116

5 Evolving Graphs by Graph Programming

Abstract

In this chapter, we describe the first Evolutionary Algorithm (EA) based on genetic op-

erators implemented as graph programs. The algorithm, termed Evolving Graphs by Graph

Programming (EGGP), evolves Acyclic Function Graphs (AFGs). We give an initialisation

procedure capable of generating such AFGs. We also give edge and node mutation operators

which respect the constraints of such AFGs. We describe a typical experimental configura-

tion for EGGP and compare the theoretical landscape available to our approach with that of

Cartesian Genetic Programming (CGP).

Relevant Publications

Content from the following publications is used in this chapter:

[8] T. Atkinson, D. Plump, and S. Stepney, “Evolving graphs by graph programming,”

in Proc. European Conference on Genetic Programming, EuroGP 2018, ser. LNCS,

vol. 10781. Springer, 2018, pp.35–51.

[9] T. Atkinson, D. Plump, and S. Stepney, “Probabilistic graph programs for ran-

domised and evolutionary algorithms,” in Proc. International Conference on Graph

Transformation, ICGT 2018, ser. LNCS, vol. 10887. Springer, 2018, pp. 63–78.

117

5 Evolving Graphs by Graph Programming

5.1 Introduction

Now equipped with a well-defined notion of Function Graphs (FGs) we can look towards the

evolution of programs at the level of graphs, rather than through some encoding. Free of the

constraints of a specific genetic representation and armed with the powerful graph program-

ming language P-GP 2, we examine new ideas in later chapters such as the exploitation of

domain knowledge to induce Semantic Neutral Drift (SND), or the invention of new crossover

operator that is entirely non-disruptive. The first step taken in this body of work is the set-

ting out of a simple, minimal system that is capable of competing with modern state of the

art techniques. We use this system as a first building block with which we can move towards

more complex and advanced concepts. In this chapter we explore the new paradigm Evolving

Graphs by Graph Programming (EGGP) which learns Acyclic Function Graphs (AFGs) with

genetic operators defined as P-GP 2 programs.

Our algorithm consists of 4 core components:

1. A P-GP 2 program that generates AFGs to be used as an initialisation procedure.

2. The 1 +λ Evolutionary Algorithm (EA), using neither large populations nor crossover.

3. An atomic edge mutation that modifies a single edge of an AFG.

4. An atomic node mutation that modifies a single node of an AFG.

The evolutionary process induced by these components is remarkably effective at solving

benchmark problems drawn from the literature, as shown experimentally in Chapter 6. In

contrast to existing work on Cartesian Genetic Programming (CGP) [157] or Parallel Dis-

tributed Genetic Programming (PDGP) [188], we do not require a notion of a Cartesian grid

to achieve the preservation of acyclicity. Instead, our sequentially applied rule-sets will induce

landscapes which correctly identify viable mutations which preserve acyclicity. As we will see

later in this chapter, this concept gives way to a generalisation of the landscapes induced in

CGP.

This chapter is arranged as follows. In Section 5.2 we discuss the initialisation program used

to instantiate our populations. Section 5.3 covers atomic edge mutation and node mutation

programs used to modify our populations. In Section 5.4 we give a concise description of the

1 + λ EA alongside justification for its use. Section 5.5 gives an example of a very simple

evolution run for learning an XOR gate. We relate our approach to other approaches in

Section 5.6 giving particular comparison with CGP. Finally, in Section 5.7 we conclude the

findings of this chapter and set out areas for future work.

118

5.2 Initialisation

"INPUT":0 "INPUT":1

"EXP" "SUB" "SIN"

"MUL" "EXP" "ADD" "ADD"

"MUL" "COS" "MUL"

"OUTPUT":0

0

1000

1

0

1

1

0010

0

100

Figure 5.1: A simple AFG that has weights and biases that are effectively ignored. The infor-

mation with respect to edge recurrence, edge weight and node bias are therefore

not shown.

5.2 Initialisation

The first step of any EA is to generate individuals to form the initial population. In this

section we set out a simple initialisation procedure given as a pair Init, S where Init is

a P-GP 2 program which, when applied to initial graph S, generates AFGs suitable to the

target problem.

In this chapter we deal with a simplified set of Acyclic FGs, which we refer to as AFGs.

The AFGs handled here have the following properties:

1. They are acyclic, and do not feature recurrent edges.

2. All edge weights and function node biases are assumed to be equal to 1 and are effec-

tively ignored during execution.

3. All functions are assumed to ignore the values coming in from the bias of each function

node.

An example of such an AFG is shown in Figure 5.1. As we are not using the recurrence

119

5 Evolving Graphs by Graph Programming

Main := ([add_node_f1, . . . , add_node_fk]; [connect_node]!; unmark_node!)!;

[connect_output]!; remove_counter

connect_node(a,b:list;

s:string; x:int)

a:x
1

s:b
2

a:x
1

s:b
2

outdeg(1)

where s != "OUTPUT" and outdeg(1) < x

unmark_node(a:list; x:int)

a:x
1

a
1

connect_output(a,b:list;

s:string; i:int)

"OUTPUT":i
1

s:b
2

"OUTPUT":i
1

s:b
2

0

where outdeg(1) < 1

remove_counter(a:list)

a
1

Figure 5.2: A program for generating our simplified AFGs. For each function fx in our

function set F = {f1, . . . , fk}, we have a rule add_node_fx, as visualised in Figure

5.3.

property, edge weights or node biases, this information is not shown. The integers shown on

each edge give the index of that edge, describing the order in which edges’ incoming values

should be presented to their associated function node.

Figure 5.2 shows our initialisation program for AFGs. This program consists of 3 sequential

commands, one of which consists of 3 further sequential commands. An overview of the

program is:

1. The main loop. This is called as long as possible. It consists of 3 sequential commands:

a) [add_node_f1, . . . , add_node_fk]. For each function fx in function set F =

{f1, . . . , fk}, we have a unique rule add_node_fx in our probabilistically called

rule-set which adds a node corresponding to that function. The newly added

node is marked red and is labelled with both the string representation of a given

function fx, and the arity of that function. The result of this command is that

120

5.2 Initialisation

add_node_fx(x:int)

"NODES":x
1

"NODES":x-1
1

p(fx):a(fx)
2

where x > 0

Figure 5.3: When we construct an initialisation program such as the one shown in Figure 5.2,

we generate a rule add_node_fx for each function fx ∈ F where F is the function

set, a is the arity function and p is the naming function. The added function

node, marked red, is labelled with a list consisting of the function fx’s associated

unique name p(fx) followed by its arity a(x). At the same time, the blue marked

node counter is decremented. The rule cannot be called once the counter is 0.

we add a node of some randomly chosen function from F until we have added

as many function nodes as specified by the input graph. At the same time, our

node counter, marked blue is decremented, ensuring that this rule is only called

as many times as indicated by the input graph. The general model of the rules

used here is shown in Figure 5.3.

b) [connect_node]!. This node connects our newly added red marked node to

randomly chosen (non-output) nodes. This is done until the outdegree of the

added node matches the arity of its function. Every time such an edge is added,

its label is set to the current outdegree of the node, ensuring that we have a proper

ordering on the node’s outgoing edges.

c) unmark_node. This rule is called once after edges have been added to ensure the

newly added node’s outdegree matches its function’s arity. It simply unmarks the

added node and removes its arity indicator, leaving it as a regular node ready to

be connected to by other added nodes and outputs.

2. [connect_output]!. This rule connects each output to some randomly chosen (non-

output) node in the graph. It is called as long as possible, and requires that the matched

output node’s outdegree is 0, ensuring that each output node gains 1 new outgoing edge.

3. remove_counter. This rule removes our unique blue marked node counter indicating

the number of nodes to be added. This ensures that this node does not persist beyond

the initialisation program.

Overall, the program’s semantics can be seen to add randomly chosen function nodes until

121

5 Evolving Graphs by Graph Programming

"INPUT":0 "INPUT":1 "INPUT":2

"OUTPUT":0 "OUTPUT":1 "NODES":5

Figure 5.4: An input graph for the initialisation program in Figure 5.2. This input graph can

be used to generate AFGs with 3 inputs, 2 outputs and 5 function nodes.

add_node and(x:int)

"NODES":x
1

"NODES":x-1
1

"AND":2
2

where x > 0

Figure 5.5: The instantiation of the generic rule shown in Figure 5.3 with fx = ∧ = and,

a(fx) = 2 and p(fx) = "AND".

the number of function nodes equals the amount specified by the input graph. Each function

node is randomly connected to previously added function nodes and input nodes. Then,

output nodes are connected at random to the rest of the graph. Finally, the node specifying

the number of function nodes to add is removed. We therefore expect the input graph to this

program to consist of the following:

1. For each input associated with the problem, there exists an input node.

2. For each output associated with the problem, there exists an output node.

3. A node, marked blue and labelled "NODES":x where x ∈ N0 specifies the number of

function nodes to add.

An example of such an input graph is given in Figure 5.4. When applying an initialisation

program to this graph, we expect to produce graphs with 3 inputs, 2 outputs and 5 function

nodes. As a visual example we will consider this input graph alongside the function set F

with arity function a and naming function p considering the function set of AND, OR, NAND

and NOR logic gates, each with arity 2. More formally, we have

F = {∧,∨, ↑, ↓}, (5.1)

122

5.2 Initialisation

"INPUT":0 "INPUT":1 "INPUT":2

"OUTPUT":0 "OUTPUT":1 "NODES":5

"INPUT":0 "INPUT":1 "INPUT":2

"AND"

"OUTPUT":0 "OUTPUT":1 "NODES":4

01

"INPUT":0 "INPUT":1 "INPUT":2

"AND" "NAND" "NOR"

"NOR" "OR"

"OUTPUT":0 "OUTPUT":1 "NODES":0

0 10 1

010101

"INPUT":0 "INPUT":1 "INPUT":2

"AND" "NAND" "NOR"

"NOR" "OR"

"OUTPUT":0 "OUTPUT":1 "NODES":0

0

0 10 1

010101

"INPUT":0 "INPUT":1 "INPUT":2

"AND" "NAND" "NOR"

"NOR" "OR"

"OUTPUT":0 "OUTPUT":1 "NODES":0

0

0

0 10 1

010101

"INPUT":0 "INPUT":1 "INPUT":2

"AND" "NAND" "NOR"

"NOR" "OR"

"OUTPUT":0 "OUTPUT":1

0

0

0 10 1

010101

add node and;

connect node!;

unmark node

(add node fx;

connect node!;

unmark node)!

connect output

connect output!

remove counter

Figure 5.6: A trace of the application of the initialisation program in Figure 5.2 with function

set {AND, OR, NAND, NOR } applied to the input graph in Figure 5.4.

123

5 Evolving Graphs by Graph Programming

with arity function a and naming function p given by

a =

∧ → 2;

∨ → 2;

↑→ 2;

↓→ 2,

and p =

∧ → "AND";

∨ → "OR";

↑→ "NAND";

↓→ "NOR",

(5.2)

respectively.

As a clarifying visual, we give the instantiation of the generic rule shown in Figure 5.3 with

fx = ∧ = and, shown in Figure 5.5.

We provide a trace of the initialisation program alongside the function set F applied to

the graph from Figure 5.4 in Figure 5.6. In the first transformation, an AND gate is added.

In the next step, we show the result of running the main loop of the initialisation program

until completion; 4 more function nodes are added. The third step shows the application of a

single call to connect_output. The next step shows the result of applying connect_output

as long as possible. This results in an AFG with a now ‘junk’ blue node counter. The final

step shows the application of remove_counter deleting this node, resulting in the final output

AFG.

While not presented here, a proof can be given that our initialisation program is complete.

That is, if the initialisation program is given for function set F and presented with an ap-

propriate input graph with i inputs, o outputs and a node counter for n function nodes, then

any AFG describable over i, o, n and F can be generated. However, it is not clear whether

all individual AFGs are generated with equal probability.

5.3 Mutation

In this section we detail mutation in EGGP. EGGP provides two forms of atomic mutation:

1. Edge mutation. Here a single edge is chosen at random and redirected while preserving

acyclicity. This mutation is explained and detailed in Section 5.3.1.

2. Node mutation. Here a single node is chosen at random and relabelled to be associated

with some different function from the function set. Then edges are added or removed

to respect the new function’s arity, and finally shuffled to avoid biasing towards certain

124

5.3 Mutation

Main := try ([pick_edge]; mark_output!; [mutate_edge]; unmark!)

pick_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

mark_output(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

mutate_edge(a,b,c,d:list; s:string)

a
1

b
2

s:c
3

d

a
1

b
2

s:c
3

d

where s != "OUTPUT"

unmark(a:list)

a
1

a
1

Figure 5.7: A program for mutating AFGs’ edges while preserving acyclicity.

landscapes when using non-commutative functions. This mutation is explained and

detailed in Section 5.3.2.

Additionally, to provide larger jumps in the landscape via multiple applications of our

atomic mutations, we use the Binomial mutation. This is described in Section 5.3.3.

5.3.1 Edge Mutation

Edge mutation in EGGP consists of 4 steps:

1. Pick an edge to redirect uniformly at random.

2. Identify all nodes for which there is a path from that node to the source of the chosen

edge. If the edge were redirected to target these nodes, then a cycle would be created.

3. Redirect the chosen edge to target some node for which there is no such path.

4. Remove any annotations made in the graph by step 2.

We present a P-GP 2 program implementing this mutation in Figure 5.7. It should be

stressed that in general, such a program works on the assumption that the host graph is

unmarked. Each of the commands called sequentially corresponds to a step of the process

outlined above:

125

5 Evolving Graphs by Graph Programming

i i

o

This individual is to undergo an edge mu-

tation preserving acyclicity.

i i

o

(1) pick edge:

An edge to mutate is chosen at random

and marked (red) alongside its source

node s (blue) and target node t (red).

i i

o

(2) mark output!:

Invalid candidate nodes for redirection are

identified. If a node v has a directed path

to s it is marked blue, as targeting it would

introduce a cycle.

i i

?

o
(3) mutate edge; unmark!:

The edge e is mutated to target some

randomly chosen unmarked (non-output)

node, preserving acyclicity. The new tar-

get has been marked with a star ‘?’ for

visual clarity. Finally, all marks are re-

moved.

Figure 5.8: A trace of the application of the edge mutation program in Figure 5.7. For visual

simplicity, node and edge labels have been omitted.

126

5.3 Mutation

1. The rule pick_edge chooses an edge uniformly at random. Its source is marked blue

and its target is marked red to uniquely identify them. Additionally, the edge itself is

marked red to avoid any confusion with parallel edges.

2. The rule mark_output called as long as possible ensures all nodes with paths to the

source of our chosen edge are marked blue. As a consequence, redirecting the edge to

target and blue node would introduce a cycle, whereas redirecting the edge to target

any unmarked node would not.

3. The rule mutate_edge redirects the edge to target some unmarked node. Not only does

this avoid introducing a cycle, but the fact that the target of the chosen edge is red

ensures that the mutation always produces a change.

4. The rule unmark called as long as possible removes the blue marks created by step 2.

We give an example execution of our mutation in Figure 5.8. In this diagram, all node and

edge labels are not shown to aid visual clarity and to stress that this mutation depends only

on the topology of the graph and effectively ignores labels.

Correctness

Here we present an outline of a proof that the edge mutation is correct in the sense that, when

presented with an unmarked AFG as an input graph, the edge mutation can only produce

AFGs as output graphs.

The overall correctness is a simple argument; if there exists a path v1 → v2, then creating

an edge, v2 → v1, clearly creates a cycle, v1 → v2 → v1. In contrast, if there is no such path,

v1 → v2, then it is clear that creating an edge, v2 → v1, cannot create such a cycle. Hence

the correctness of our program depends on the correctness of the claim in step 2, that the

application of mark_output as long as possible causes all nodes for which there is such a path

to become marked blue. To see that the claim in step 2 is true, we can use a simple proof

by induction on the length of paths to the source of the chosen edge:

Lemma 1 (Correctness of Edge Mutation.). Let G be an unmarked AFG, and G⇒pick_edge

H be a valid derivation and e be the single red marked edge in G. Then for any D =

(V,E, lV , lE , s, t) with H ⇒mark_output! D, it holds that

For all v ∈ V, if a path v → s(e) exists then v is blue. (5.3)

127

5 Evolving Graphs by Graph Programming

Proof of Lemma 1. Base case n = 1:

For all v ∈ V, if an edge v → s(e) exists then v is blue. (5.4)

where an edge v → s(e) is equivalent to a path v → s(e) of length 1.

Now suppose this base case did not hold; then there would be some node, vx ∈ V , for which

there existed an edge, vx → s(e), and vx is not marked blue. As G is acyclic and no edges

have been added in G⇒ H ⇒∗ D, it is clear that vx 6= t(e) as this would imply a cycle. As

G is unmarked, and only 1 edge has been marked by the single call to pick_edge, it follows

that the edge, vx → s(e), must be unmarked. Further, as vx is not blue and vx 6= t(e), vx

must be unmarked as G is unmarked and no other marks are introduced by pick_edge or

mark_output.

As no blue marked nodes are unmarked or remarked by mark_output it must hold that:

1. s(e) is marked blue.

2. The edge vx → s(e) must be unmarked.

3. vx must be unmarked.

Then it is clear that there exists a match for mark_output with node 2 matched to s(e) and

node 1 matched to vx. Hence we have a contradiction with H ⇒mark_output! D and it follows

that vx cannot exist.

Inductive Hypothesis n = k: Assume that for n = k:

For all v ∈ V, if a path v → s(e) of length k exists then v is blue. (5.5)

Inductive step n = k + 1: Consider a node vx such that

There exists a path of length k + 1, vx → s(e), and vx is not marked blue. (5.6)

As G is acyclic and no edges have been added in G⇒ H ⇒∗ D, it is clear that vx 6= t(e) as

this would imply a cycle. As G is unmarked, and only 1 edge has been marked by the single

call to pick_edge, it follows that all edges in the path edge, vx → s(e), must be unmarked.

Further, as vx is not blue and vx 6= t(e), vx must be unmarked as G is unmarked and no

other marks are introduced by pick_edge or mark_output.

For such a path of length k + 1 to exist it is clear that there must exist some vy where

there is an edge, vx → vy, and a path of length k : vy → s(e). By our inductive hypothesis,

vy must be marked blue. Therefore we have that:

128

5.3 Mutation

1. vy is marked blue.

2. The edge vx → vy must be unmarked.

3. vx must be unmarked.

Once again it is clear that there exists a match for mark_output with node 2 matched to

vy and node 1 matched to vx. Hence we have a contradiction with H ⇒mark_output! D and it

follows that vx cannot exist.

Hence for all n ≥ 1, it holds that

For all v ∈ V, If a path v → s(e) of length n exists then v is blue. (5.7)

Hence it is clear that our edge mutation preserves acyclicity. Further, the only relabelling of

nodes to take place is in the marks, and all marks are removed, it is clear that all node labels

are unchanged by the edge mutation. Additionally, the only modified edge is that chosen by

the rule pick_edge, and this is simply marked, unmarked and redirected. In combination,

these facts guarantee that, when presented with an unmarked AFG, the edge mutation always

produces an AFG e.g. is correct with respect to the domain we are interested in.

5.3.2 Node Mutation

Node mutation in EGGP consists of 4 steps:

1. Pick a function node to mutate uniformly at random.

2. Mutate the function node, associating it with some new function from the function set.

3. Correct the arity of the function node. Either:

a) If the outdegree of the function node is less than the new function’s arity, identify

all nodes for which there is a path from that node to the mutated node. Add new

edges to nodes for which there is no such path until the outdegree matches the

new function’s arity.

b) If the outdegree of the function node is greater than the new function’s arity, delete

edges until the outdegree matches the new function’s arity.

4. Shuffle the function node’s outgoing edges with respect to their ordering indices.

129

5 Evolving Graphs by Graph Programming

Main := [pick_node]; [mutate_node_f1, . . . , mutate_node_fk]; mark_output!; [add_edge]!;

[delete_edge]!; store_edge!; [order_edge]!; clean_node; unmark_node!

pick_node(s:string; a:list)

s:a
1

s:a
1

where s != "INPUT" and s != "OUTPUT"

mark_output(a,b,c:list)

a
1

c
2

b a
1

c
2

b

add_edge(a,b:list; x:int; s:string)

a:x
1

s:b
2

a:x
1

s:b
2

where outdeg(1) < x and s!="OUTPUT"

delete_edge(a,b,c:list; x:int)

a:x
1

c
2

b a:x
1

c
2

where outdeg(1) > x

store_edge(a,b,c:list)

a
1

c
2

b a
1

c
2

order_edge(a,b,c:list)

a:x
1

c
2

a:x-1
1

c
2

x-1

clean_node(a:list; x:int)

a:x
1

a
1

unmark_node(a:list)

a
1

a
1

Figure 5.9: A program for mutating a function node in an AFG. For each function in our func-

tion set, we have a rule mutate_node_fx, which is visualised in Figure 5.10. This

mutation respects arity and acyclicity, and shuffles the mutated node’s outgoing

edges.

This process is implemented by the P-GP 2 program shown in Figure 5.9. An overview of

this program is:

1. [pick_node]. This rule call selects a function node to mutate uniformly at random and

marks that node red. By the rule’s condition, the selected node cannot be an input or

output node.

2. [mutate_node_f1, . . . , mutate_node_fk]. For each function fx in our set of functions

F = {f1, . . . , fk}, we have a unique rule mutate_node_fx in our probabilistically called

rule-set which mutates the selected red node by relabelling it with the name and arity

130

5.3 Mutation

mutate_node_fx(s:string; a:list)

s:a
1

p(fx):a(fx)
1

where s!=p(fx)

Figure 5.10: When we construct a mutation program such as the one shown in Figure 5.9,

we generate a rule mutate_node_fx for each function fx ∈ F where F is the

function set, a is the arity function and p is the naming function. A red marked

node is relabelled with the name and arity of the function fx.

of the corresponding function. The general model of these rules is shown in Figure 5.10.

The mutated node remains marked red. The result of this command is that the chosen

function node is mutated to be associated with some other function. The condition of

each rule guarantees that the new function is different from the previous function.

3. mark_output!. It may be necessary to add new outgoing edges to the mutated node to

ensure that its outdegree matches its arity. In the same manner as in edge mutation, we

call a rule mark_output which iteratively marks every node with a path to the mutated

node blue. We can then safely insert edges from the mutated node to unmarked nodes

in the knowledge that this will not introduce a cycle.

4. [add_edge]!. This rule adds edges at random from the red marked mutated node to

unmarked nodes. The condition guarantees that the rule is called as long as possible

while new edges need to be added to make the outdegree match the arity. The newly

created edges are unlabelled, as their labels will be assigned when edges are shuffled.

5. [delete_edge]!. This rule deletes at random from the red marked mutated node.

The condition guarantees that the rule is called as long as possible while edges need to

be deleted to make the outdegree match the arity.

6. store_edge!. This rule marks edges from the red marked mutated node to unmarked

nodes red and removes their labels. By calling this rule as long as possible, we are

constructing an ordered set of the mutated nodes outgoing edges as the first stage in

shuffling them with respect to ordering indices.

7. [order_edge]!. This rule unmarks red marked edges from the red marked mutated

node to unmarked nodes and labels them with the function node’s integer label minus

1. At the same time the function node’s integer label is decremented by 1. By prob-

131

5 Evolving Graphs by Graph Programming

mutate_node_and(s:string; a:list)

s:a
1

"AND":2
1

where s!="AND"

Figure 5.11: An instantiation of the node mutation rule shown in Figure 5.10 with fx = ∧ =

and, a(fx) = 2 and p(fx) = "AND".

abilistically calling this rule as long as possible, the result is that the mutated node’s

outgoing edges are assigned an order at random.

8. clean_node. This rule unmarked the red mutated node and removes the integer com-

ponent of its label. This returns the mutated node to a normal function node state.

9. unmark_node!. This rule removes blue marks from the graph, reversing the marking

effect of the mark_output! call.

As a clarifying visual, we give an instantiation of the node mutation rule shown in Figure

5.10 with fx = ∧ = and, a(fx) = 2 and p(fx) = "AND", shown in Figure 5.11.

We give an example execution of our mutation in Figure 5.12. In this diagram, most

node and edge labels are not shown to aid visual clarity. A function node associated with a

negation function ¬ is relabelled to be associated with a AND function ∧. An edge is inserted

to respect the new node’s arity while preserving acylicity, and the node’s outgoing edges are

shuffled to a random order. The correctness of node mutation with respect to acylicity follows

as an extension of the correctness of edge mutation described in Section 5.3.1. The correctness

with respect to arity is straightforwardly seen in the semantics of our program with the rules

add_edge and delete_edge and does not therefore require an extended proof.

5.3.3 Binomial Mutation

To control the mutation process and induce larger steps in the landscape composed of multiple

atomic mutations, we introduce the notion of binomial mutation controlled by a mutation

rate parameter.

The mutation rate of an individual is mr. Certain mutations may prevent other mutations.

For example, mutating one edge to target some node may then prevent other mutations of

that node’s outgoing edges with respect to preserving acyclicity. Therefore, iterating through

132

5.3 Mutation

i i

¬

o

This individual is to undergo a node mu-

tation preserving acyclicity and respecting

arity.

0

i i

∧

o

(1) [pick_node]; [mutate_node_and, ...];

mark_output!:

A function node (now marked red) is

chosen uniformly at random and mutated

by a randomly chosen mutate_node_fx

rule - in this case the rule corresponds to

an ∧ function. The call to mark_output

then identifies all nodes with a path to

the mutated node, marking them blue

0

i i

∧

o

(2) [add_edge]!; [delete_edge]!:

As the arity of ∧ is 2 and the node’s

outdegree is 1, the call to add_edge as

long as possible creates 1 new edge tar-

geting a randomly chosen non-blue node

thereby preserving acylicity. Correspond-

ingly, there are no successful applications

of delete_edge.

0

i i

∧

o

(3) store_edge!; [order_edge]!;

clean_node; unmark_node!:

The mutated node’s outgoing edges

are assigned a random order by

store_edge!; [order_edge]!;. The

call to clean_node; unmark_node! re-

turns the successfully mutated graph to

an unmarked state.

10

Figure 5.12: A trace of the application of the node mutation program in Figure 5.9. For

visual simplicity, (most) node and edge labels have been omitted.

133

5 Evolving Graphs by Graph Programming

Algorithm 6 The 1 + λ EA with neutral drift enabled.

1: procedure 1 + λ(max generations, λ)

2: parent← generate individual

3: parent score← evaluate(parent)

4: generation← 0

5: while solution not found and generation ≤ max generations do

6: new parent← parent

7: for i = 0 to λ do

8: child← mutate(parent)

9: child score← evaluate(child)

10: if child score ≤ parent score then

11: new parent← child

12: parent score← child score

13: end if

14: end for

15: parent← new parent

16: generation← generation+ 1

17: end while

18: end procedure

the individual and considering each node or edge in turn for mutation may introduce bias.

So our point mutations first choose a random point to mutate, and then mutate it.

We calculate the number of node or edge mutations to apply based on binomial distri-

butions. For an individual with vf function nodes and e edges, with mutation rate mr, we

sample a number of node mutations, mv ∈ B(vf ,mr), and edge mutations, me ∈ B(e,mr),

where B(n, p) indicates a binomial distribution with n trials and probability of success, p.

We then place all mv + me mutations in a list, and shuffle the list, applying mutations in a

random order. While this approach is likely to have some biases, it guarantees reproducible

probabilistic behaviour. The overall expected number of atomic mutations is mr(vf + e).

5.4 1 + λ Evolutionary Algorithm

Recombination of graphs is in itself a challenging research area that will be considered in

Chapter 9. In this chapter we use only mutation operators, and it is therefore natural to

134

5.4 1 + λ Evolutionary Algorithm

"INPUT":0 "INPUT":1

"NOR" "AND" "OR"

"AND" "NAND"

"OUTPUT":0

Gen 1, Fitness = 3

"INPUT":0 "INPUT":1

"NOR" "AND" "AND"

"NAND" "NAND"

"OUTPUT":0

Child 1, Fitness = 3

"INPUT":0 "INPUT":1

"NOR" "AND" "OR"

"AND" "NOR"

"OUTPUT":0

Child 2, Fitness = 2

⇓ Child 2 replaces the parent ⇓

"INPUT":0 "INPUT":1

"NOR" "AND" "OR"

"AND" "NOR"

"OUTPUT":0

Gen 2, Fitness = 2

"INPUT":0 "INPUT":1

"NAND" "AND" "OR"

"OR" "NOR"

"OUTPUT":0

Child 1, Fitness = 2

"INPUT":0 "INPUT":1

"AND" "AND" "OR"

"AND" "NOR"

"OUTPUT":0

Child 2, Fitness = 3

⇓ Child 1 replaces the parent (Neutral Drift) ⇓

"INPUT":0 "INPUT":1

"NAND" "AND" "OR"

"OR" "NOR"

"OUTPUT":0

Gen 3, Fitness = 2

"INPUT":0 "INPUT":1

"NAND" "OR" "OR"

"NAND" "AND"

"OUTPUT":0

Child 1, Fitness = 1

"INPUT":0 "INPUT":1

"NAND" "AND" "OR"

"OR" "NOR"

"OUTPUT":0

Child 2, Fitness = 0

Child 2 is a correct implementation of an XOR gate.

Figure 5.13: A visualisation of an EGGP evolutionary run learning an XOR gate from AND,

OR, NAND and NOR gates.

135

5 Evolving Graphs by Graph Programming

consider single-survivor EAs. As we intend to benchmark against CGP, we propose the

use of the EA most commonly used with it, the 1 + λ EA shown in Algorithm 6. This

algorithm is an extended form of Random Hill Climbing, where in each generation λ new

individuals are generated by mutating the sole surviving parent from the previous generation.

Additionally, we allow a new individual with equal fitness to its parent to replace its parent

in the next generation, facilitating the phenomena of “neutral drift”. Propagating changes in

the genotype which result in neutral changes in the phenotype is known to positively influence

the performance of CGP [156] and we see no obvious reason why this would not also be the

case in EGGP.

5.5 Example: Learning an XOR Gate

In this Section we give a visual example of how EGGP can learn an AFG to fit a given fitness

function. We focus on the evolution of an implementation of an XOR gate with truth table

i0 i1 o0 = i0 ⊕ i1
0 0 0

0 1 1

1 0 1

1 1 0

(5.8)

from AND, OR, NAND and NOR gates. An idealised evolutionary run for this problem is

given in Figure 5.13. Here each individual consists of 1 output node, 5 function nodes and 2

input nodes. The initial graph implements an AND gate on the 2 inputs, yielding a fitness of

3. This evolutionary run is using the 1 + λ EA with λ = 2, so in each generation, 2 children

are produced. In the first generation, one of the children (Child 2) effectively implements an

identity on input 0, giving a fitness value of 2. As this is less than the fitness of the parent,

Child 2 replaces the initial graph moving into the next generation.

In the second generation, a child is produced (Child 1) where all active components of the

parent are unmodified. Instead, only inactive material is modified, giving this child exactly

the same fitness as its parent. As a result, Child 1 replaces the parent moving into the next

generation. In the final generation, the second child (Child 2) implements an XOR gate. As

this is a correct solution with a fitness of 0, the evolutionary run terminates.

136

5.6 Related Work

5.6 Related Work

There are a number of approaches to evolving graphs and graph-like programs, indeed many

of these are discussed in far greater detail in Section 2.4. Of particular note are:

• Tree-Based Genetic Programming (TGP) [129]. This GP approach can be viewed as

learning tree-structured AFGs without sharing.

• CGP [157]. This approach places function nodes on a grid and expresses mutation

operators on that grid. Acyclicity is preserved by an ordering imposed on the grid.

• PDGP [188]. Similarly, PDGP also places function nodes on an ordered grid. Unlike

CGP, PDGP typically heavily utilises recombination.

However, we will draw a particular comparison with CGP. The reason for this is two-fold:

1. Focusing on the graph structure used in CGP, ignoring the underlying grid, the repre-

sentations used in EGGP and CGP are highly similar.

2. In both EGGP and CGP, the typical genetic operators used are:

a) Atomic node mutation, where a single node is associated with some new function.

b) Atomic edge mutation, where a single edge is redirected while preserving acylicity.

Hence we perceive particular value in clarifying the differences between EGGP and CGP. We

note that some of this discussion may well be relevant to PDGP also. In Section 5.6.1 we

briefly revisit the relevant aspects of CGP necessary for this comparison. In Section 5.6.2 we

demonstrate that EGGP generalises the landscapes associated with CGP both in terms of

representation and neighbourhoods induced by the available genetic operators.

5.6.1 Cartesian Genetic Programming

CGP is a type of EA in which individuals are represented as linear sequences of genes cor-

responding to a Directed Acyclic Graph (DAG). Each gene is an integer representing either

(1) where a node gets its inputs from or (2) the function of a node. These nodes are ordered

so that all input connections must respect that ordering, preventing cycles. When evolving

over a function set where each function takes 2 inputs, there are 3 genes for each node in the

individual; 2 representing each of the node’s inputs, and 1 representing the node’s function.

Outputs are represented as single genes describing the node in the individual which corre-

sponds to that output. These connection genes (nodes’ input genes and the singular output

137

5 Evolving Graphs by Graph Programming

Node 1 Node 2 Node 3 Output

Genotype: 0 0 1 1 0 2 0 1 0 2

Phenotype:

i0 OR NOR AND o0

Figure 5.14: The genotype-phenotype mapping of a simple CGP individual consisting of 1

input, 3 nodes and 1 output and arity 2. Each node is represented by 3 genes;

the first 2 describe the indices of the node’s inputs (starting at index 0 for the

individual’s input i) and the third describing the node’s function. Function

indices 0, 1 and 2 correspond to AND, OR and NOR respectively. The final

gene describes the index of the node used by the individual’s output o.

genes) point to other nodes based on their index in the ordering.

An example genotype-phenotype mapping is given in Figure 5.14. Here an individual

consisting of 3 nodes over a function set of arity 2, 1 input and 1 output is represented by

10 genes. These genes decode into the shown DAG. In CGP individuals may be seen as a

grid of nr rows and nc columns; a node in a certain column may use any node from any row

in an earlier column as an input. Hence the total n = nr × nc nodes are ordered under a ≤
operator. The example shown in Figure 5.14 is a single row instance of CGP.

5.6.2 Comparison with Cartesian Genetic Programming

Here we demonstrate that EGGP provides a richer representation than CGP:

• For a fixed number of nodes n and function set F , any CGP individual can be repre-

sented as an EGGP individual, whereas the converse may not always hold when the

number of rows in a CGP individual is greater than one.

• Any order-preserving CGP mutation can be represented as a feed-forward preserving

mutation in EGGP, whereas some feed-forward preserving mutations may not be order-

preserving nor valid in the CGP framework.

138

5.6 Related Work

i0 OR NOR AND o0

⇓

i0 OR NOR AND o0

Figure 5.15: An acyclicity preserving edge mutation. An edge (red) is redirected from the OR

node to the AND node. This mutation produces a valid circuit but, assuming

that nodes are ordered from left to right, is impossible in CGP as it does not

preserve order.

Firstly, consider the genotype-phenotype decoding of a CGP individual. Here we have

clearly defined sets of input, output and function nodes. Additionally each function node is

associated with some function from the function set, and there are ordered input connections

(edges) from each function node to its inputs. Clearly this decoded individual can be treated

as an AFG. Conversely, consider the case where nr > 1. Then there is the trivial counter

example of an EGGP individual with a solution depth greater than nc (as n > nc) which

clearly cannot be expressed as a CGP individual limited to depth nc.

We now consider mutations available over a CGP individual in comparison to those for an

EGGP individual where feed-forward preserving mutations are used. Clearly, as each order

preserving mutation is feed-forward preserving, any valid mutation for the CGP individual

is available for its EGGP equivalent. However, consider the example shown in Figure 5.15.

Here a feed-forward mutation, redirecting the red edge from the OR gate to the AND gate,

is available in the EGGP setting but is not order preserving so is impossible in the CGP

setting. Additionally, the semantic change that has occurred here, where an active node has

been inserted between two adjacent (with respect to node ordering) active nodes is a type

139

5 Evolving Graphs by Graph Programming

of phenotype growth that is impossible in CGP. Hence every mutation available in CGP is

available in EGGP for an equivalent individual but the converse may not be true.

Therefore the landscape described by EGGP over the same function set and number of

nodes is a generalisation of that described by CGP, with all individuals and viable mutations

available, alongside further individuals and mutations that were previously unavailable.

5.7 Conclusions and Future Work

In this chapter we have described the approach EGGP. This technique synthesises acylic

graph-like programs such as AFGs using evolutionary computation and landscapes described

by graph programs. The system consists of 4 core components which we have described:

1. A simple initialisation procedure that generates AFGs.

2. The 1 + λ EA with a minimal surviving population and no crossover.

3. An atomic edge mutation that preserves acylicity.

4. An atomic node mutation that preserves acylicity and function arity while shuffling a

function node’s outgoing edges.

For both atomic mutations, we have set out arguments for their correctness with respect

to the domain we are considering. A simple example of learning an XOR gate has been

given to show how these simple components interact to solve problems. Despite its simplic-

ity, Chapter 6 demonstrates the empirical effectiveness of the described approach on various

standard benchmark problems from the literature. Our comparison with related work high-

lights that the landscapes we are inducing with graph programs are strict generalisations of

those accessed with CGP. This further strengthens the case for using graph programming

as a language for describing EAs over graphs, as we are able to describe apparently novel,

non-trivial genetic operators with concise and intuitive P-GP 2 programs.

Due to its simplicity, it is straightforward to use EGGP as a building block to access new

ideas and previously unvisited techniques for the evolution of graphs. In Chapter 8, EGGP

is extended to incorporate known equivalence laws which accelerate the evolutionary process.

In Chapter 9, EGGP is combined with a passive genetic recombination operator which aids

the system in finding higher quality solutions faster. However it is clear that this is not the

limit of the possible extensions to EGGP, and that there are many areas for potential future

work. We outline some of these possibilities below:

140

5.7 Conclusions and Future Work

i

i

i

i

o

i

i

o

o

o

⇓ Copy_Module⇓
i

i

i

i

o

i

i

o

i

i

o

o

o

Figure 5.16: A notion of how subgraph copying (see [56]) might be utilised in a modular

extension of EGGP to copy entire modules between function nodes.

• Typed EGGP. As described in Section 4.4, it may be possible to extend FGs to Typed

FGs (TFGs) via Type Graphs. An obvious direction of research, then, is to investigate

what genetic operators are required to effectively evolve TFGs while respecting the

underlying type system. As the type system is effectively specifying a restriction on

allowed connections in a TFG, it is likely that the behaviours of atomic genetic operators

for TFGs are strict restrictions of the behaviours of the atomic node and edge mutations

we have described in this chapter.

• Hierarchical EGGP. Another idea described in Section 4.4 is that FGs can be ex-

tended to Hierarchical FGs (HFGs) using pre-existing notions of hierarchical graphs.

While the genetic operators we have described in this chapter readily extend to ADF

hierarchical graphs where modules are evolved as independent components of a larger

141

5 Evolving Graphs by Graph Programming

genome, a possible area of research is in the use of Hierarchical Graph Transformation

concepts such as subgraph copying and subgraph deletion [56] as a model for modifying

HFGs where modules are embedded within function nodes. We give a notion of how

subgraph copying might be used in Figure 5.16.

• Other Genetic Operators. There are a number of other ideas for genetic operators on

graphs in the literature which might be recreated and utilized in EGGP. For example, it

is possible to describe a P-GP 2 program which targets only active nodes/edges, thereby

achieving ‘active-only’ mutations as in [244]. Similarly, it would be possible to include

operators which may ‘activate’ or ‘deactivate’ nodes (or entirely add/delete nodes!) as

in [111]. We refer the reader to the discussion of mutation in [158] for more ideas from

CGP literature on possible genetic operators for EGGP.

142

6 Benchmarking EGGP

Abstract

In this chapter we present benchmark results comparing Evolving Graphs by Graph Pro-

gramming (EGGP) to popular Genetic Programming (GP) approaches from the literature.

We draw statistical comparisons with results produced using Tree-Based GP (TGP) and

Cartesian Genetic Programming (CGP) on standard digital circuit and symbolic regression

benchmark problems. We find that EGGP outperforms other approaches under standard

parameters on many of the studied problems.

Relevant Publications

Content from the following publications is used in this chapter:

[8] T. Atkinson, D. Plump, and S. Stepney, “Evolving graphs by graph programming,”

in Proc. European Conference on Genetic Programming, EuroGP 2018, ser. LNCS,

vol. 10781. Springer, 2018, pp.35–51.

[9] T. Atkinson, D. Plump, and S. Stepney, “Probabilistic graph programs for ran-

domised and evolutionary algorithms,” in Proc. International Conference on Graph

Transformation, ICGT 2018, ser. LNCS, vol. 10887. Springer, 2018, pp. 63–78.

[10] T. Atkinson, D. Plump, and S. Stepney, “Evolving graphs with horizontal gene

transfer,” in Proc. Genetic and Evolutionary Computation Conference, GECCO 2019,

ACM, 2019, pp. 968–976.

143

6 Benchmarking EGGP

6.1 Introduction

To verify our approach, we require empirical comparisons with other approaches from the

literature. In this chapter, we study the performance of Evolving Graphs by Graph Program-

ming (EGGP) on standard problems in relation to Tree-based Genetic Programming (TGP)

and Cartesian Genetic Programming (CGP).

The problems studied in this chapter are broken into 2 categories:

1. Digital circuit. In the digital circuit benchmark problems, the task is to find a

combination of logic gates that induce a truth table equal to the target truth table.

Many real world circuits, such as digital adders, multipliers and parity checks, are

studied. The measurement of quality on these problems is the number of evaluations

required to completely solve a given problem.

2. Symbolic regression. In the symbolic regression benchmark problems, the task is

to find a combination of real-valued functions which minimise the error on a synthetic

dataset. On these problems the number of evaluations is presented as a fixed budget,

and the measurement of success is the error of final solutions found for a given problem.

For digital circuit benchmark problems, we compare to CGP [155] as the most relevant

approach. The 16 studied problems and experimental parameters are in general drawn from

CGP literature [155, 253]. For symbolic regression benchmark problems, we compare to

CGP as the most relevant approach, and TGP [129] as the typical approach used for solving

such problems. The 14 studied problems and experimental parameters for TGP are drawn

from [169]. The experimental parameters for CGP are taken from symbolic regression bench-

marks in [155]. We find statistically significant differences in many of the digital circuit

problems, and we find that the differences in performance between EGGP and CGP increase

with problem difficulty. We observe less statistical differences in our symbolic regression

comparisons.

The rest of this chapter is arranged as follows. In Section 6.2 we describe our use of statistics

through the remainder of this thesis. In Section 6.3 we describe our digital circuit benchmark

experiments; the results of these experiments are given in Section 6.4. We provide further

discussion and clarifying experiments on the distinction between EGGP and CGP in Section

6.5. In Section 6.6 we describe our symbolic regression benchmark experiments; the results

of these experiments are given in Section 6.7. We discuss the differences between the results

we observe in our digital circuit benchmarks and symbolic regression benchmarks in Section

144

6.2 Statistical Comparison throughout this Thesis

6.8, and provide some plausible explanations for these differences. Finally in Section 6.9 we

summarise our findings and set out further problems on which EGGP could be benchmarked.

6.2 Statistical Comparison throughout this Thesis

Throughout the remainder of this thesis we often compare approaches on a set of problems.

While the metric of success may vary, we do not assume that our data is normally distributed

- indeed often the opposite is the case, with a few ‘bad’ evolutionary runs introducing heavy

tails to the observed distributions. For this reason, we will in general report the median of

our metrics, rather than the mean, and the interquartile range in our metrics, rather than

the variance or standard deviation.

To test for statistical significance we in general use the two-tailed Mann–Whitney U

test [147], which (essentially) tests the null hypothesis that two distributions have the same

medians (the non-parametric analogue of the t-test applicable only to normally distributed

data). Throughout our experiments we use a significance threshold of p < 0.05 and perform a

Bonferroni procedure for family of hypotheses tests. We view a family of hypothesis tests to

be the set of statistical tests performed comparing the performance of two approaches across

a family of related problems. For example, in Section 6.3 we compare EGGP to CGP on 16

different digital circuit synthesis tasks. We therefore use a corrected significance threshold

of p < 0.05
16 . In general, when we are testing a family of m hypotheses, we use a corrected

significance threshold of p < 0.05
m .

In the case where we get a statistically significant result (p < 0.05
m), we also calculate the

effect size, using the non-parametric Vargha–Delaney A Test [248]. This gives a quantitative

metric of the magnitude of the differences we observe. When we find that A > 0.71 a given

result is said to have ‘large effect’.

6.3 Digital Circuit Experiments

Our digital circuit benchmark problems are drawn from CGP literature [155, 253]. On our

digital circuit benchmark problems, the task is to synthesise a circuit with an exact truth

table from a function set of logic gates. Therefore our fitness is a measure of absolute distance

from an individual graph’s truth table and a target truth table. For example, if an individual

145

6 Benchmarking EGGP

had truth table

i0 i1 o0

0 0 0

0 1 0

1 0 1

1 1 1

(6.1)

and the target truth table was that of an XOR gate, i.e.,

i0 i1 o0 = i0 ⊕ i1
0 0 0

0 1 1

1 0 1

1 1 0

(6.2)

then the fitness of the individual would be 2. That is, there are 2 incorrect output bits in the

truth table (for inputs 0, 1 and 1, 1). A solution is considered optimal when their fitness is 0.

We study a number of problems with various degrees of complexity. The simplest problems,

such as the 3-bit even parity problem, provide 3 inputs and expect 1 output and can be

specified quite easily by hand. The hardest problems, such as the 3-bit multiplier, provide 6

inputs and expect 1 output and take substantial thought to design manually from scratch.

A full listing of the problems we study is given in Table 6.1.

Our problems can be broken up into several classes of circuit:

• Adders. These are circuits which add together a pair of binary representations of

integers. For example, a 2-bit adder presented with 2 (10), 1 (01) and a carry bit of 1

is expect to produce as output 2 + 1 + 1 = 4 (100).

• Multipliers. These are circuits which multiply together a pair of binary representa-

tions of integers. For example, a 2-bit multiplier, presented with 2 (10) and 3 (11) is

expected to produce as output 2× 3 = 6 (0110).

• 3:8-bit De-Multiplexer. This is a specialist circuit which converts a 3-bit represen-

tation of an integer to a one-hot encoding. For example, the value 5 (101) is converted

to 00010000.

• 4x1-bit Comparator. This circuit compares 4 input bits pair-wise, producing for

each pair a < bit, = bit and > bit where the appropriate output is 1 depending on the

inputs. For example, if the input to the circuit were 1010 then the comparison of the

146

6.3 Digital Circuit Experiments

Digital Circuit Number of Inputs Number of Outputs

1-bit Adder (1-Add) 3 2

2-bit Adder (2-Add) 5 3

3-bit Adder (3-Add) 7 4

2-bit Multiplier (2-Mul) 4 4

3-bit Multiplier (3-Mul) 6 6

3:8-bit De-Multiplexer (DeMux) 3 8

4×1-bit Comparator (COMP) 4 18

3-bit Even Parity Check (3-EP) 3 1

4-bit Even Parity Check (4-EP) 4 1

5-bit Even Parity Check (5-EP) 5 1

6-bit Even Parity Check (6-EP) 6 1

7-bit Even Parity Check (7-EP) 7 1

5-bit Odd Parity Check (5-OP) 5 1

6-bit Odd Parity Check (6-OP) 6 1

7-bit Odd Parity Check (7-OP) 7 1

8-bit Odd Parity Check (8-OP) 8 1

Table 6.1: Digital circuit benchmark problems.

first 2 bits would yield 001 (1 > 0) and the comparison of the first and the third bits

would yield 010 (1 = 1). With 6 pairs, each producing 3 outputs, the circuit produces

18 outputs in total.

• Even Parity Checks. These are circuits which compute whether the number of 1s

in the input is even. For example, a 3-bit even parity circuit presented with input 011

would return 1 as there are an even number of 1s. In comparison, if the input were 100

then the circuit would return 0.

• Odd Parity Checks. These are similar to even parity circuits except that they return

1 when the number of 1s in the input is odd.

As many of these circuits are typically constructed manually using XOR gates, we use the

function set {AND,OR,NAND,NOR} to artificially increase the difficulty of these problems.

We use the number of incorrect bits produced by a candidate solution in comparison to the

full truth table of the given problem as the fitness function.

147

6 Benchmarking EGGP

We produce our own CGP benchmark results, which are roughly in line with those available

in [254], by using the C-based CGP library [243]. Each algorithm is run 100 times, with a

maximum generation cap of 20,000,000; every run in each case successfully produced a result

with the exception of the 3-Mul for CGP, which produced a correct solution in 99% of cases.

In all benchmarks, 100 function nodes are used for each individual. Following conventional

wisdom for CGP, we use a mutation rate of 0.04 for CGP benchmarks. Additionally, a

single row of nodes is used in each of these cases (nr = 1). However, from our observations

EGGP works better with a lower mutation rate, so for EGGP benchmarks we use 0.01. An

investigation of how mutation rate influences the performance in EGGP is left for future

work. The 1 + λ algorithm is used in all both cases, with λ = 4.

To provide comparisons, we use the following metrics; median number of evaluations (ME),

median absolute deviation (MAD)1 and interquartile range (IQR). The number of evaluations

taken for each run is calculated as the number of generations used multiplied by the total

population size (1 + λ = 5). The hypothesis that we are investigating in these experiments

is that EGGP performs significantly better than CGP on the same problems under similar

conditions. This hypothesis, if validated, would demonstrate the value of our approach.

6.4 Digital Circuit Results

Here we present results from our benchmarking experiments. Digital circuit results for EGGP

and CGP are given in Table 6.2.

To test for statistical significance we use the two-tailed Mann–Whitney U test with a

significance threshold of α = 0.05
16 as corrected by a Bonferonni procedure. In the case where

we get a statistically significant result, p < 0.05
16 , we also calculate the effect size, using the

non-parametric Vargha–Delaney A Test.

Comparing EGGP to CGP in Table 6.2, we find no significant improvement of EGGP

over CGP for small problems (1-Add, 2-Mul, DeMux, 3-EP). As the problems get larger and

harder we find significant (p < 0.05
16) improvement of EGGP over CGP in all cases. The effect

size is medium (0.64 < A < 0.71) for 4-EP. We find significant (p < 0.05
16) improvements along

with large effect sizes (0.71 > A) on all other problems, including the most difficult problems:

3-Add, 3-Mul, 4 × 1-Bit Comparator, 7-Bit Even Parity and 8-Bit Odd Parity. So there is a

clear progression of increasing improvement with problem difficulty.

1Median of the absolute deviation from the evaluation median ME.

148

6.4 Digital Circuit Results

EGGP CGP

Problem ME MAD IQR ME MAD IQR p A

1-Add 5,723 3,020 7,123 6,018 3,312 7,768 0.62 –

2-Add 74,633 32,863 66,018 180,760 88,558 198,595 10−15 0.82

3-Add 275,180 114,838 298,250 2,161,378 957,035 1,837,942 10−31 0.97

2-Mul 14,118 5,553 12,955 10,178 5,258 14,459 0.018 -

3-Mul 1,241,880 437,210 829,223 15,816,940 7,948,870 19,987,744 10−34 0.99

DeMux 16,763 4,710 9,210 20,890 6,845 14,063 0.013 -

COMP 262,660 84,248 174,185 1,148,823 425,758 1,012,149 10−31 0.97

3-EP 2,755 1,558 4,836 4,365 2,530 5,345 0.038 -

4-EP 13,920 5,803 11,629 22,690 11,835 24,340 10−6 0.69

5-EP 34,368 15,190 30,054 106,735 55,615 126,063 10−18 0.86

6-EP 83,053 33,273 66,611 485,920 248,150 535,793 10−3 0.97

7-EP 197,575 61,405 131,215 1,828,495 843,655 1,860,773 10−33 0.99

5-OP 38,790 13728 29,490 96,372 41,555 91,647 10−18 0.86

6-OP 68,032 22,672 52,868 502,335 274,132 600,291 10−31 0.97

7-OP 158,852 69,477 142,267 1,722,377 934,945 2,058,077 10−33 0.99

8-OP 315,810 128,922 280,527 7,617,310 4,221,075 9,830,470 10−34 0.99

Table 6.2: Results from digital circuit benchmarks for CGP and EGGP. The p value is from

the two-tailed Mann–Whitney U test. Where p < 0.05
16 , the effect size from the

Vargha–Delaney A test is shown; large effect sizes (A > 0.71) are shown in bold.

The values for CGP on the 3-Mul problem include the single failed run.

We visualise some highly significant results as box-plots, with raw data overlayed and jit-

tered, in Figure 6.1. For each of the named problems, it can be clearly seen that EGGP’s

interquartile range shares no overlap with CGP’s, highlighting the significance of the improve-

ment made. Overall, we see these results to validate our hypothesis that EGGP performs

significantly better than CGP when addressing the same harder problems, although we note

that no significant improvement is made for some simpler problems.

149

6 Benchmarking EGGP

Figure 6.1: Box-plots with data overlayed for the following highly significant results; (A) 3-bit

Adder, (B) 3-bit Multiplier, (C) 4 x 1-bit Comparator and (D) 7-bit Even Parity.

Overlayed data is jittered for visual clarity.
150

6.5 Digital Circuit Discussion

6.5 Digital Circuit Discussion

The comparisons we have seen offer a unique opportunity to validate the claim made in Section

5.6.2 that EGGP generalises the landscape provided by CGP. To this end, we proposed the

use of what we call Ordered-EGGP (O-EGGP).

Each node in an O-EGGP individual is associated with an order in an analogous manner

to CGP. Node function mutations from EGGP are used, but input mutations are order-

preserving rather than feed-forward preserving. Hence the same set of atomic mutations is

available for equivalent O-EGGP and CGP individuals. This approach simulates the land-

scape and a very similar search process of CGP under identical conditions, so should produce

highly similar results to an equivalent CGP implementation. By also benchmarking O-EGGP

we demonstrate that it is EGGP’s free graphical representation and the associated more gen-

eral ability to mutate input connections with respect to preserving feed-forwardness that

yields higher quality results.

By setting the mutation rate to 0.04, the last meaningful difference between O-EGGP and

CGP is in the interpretation of mutation rate. In CGP, each function node and edge is

mutated individually with probability equal to the mutation rate. In O-EGGP, we still have

that the unit to mutate is chosen at random as the first step of mutation. Hence, although

the binomial mutation operator provides a similar probability distribution over outcomes,

there are clearly some small distances. This is shown by the fact that it is possible to mutate

an edge twice in O-EGGP during the same mutation step.

We evaluate O-EGGP on a subset of the studied digital circuit benchmark problems. We

argue that if the results from these benchmarks are in line with the CGP benchmark results we

may extrapolate that O-EGGP is indeed approximately simulating CGP. We are effectively

testing the hypothesis that O-EGGP does not perform significantly better or worse than CGP

on the same problems under identical conditions. This hypothesis, if validated, would indicate

that the possible factors influencing EGGP’s greater performance for the first hypothesis

would be reduced to the use of the feed-forward mutation operator and the mutation rate.

The results of our comparisons are given in Table 6.3.

Overall we find no significant difference between either approach on any of the problems

in the smaller benchmark set. The results show similar numbers of MEs in each case, and

produce p values indicating no significant difference between the samples. We believe that

these findings support our hypothesis that O-EGGP does not perform significantly better

or worse than CGP on identical problems under identical conditions. As O-EGGP approxi-

151

6 Benchmarking EGGP

O-EGGP

Problem ME MAD IQR p

1-Add 6,253 3,610 9036 0.66

2-Add 193,753 109,420 239,133 0.95

2-Mul 13,930 7,905 19,104 0.12

DeMux 21,406 5,115 10,065 0.66

3-EP 3,903 2,315 4,831 0.64

4-EP 23,360 11,893 21,865 0.84

5-EP 121,820 51,150 107,868 0.56

Table 6.3: Results from digital circuit benchmarks for O-EGGP on a smaller benchmark suite.

The p value is from the two-tailed Mann–Whitney significance test comparing

against CGP results in Table 6.2; no result is statistically significant (α = 0.05
7).

mately simulates CGP, this indicates that we can consider the differences between the runs

of EGGP and O-EGGP, namely feed-forward preserving mutations and mutation rate, as

the major contributors to the differences in performance shown in Table 6.2. These findings

empirically validate our claim in Section 5.6.1 that EGGP generalises CGP’s landscape, with

O-EGGP’s landscape a clearly defined subset of EGGP’s.

Further, we suggest that the significant differences in results would not be resolved by

tuning the mutation rate parameter. Therefore we turn our attention to the feed-forward

preserving edge mutation operator. As feed-forward preserving mutations may insert nodes

between nodes that would be considered adjacent in the CGP framework. This allows a

subgraph of the solution to grow and change in previously unavailable manners. Performing

functionally equivalent mutations with order preserving edge mutations might require the

construction of an entirely new subgraph in the neutral component of the individual which is

then activated. We propose that the former mutation is more likely to occur than the sequence

of mutations required to achieve the latter. Therefore where those unavailable mutations are

“good” mutations in the sense of the fitness function, better performance will be achieved by

using them directly. A future investigation into the quality of the neighbourhood when using

the feed-forward preserving mutation would clarify this hypothesis.

Additionally, this ability to insert material from anywhere in the individual that preserves

feed-forwardness allows various neutral drifts to occur in the active component, even between

152

6.6 Symbolic Regression Experiments

nodes that would be considered adjacent in the CGP framework. For example, a connection

using node x as input could be replaced by the semantically equivalent AND(x, x), for the

function set used here. The insertion of that AND gate would then allow new mutations

in the active component; for example changing its function, or mutating one of its inputs.

Similar neutral mutations exist in this domain, such as the insertion of double negations using

NAND gates. Additionally, the reverses of these transformations are also possible, freeing

up genetic material to be used elsewhere. This direction of thought sets the context for the

work on Semantic Neutral Drift (SND) described in Chapter 8.

6.6 Symbolic Regression Experiments

We benchmark the approaches on 14 of the 21 synthetic symbolic regression problems [169].

That work justifies the exclusion of Grammatical Evolution (GE) [175], as it finds that TGP

generally outperforms GE on these problems. Experiments for benchmarks F13-–17, 19, 20

(omitted here) showed very little variety in performance; the results of [169] suggests these

are poor benchmark problems in that the functions are almost invariant on their inputs.

While F1–3 also exhibit relatively invariant responses, approaches here and in [17] produce

a variety of performances that compel their inclusion. Similarly, while F4 and F21 do not

show a variety of performances, the functions themselves produce a variety of responses on

different inputs, again compelling their inclusion. For all 14 problems, see Table 6.4.

These benchmarks were introduced in response to various criticisms of the GP community

for ‘arbitrarily’ chosen benchmark problems, and the reasoning for their design is set out in

detail in [169]. We view these problems as good measures of performance of a TGP system.

Of the 14 problems, 9 take 2 inputs, 1 takes 3 inputs, 3 take 5 inputs and 1 takes 10 inputs.

Each function’s input variables are randomly sampled from the interval [−5, 5].

We use 1000 training samples, 10, 000 validation samples and 40, 000 test samples 2. The

training data is used to guide the different approaches, while every solution explored is

evaluated on the validation data. The globally best performing individual (with respect to

the validation data) is returned at the end of a run, and then evaluated on the test data to

produce a test performance measure.

The function set for these problems is that of [169] and is given by

{+,−,×,÷, ex, ln (x), sin (x), tanh (x),
√
x}, (6.3)

2The author is very grateful to Miguel Nicolau for providing the datasets used in [169]

153

6 Benchmarking EGGP

Name Number of Inputs Function

F1 2 f(x1, x2) = e−(x1−1)2

1.2+(x2−2.5)2

F2 2 f(x1, x2) =

e−x1x3
1 cos(x1) sin(x1)(cos(x1)sin2(x1)− 1)(x2 − 5)

F3 5 f(x1, x2, x3, x4, x5) = 10
5+Σ5

i=1(xi−3)2

F4 3 f(x1, x2, x3) = 30x1−1)(x3−1)
x22(x1−10)

F5 2 f(x1, x2) = 6 sin(x1) cos(x2)

F6 2 f(x1, x2) = (x1 − 3)(x2 − 3) + 2 sin((x1 − 4)(x2 − 4))

F7 2 f(x1, x2) = (x1−3)4+(x2−3)3+(x2−3)
(x2−2)4+10

F8 2 f(x1, x2) = 1
1+x−4

1

+ 1
1+x−4

2

F9 2 f(x1, x2) = x4
1 − x3

1 +
x22
2 − x2

F10 2 f(x1, x2) = 8
2+x21+x22

F11 2 f(x1, x2) =
x31
5 +

x32
3 − x2 − x1

F12 10 f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) =

x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10

F18 5 f(x1, x2, x3, x4, x5) = x1x2x3x4x5

F21 5 f(x1, x2, x3, x4, x5) = 2− 2.1 cos(9.8x1) sin(1.3x5)

Table 6.4: Symbolic regression problems used for benchmarking EGGP. These problems are

taken from [169].

and each approach has access to the 18 constants: −0.9, −0.8, . . . , −0.1, 0.1, 0.2, . . . , 0.9. In

TGP these are constants, whereas in the EGGP variants and CGP, they are further input

nodes.

We evaluate all individuals using the Mean Square Error (MSE) fitness function. For a

given set of inputs X, candidate f and target values Y , the MSE is computed as

MSE(f,X, Y) =
Σ
|X|
i=0(Yi − f(Xi))

2

|X|
. (6.4)

We measure statistics taken over 100 independent runs of each approach on each dataset.

For EGGP, we use a fixed 100 nodes and a mutation rate mr = 0.03.

154

6.6 Symbolic Regression Experiments

For CGP, we use the experimental parameters in [253], [155, Ch.3], at which values CGP

outperforms TGP on symbolic regression problems. We use 100 fixed nodes, and a mutation

rate of 0.03. We use the 1 + λ EA with λ = 4. We do not use any of the published CGP

crossover operators, as their usefulness, particularly on symbolic regression problems, remains

disputed [106], and [155,243] recommend the 1 + λ approach.

For TGP, we use the experimental parameters in [169] with a minor adjustment. The

population size is 500, with 1 elite individual surviving in each generation. Subtree crossover is

used with a probability of 0.9, and when it is not used, the ‘depth steady’ subtree replacement

mutation operator is used, which, when replacing a subtree of depth d generates a new

subtree of depth between 0 and d [169]. Tournament selection is used to select reproducing

individuals, with a tournament size of 4, and the maximum depth allowed of any individual is

10. Unusually for TGP, we add each new individual to the population one-by-one, discarding

one of the children produced by each crossover operator. This allows us to immediately replace

invalid (with respect to maximum depth) individuals, guaranteeing that every individual in

a new population is valid and should be evaluated. To initialise the population, we use the

ramped half-and-half technique [129], with a minimum depth of 1 and a maximum depth of

5.

For all experiments, the maximum number of evaluations allowed is 24 950, a value taken

from [169] (50 generations with a population size of 500 and 1 elite individual that does

not require re-evaluating). In TGP this is achieved by allowing the search to run for 50

generations. In EGGP and CGP, we use the optimisation from [155, Ch.2], where individuals

are evaluated only when their active components are mutated; there is no fixed number of

mutations, and the search continues until the total number of evaluations is performed. There

is no analogous optimisation for TGP, as TGP individuals contain no neutral material. This

optimisation makes a large difference to the depth of search; for example, in CGP running on

F1, the median number of generations is 12 385, but if all individuals are evaluated (rather

than only those with active region mutations), the number of generations would be capped

at 6237 (assuming elite individuals are never re-evaluated).

Our CGP experiments are based on the publicly available CGP library [243] with modifi-

cations made to accommodate the ‘active evaluations only’ optimisation and the use of vali-

dation and training sets. Our TGP experiments are based on the Distributed Evolutionary

Algorithms in Python (DEAP) evolutionary computation framework [70] with modifications

made to accommodate our crossover strategy, mutation operator, and use of validation and

training sets.

155

6 Benchmarking EGGP

EGGP TGP CGP

F MF IQR MF IQR MF IQR

F1 4.45E-3 7.35E-3 5.77E-3 3.40E-3 6.74E-3 4.30E-3

F2 8.17E6 6.05E6 1.28E7 7.86E6 1.73E7 2.54E6

F3 1.18E-2 7.34E-3 1.04E-2 3.56E-3 1.48E-2 4.39E-3

F4 2.58E13 1.05E9 3.55E13 8.35E13 2.58E13 2.35E9

F5 3.96E0 3.56E0 5.13E0 3.81E0 7.17E0 1.47E0

F6 1.69E1 2.24E1 2.61E0 6.86E0 9.28E0 2.03E1

F7 3.06E2 7.40E2 4.20E2 3.50E2 5.76E2 4.39E2

F8 3.91E-2 7.43E-2 1.09E-1 4.99E-2 4.49E-2 9.59E-2

F9 7.09E2 5.40E3 1.46E2 3.04E1 1.71E2 1.11E3

F10 1.52E-1 2.05E-1 3.22E-1 5.62E-2 1.66E-1 1.42E-1

F11 3.93E1 7.26E1 3.88E1 3.37E1 4.96E1 4.73E1

F12 1.21E3 5.25E2 1.25E3 5.02E1 7.08E2 5.19E2

F18 4.07E4 9.27E3 4.13E4 3.54E2 1.20E2 4.10E4

F21 1.07E0 6.16E-4 1.07E0 4.90E-4 1.07E0 1.53E-5

Table 6.5: Results from symbolic regression benchmarks as described in Section 6.6. MF

indicates the Median Fitness over observed runs; the lowest (best) MF result

across all algorithms is highlighted in bold. IQR indicates the Inter-quartile range

in fitness.

6.7 Symbolic Regression Results

The results of our symbolic regression experiments are given in Table 6.5. For each of the

three approaches studied, we give the Median Fitness (MF) recorded across 100 runs, and

the IQR in observed test fitness. We select 3 cases (F2, F6, F18) where we observe statistical

differences and present our results as box-plots in Figure 6.2.

To test for statistical significance we use the two-tailed Mann–Whitney U test and perform

a Bonferroni procedure for each hypothesis giving a corrected significance threshold of α =
0.05
14 . In the case where we get a statistically significant result (p < 0.05

14), we also calculate

the effect size, using the Vargha–Delaney A Test. This results in pair-wise p and A values

for each problem and pair of algorithms, given in Table 6.6.

The first point of interest is that there was no universal ‘winner’ across the studied prob-

156

6.7 Symbolic Regression Results

Figure 6.2: Box-plots with data overlayed for the following symbolic regression problems; (A)

F2, (B) F6, (C) F18. Overlayed data is jittered for visual clarity.

157

6 Benchmarking EGGP

EGGP vs. TGP EGGP vs. CGP TGP vs. CGP

F p A p A p A

F1 0.08 - 0.02 - 0.25 -

F2 < α 0.68 < α 0.82 < α 0.75

F3 0.22 - < α 0.70 < α 0.79

F4 < α 0.67 0.29 - < α 0.66

F5 0.09 - < α 0.86 < α 0.84

F6 < α 0.85 < α 0.66 < α 0.65

F7 0.02 - < α 0.64 0.01 -

F8 < α 0.77 0.54 - < α 0.73

F9 < α 0.75 < α 0.64 ≥ α -

F10 < α 0.86 0.99 - < α 0.93

F11 0.63 - 0.49 - 0.05 -

F12 0.09 - < α 0.75 < α 0.85

F18 < α 0.64 < α 0.70 < α 0.81

F21 0.75 - < α 0.66 < α 0.70

Table 6.6: Statistical tests comparing the observed distributions associated with Table 6.5 for

EGGP, TGP and CGP. The p value is from the two-tailed Mann–Whitney U test.

The corrected threshold for statistical significance is α = 0.05
14 . Where p < α, the

effect size from the Vargha–Delaney A test is shown; large effect sizes (A ¿ 0.71)

are shown in bold. Where α ≤ p < 0.005, p is listed as ≥ α.

lems, although in many (12/14) cases, EGGP performed either best or second best with

respect to the reported MF. On 6 problems, EGGP reported the lowest (best) MF, whereas

TGP and CGP reported the lowest in 4 problems each. In 6 of the 8 problems where EGGP

did not report the lowest MF, it instead reported the second lowest MF. It is also clear

from Table 6.6 that in many cases where EGGP appears to outperform another approach

with respect to MF, we do not observe any statistical significance. This ‘middle-of-the-pack’

behaviour of EGGP is reflected in the statistical values given in Table 6.6; in 12 of the 28

statistical tests involving EGGP, we find no statistical differences.

Comparing EGGP directly to TGP we observe 2 problems (F8, F10) where EGGP achieved

a statistically significant lower MF with a large effect size. On 3 further problems (F2, F4,

F18), EGGP did better with statistical significance, but without large effect. Conversely,

158

6.8 General Discussion

TGP achieved a statistically significant lower MF with large effect on 2 problems (F6, F9).

On all 7 other problems (F1, F3, F5, F7, F11, F12, F21) we observed no statistical differences.

So as an emergent trend we find that on most (10) problems, there are either insignificant

differences between EGGP and TGP, or statistically significant differences without large

effect.

Comparing EGGP directly to CGP, we observe 2 problems (F2, F5) where EGGP achieved

a statistically significant lower MF with a large effect size. On 2 further problems (F3, F7),

EGGP did better with statistical significance, but without large effect. Conversely, CGP

achieved a statistically significant lower MF with large effect on 1 problem (F12). On 4 further

problems (F6, F9, F18, F21) CGP did better with statistical significance, but without large

effect. On all 5 other problems (F1, F4, F8, F10, F11) we observed no statistical differences.

Again, we find that on most (11) problems there are either insignificant differences between

EGGP and CGP, or statistically significant differences without large effect.

The pattern we see in both cases of few results with statistical significance and large effect

stands in contrast the comparison between CGP and GP. Here we see 3 cases where TGP

achieved a statistically significant lower median fitness than CGP, with large effect, and

4 cases where the converse holds. So on exactly half of the problems studied, there is a

statistically significant difference with large effect.

6.8 General Discussion

The results from our symbolic regression benchmarking are remarkably different from our

experiments comparing EGGP and CGP on digital circuit benchmark problems. In the

symbolic regression experiments, we saw few statistical differences with large effect between

EGGP and either TGP or CGP. In the digital circuit experiments, we saw EGGP outperform

CGP on many hard problems with statistical difference and large effect. In this section we

set out some plausible explanations for this.

Firstly, the two benchmark domains had different objectives. In the digital circuit problems,

the objective was to find a globally optimal solution and the performance was measured by the

(median) effort required to achieve this. In the symbolic regression problems, the objective

was to find a high quality solution within a fixed budget of fitness evaluations. One plausible

explanation, then, is that EGGP is better suited to rapidly converging on a global solution

than it is to finding approximate solutions in a (relatively) short computational budget.

159

6 Benchmarking EGGP

Secondly, the two domains utilised different function sets, with different internal interac-

tions. As mentioned in Section 6.5, it is possible for EGGP solutions to undergo phenotypic

growth and shrinkage3 for example when exploiting functions with easily expressed identities

(such as AND(x, x)) in ways that are impossible under the constraints of the CGP genotype.

It is plausible that this is beneficial to the evolutionary process as a form of phenotypic neu-

tral drift. If easily created/destroyed intronic code is less available in the symbolic regression

function set, then it could follow that the theoretical benefits of the generalised landscape of

EGGP have less impact on the performance of the evolutionary search.

One further possibility arises from the question of bloat. Bloat is a commonly observed

[2] and theoretically studied process in TGP where evolved programs grow through time,

often hampering the evolutionary process. The other graph-based Evolutionary Algorithm

(EA) we have studied, CGP, is known to have inherent anti-bloat properties [240] in that

solutions remain small even when the number of nodes in the representation is increased.

One possible explanation as to why EGGP was outperformed by CGP on some symbolic

regression problems is that the generalised landscape offered by EGGP does not exhibit this

property. If this explanation holds, then this has interesting consequences for the study of

anti-bloat in CGP, the cause of which remains an open question. Further, this explanation

interconnects with our previous comments with respect to the function set; it may be the

case that the digital circuit function set is inherently robust against bloating.

6.9 Conclusions and Future Work

In this chapter we have carried out extensive experiments demonstrating that EGGP can

be used to effectively synthesise digital circuits and symbolic expressions. We have studied

the performance of EGGP on 16 digital circuit benchmark problems, and compared our ap-

proach to CGP under very similar experimental conditions. In 12 of the studied problems we

observed EGGP requiring less evaluations (measured by median) than CGP with statistical

significance. In 11 of these problems, we found that the difference had large effect. Further,

the 4 problems where we saw no statistical differences are clearly the easiest of the studied

problems, both conceptually and with respect to the effort required to solve them. As the

problems increased in difficulty, we saw an increasing difference between the two studied al-

gorithms. This is perhaps most strongly highlighted by the box-plots in Figure 6.1, where,

in the case of the hardest problem (3-Mul) we see the box-plot of EGGP results outside the

3Anecdotally, this appears to happen very often throughout a digital circuit evolutionary run!

160

6.9 Conclusions and Future Work

outliers for CGP results.

We have also performed further clarifying experiments through the use of an ordered variant

of EGGP, O-EGGP, which enforces an ordering on nodes which must be respected when

modifying edges. When comparing O-EGGP to CGP under standard conditions, we observed

no statistical differences. This provides robust evidence to our claim in Section 5.6.2 that

the landscape used in EGGP is distinct from that used in CGP. Further, this supports the

hypothesis that EGGP outperforms CGP on the digital circuit benchmark problems as a

result of the generalised landscape that we have described.

We have studied the performance of EGGP on 14 symbolic regression problems, and com-

pared our approach to CGP and TGP. In these problems, we saw less statistical differences

between EGGP and the compared approaches. On 6 problems, EGGP found the highest

quality solution (measured by median), and on 6 further problems, EGGP found the second

highest quality solution. However, through statistical tests we observe that many of our

comparisons are not statistically significant, and of those that are, few have large effect. Sta-

tistical comparisons between TGP and CGP are much more discriminating, with half of the

problems seeing statistical significance and large effect. We have therefore set out a number

of plausible explanations for our observations, and the distinctions between the digital circuit

problems and the symbolic regression problems.

Clearly, it would be beneficial to perform more experiments with EGGP to study the effect

of its various parameters. For example, it would be possible to vary the size of the repre-

sentation, the mutation rate, or the choice of the λ parameter. Such experiments would be

particularly interesting in comparison to previous work modifying the parameters of CGP. For

example, it is known that CGP can perform better when the representation size is massively

increased [156], so it would be interesting to examine whether the same effect is observed

with EGGP, particularly in light of our discussion of bloat in Section 6.8.

Additional experiments investigating the hypotheses we set out in Section 6.8 would shed

light on the discrepancies in our observations on digital circuit and symbolic regression prob-

lems. For example, the explanation that the differences arise from the different objectives

could be tested by investigating the performance of EGGP on both sets of problems in both

settings. The notion of possible bloat in EGGP could be investigated through the study of

anti-bloat techniques such as destructive mutation operators applied larger solutions [122].

There are a number of other domains where we could benchmark the effectiveness of EGGP

in comparison to other GP approaches with minimal modification to the algorithm. Studying

161

6 Benchmarking EGGP

these problems would shed further light onto the similarities and differences between the ideas

we set out in this thesis and other approaches from the literature. Examples of appropriate

problems that have been studied in the literature include:

1. Approximate circuits, as in [165,249,250], by introducing a multi-objective evolutionary

algorithm such as SPEA2 [268] as a replacement of the 1 + λ algorithm.

2. Cryptographic circuits, as in [179,180].

3. Image processing, as in [88,89,201].

4. Multi-step forecasting, as in [58].

5. A number of other plausible problems are discussed in [253], including the lawnmower

problem and the hierarchical if-and-only-if problem.

Further, if EGGP were extended to accommodate for Typed Function Graphs (TFGs), as

discussed in Section 5.7, then clearly it would be desirable to evaluate this typed extension

in the context of problems over typed function sets. A number of examples of such problems

may be found in [99]. Similarly, if EGGP were extended to accommodate for Hierarchical

Function Graphs (HFGs), as discussed in Section 5.7, then there would be a clear desire to

evaluate such an approach. The research on Embedded CGP (ECGP) found in [253] sets

some precedents for empirical evaluation of such an approach.

162

7 Evolving Recurrent Graphs by Graph

Programming

Abstract

In this chapter, we extend Evolving Graphs by Graph Programming (EGGP) to handle

Recurrent Function Graphs (RFGs). This extension, termed Evolving Recurrent Graphs by

Graph Programming (R-EGGP), maintains an acyclic subgraph induced by non-recurrent

edges while allowing recurrent edges to connect freely throughout the graph. In this chapter

we propose suitable genetic operators for evolving RFGs. We give an initialisation proce-

dure that generates RFGs which can be parameterised with a probability prec of a recurrent

edge occurring. We give two mutation operators, one for mutating non-recurrent edges while

maintaining the acyclicity of the subgraph induced by those edges, and the other for mutat-

ing recurrent edges. We evaluate R-EGGP on a variety of benchmarking problems; digital

counters, mathematical sequences and generalising n-bit parity digital circuits. On many

problems studied, we find statistically significant improvements over Recurrent Cartesian

Genetic Programming (RCGP).

163

7 Evolving Recurrent Graphs by Graph Programming

7.1 Introduction

So far we have seen how genetic operators, implemented in P-GP 2, can be used to effectively

evolve Acyclic Function Graphs (AFGs) through the Evolutionary Algorithm (EA), Evolving

Graphs by Graph Programming (EGGP). In this chapter, we discuss an extension of EGGP,

named ‘Evolving Recurrent Graphs by Graph Programming’ (R-EGGP), to handle poten-

tially Recurrent Function Graphs (RFGs). This allows us to describe evolution over stateful

programs which make use of recurrent edges. The results of this chapter will be used in

Chapter 9’s study of neuroevolution.

This is not the first work to consider evolution of stateful programs. Indeed, one might

consider the various evolved automata we have discussed in Chapter 2 to be examples of

evolution of stateful programs. Examples of this include Graph Structured Program Evolution

(GRAPE) [206], Genetic Network Programming (GNP) [118] or Parallel Algorithm Discovery

and Orchestration (PADO) [231, 232]. Similarly, one might consider the many works that

effectively evolve recurrent Artificial Neural Networks (ANNs) [117,195,222] to be examples

of such a domain. However, these evolutionary techniques are specific to domains.

Various works have introduced recursive functions to conventional Genetic Programming

(GP) constructs. Some works allow evolved programs to call themselves, thereby inducing

recursive programs [28,262]. Others integrate recursive functions into the function set to gain

access to recursive logic [1,40,170]. In [105] machine code is executed with access to a program

counter, thereby allowing recursive behaviour to emerge. Self modifying machine code was

used in [172], which may then induce recursive behaviour. In some literature [228, 233], the

problems of inducing explicit recursion and guaranteeing terminating behaviour are resolved

by factoring out the recursive patterns of the given problem. For a more complete survey of

these approaches, see [1]. However, we distinguish between the stateful recurrent programs

that we study here and these GP techniques that have explicit extensions to support recursive

behaviour. This is motivated by a desire to learn stateful programs without needing to design

recursive functions for the function set. Designing such functions may be problematic when

working in domains such as synthesising direct implementations of digital circuits.

Recurrent Cartesian Genetic Programming (RCGP) is a particularly relevant technique

[241,242,245]. In RCGP, Cartesian Genetic Programming (CGP) is extended to accommodate

for recurrent edges which may target any node within the genotype. When a RCGP graph

is evaluated, its nodes are evaluated moving ‘left to right’ from inputs to outputs. In doing

this, edges which connect to nodes later in the network gain access to those nodes’ previous

164

7.1 Introduction

computed state, therefore providing these individuals with a form of memory similar to that

of Function Graphs (FGs) as set out in Chapter 4. When an edge is mutated in RCGP, with

probability prec it may be directed to point anywhere, whereas with probability 1− prec it is

directed to point to a node earlier in the ordering. As the reader will see, these basic ideas

will form the inspiration of this chapter where the distinctions between our proposed work

and RCGP will be discussed later in it.

In this chapter, we discriminate between non-recurrent and recurrent edges, and thereby

gain access to a rich set of behaviours. For example, it becomes possible for such a program

to compose many functions together over its previous state, by first accessing the previous

state with recurrent edges, and then computing over this space with non-recurrent edges.

However, the evolution of these RFGs is less straightforward than with the AFGs we have

seen in Chapters 5 and 6. For an RFG to have well-defined semantics, it remains the case

that the subgraph induced by non-recurrent edges must be acyclic. It is the recurrent edges

in the RFG that may form cycles, either through non-recurrent edges or recurrent edges.

We therefore design genetic operators capable of handling both the preservation of acylic-

ity over non-recurrent edges, and the possibility of cycles over recurrent edges. It is this

resultant system that we refer to as R-EGGP. To evaluate our proposed approach, we draw

empirical comparisons with RCGP. We find that R-EGGP generally outperforms RCGP when

synthesising various digital counters, mathematical sequences and n-bit parity checks that

generalise.

This chapter is arranged as follows. In Section 7.2 we describe a P-GP 2 program for ini-

tialising RFGs which can be parameterised with recurrent edge probability prec. In Section

7.3 we give two mutation operators which allow for appropriate manipulation of RFGs. We

compare our approach to RCGP in Section 7.4. We describe experiments for synthesising

digital counters in Section 7.5 and present results from those experiments in Section 7.6.

We describe experiments for synthesising famous mathematical sequences in Section 7.7 and

present results from those experiments in Section 7.8. Section 7.9 describes our final ex-

periments, where we synthesise n-bit parity checks that generalise, with results presented in

Section 7.10. Finally, we conclude our findings in Section 7.11.

165

7 Evolving Recurrent Graphs by Graph Programming

"INPUT":0
i0

"ID"
v1

"ID"
v2

"MAX"
v3

"MUL"
v4

"ADD"
v5

"OUTPUT":0
o0

0:0

0:10:0

1:1

0:0

1:1

1:0

1:0

0:0

Figure 7.1: A simple RFG generating the Fibonacci sequence that has weights and biases

that are effectively ignored. The information with respect to edge weight and

node bias are therefore not shown.

7.2 Initialisation

As we did with AFGs in Section 5.2, in this section we set out a simple initialisation procedure

given as a pair Init, S where Init is a P-GP 2 program which, when applied to initial graph

S, generates RFGs suitable to the target problem.

In this chapter we deal with a simplified set of RFGs. The RFGs handled here have the

following properties:

1. All edge weights and function node biases are assumed to be equal to 1 and are effec-

tively ignored during execution.

2. All functions are assumed to ignore the values coming in from the bias of each function

node.

3. Edges from output nodes are non-recurrent.

We return to the Fibonacci sequence generating RFG shown in Figure 7.1, which we dis-

166

7.2 Initialisation

Main := ([add_node_fx | fx ∈ F]; [connect_node, connect_node_rec]!; unmark_node!)!;

(pick_loop; [pick_target]; {expand_loop, expand_edge})!;
[connect_output]!; remove_counter

connect_node(a,b:list;

s:string; x:int)[1-prec]

a:x
1

s:b
2

a:x
1

s:b
2

0:outdeg(1)

where s != "OUTPUT" and outdeg(1) < x

connect_node_rec(a:list; x:int)[prec]

a:x
1

a:x
1

1:outdeg(1)

where outdeg(1) < x

unmark_node(a:list; x:int)

a:x
1

a
1

pick_loop(a,b:list)

a
1
b

a
1
b

pick_target(a:list; s:string)

s:a
1

s:a
1

where s != "OUTPUT"

expand_loop(a,b:list)

a
1
b

a
1
b

expand_edge(a,b,c:list)

a
1

b
2

c a
1

b
2

c

connect_output(a,b:list;

s:string; i:int)

"OUTPUT":i
1

s:b
2

"OUTPUT":i
1

s:b
2

0

where outdeg(1) < 1

remove_counter(a:list)

a
1

Figure 7.2: A program for generating our RFGs. This program is also parameterised by

probability prec, which determines the likelihood of creating recurrent edges.
167

7 Evolving Recurrent Graphs by Graph Programming

cussed in Section 4.2.3. Each edge label is a pair of integers a:b where a determines whether

the edge is recurrent (a = 1) or non-recurrent (a = 0) and b is the ordering of the edge. As

a reminder of how such RFGs are executed, we give the trace execution of this RFG when

driven with the input 1:

Time i0 v1 v2 v3 v4 v5 o0 Description

−1 − 0 0 0 0 0 − Initial state.

0 1 1 0 1 0 1 1 Fib(0)

1 1 1 1 1 0 1 1 Fib(1)

2 1 1 1 1 1 2 2 Fib(2)

3 1 1 1 2 1 3 3 Fib(3)

4 1 1 1 3 2 5 5 Fib(4)

5 1 1 1 5 3 8 8 Fib(5)

6 1 1 1 8 5 13 13 Fib(6)

. . .

(7.1)

Figure 7.2 shows our initialisation program, which is parameterised with probability prec

which determines the rate at which recurrent edges are added. This program generally

functions in the same manner as the initialisation procedure of EGGP. However, we have

replaced the probabilistic rule call

[connect_node],

with the probabilistic rule-set call

[connect_node, connect_node_rec].

The weight associated with connect_node is 1 − prec; this rule functions as normal and

simply gradually grows an acyclic subgraph of non-recurrent edges. The weight associated

with connect_node_rec is prec; this rule stores recurrent edges as red marked loops which are

expanded after all function nodes have been created. Once all nodes have been added, these

red marked loops are expanded. In the next loop, the rule pick_loop is called, identifying

one of these loops and marking it green. This rule ensures that this loop terminates; once all

red marked loops have been expanded, it will have no matches. We pick a target uniformly

at random across all non-input nodes with the rule pick_target, and uniquely identify that

target node by inserting a blue loop. Then either the rule expand_loop removes the green

marking from the stored edge and deletes the blue loop (if both are attached to the same

168

7.3 Mutation

node), or the rule expand_edge deletes both loops and creates an edge from the source of

the stored loop to the chosen target, which is labelled with the same label as the stored loop.

These rules effectively expand the stored edge to point to the chosen target, regardless of

whether that target is the same node as the source of the stored recurrent edge.

Overall, the program’s semantics can be seen to add randomly chosen function nodes until

the number of function nodes equals the amount specified by the input graph. Each function

node is randomly connected to previously added function nodes and input nodes by non-

recurrent edges with probability 1− prec, or acquires stored recurrent edges with probability

prec. Once all nodes have been added, the stored recurrent edges are expanded to point

to random, non-output, nodes in the graph. Then, output nodes are connected at random

to the rest of the graph via non-recurrent edges. Finally, the node specifying the number of

function nodes to add is removed. As with EGGP, we expect the input graph to this program

to consist of the following:

1. For each input associated with the problem, there exists an input node.

2. For each output associated with the problem, there exists an output node.

3. A node, marked blue and labelled "NODES":x where x ∈ N0 specifies the number of

function nodes to add.

7.3 Mutation

To mutate our RFGs, we modify the existing EGGP mutation operators. Conveniently, the

function sets we use in our R-EGGP experiments consist only of nodes with arity 2. For

the purposes of this chapter, we reuse the node mutation operator described in Section 5.3.2

as the fixed arity ensures that node mutation will not modify the structure. However, it

would be straightforward to extend this operator to support creating both recurrent and

non-recurrent edges by following the general ideas we set out here.

In this section, we present 2 edge mutation operators; one mutates an edge to a non-

recurrent edge preserving acyclicity (Section 7.3.1), the other mutates an edge to a recurrent

edge that is indifferent to acyclicity (Section 7.3.2). In principle, these can be combined into

a single operator with a probabilistic rule-set acting as a control construct. However, it may

be more convenient for the reader to see them as separate mutation operators, one called

with probability 1− prec and the other called with probability prec.

169

7 Evolving Recurrent Graphs by Graph Programming

Main := try ([[pick_edge, pick_loop]]; {mark_output_1, mark_output_2}!;
[mutate_edge, mutate_loop]; unmark!)

pick_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

pickloop(a,b:list)

a
1
b

a
1
b

mark_output_1(a,b,c:list)

a
1

c
2

0:b
a

1
c

2

0:b

mark_output_2(a,b,c:list)

a
1

c
2

0:b
a

1
c

2

0:b

mutate_edge(a,b,c,d:list;

s:string; r:int)

a
1

b
2

s:c
3

r:d

a
1

b
2

s:c
3

0:d

where s != "OUTPUT"

mutate_loop(a,b,c:list; s:string; r:int)

a
1

s:b
3

r:c a
1

s:b
3

0:c

where s != "OUTPUT"

unmark(a:list)

a
1

a
1

Figure 7.3: A program for mutating arbitrary edges in an RFG while preserving acyclicity

of the underyling subgraph induced by non-recurrent edges. The mutated edge

becomes non-recurrent and may target any (non-output) node.

170

7.3 Mutation

i i

o

This individual is to undergo an edge mutation

that mutates an edge to be a non-recurrent edge

and preserves acyclicity of the subgraph induced

by non-recurrent edge.

0

1

1

0 1

0

110

0

0

0

1

1

0

i i

o

(1) [[pick edge, pick loop]]:

An edge e to mutate is chosen at random and

marked (red) alongside its source node s (blue)

and target node t (red).

0

1

1

0 1

0

110

0

0

0

1

1

0

i i

o(2) {mark output 1, mark output 2}!:

Invalid candidate nodes for redirection are iden-

tified. If a node v has a directed path of non-

recurrent edges to s it is marked blue, as target-

ing it would introduce a cycle of non-recurrent

edges. In this case, this includes target node t.

0

1

1

0 1

0

110

0

0

0

1

1

0

i i

?

o
(3) [mutate edge, mutate loop]; unmark!:

The edge e is mutated to be a non-recurrent

edge targeting some randomly chosen unmarked

(non-output) node, preserving acyclicity of the

subgraph induced by non-recurrent edges. The

new target has been marked with a star ‘?’ for

visual clarity. Finally, all marks are removed.

0

1

1

0 1

00

10

0

0

0

1

1

0

Figure 7.4: A trace of the application of the non-recurrent edge mutation program in Fig-

ure 7.3. For visual simplicity, node labels have been omitted. Additionally, we

are omitting the ordering index component of edge labels; the integers shown

correspond to whether or not an edge is recurrent.

171

7 Evolving Recurrent Graphs by Graph Programming

7.3.1 Non-Recurrent Edge Mutation

We present a mutation operator which modifies our RFGs by picking uniformly at random

any edge and then mutating it so that it becomes a non-recurrent edge, while also preserving

the acyclicity of the subgraph induced by non-recurrent edges. This mutation operator is

given in Figure 7.3. This mutation operator is almost identical to that described in Section

5.3.1, except it may also match loops and that when inducing the set of all nodes with paths

to the source of the mutating edge, it only considers paths consisting of non-recurrent edges.

When an edge mutation is called, this program is applied with probability 1− prec. Recall

from Chapter 3 that the double square bracket syntax “[[r_1, ..., r_k]]” means ‘apply

this rule-set with a uniform distribution across all matches for all rules’. Then it is clear

that the initial rule-set call of the program uniformly chooses an edge to mutate at random,

marking that edge red. The source of the edge is marked blue and, unless the chosen

edge is a loop, the target of the edge is marked red. The call to rules mark_output_1 and

mark_output_2 then marks every node for which there exists a path of non-recurrent edges

from that node to the source of the chosen edge. The mark_output_2 rule accounts for the

fact that the chosen edge, in its current state, may be recurrent. Following from the logic

of Section 5.3.1, we know that we can mutate this edge to point to any unmarked node and

this will not introduce a cycle of non-recurrent edges. Finally, the probabilistic call to rules

mutate_edge and mutate_loop redirect the mutating edge to some new non-output target

node chosen uniformly at random, and the rule unmark returns the graph to an unmarked

state.

Hence we have a mutation operator that chooses any edge to mutate uniformly at random,

and redirects it so that it is a non-recurrent edge and that the graph does not contain any

cycles of non-recurrent edges.

We give an example execution of our mutation operator in Figure 7.4. For visual simplicity,

we do not show ordering relations, and instead only show recurrence relations on edges,

hence each edge is labelled with only 1 integer. Here, a recurrent edge is chosen by the

rule pick_edge. The application of the mark_output rules as long as possible marks all

nodes for which there is a path to the source of the chosen edge, including the target of

the chosen edge. Then the mutate_edge rule is applied, deleting the mutating edge and

creating a new, non-recurrent edge while preserving acyclicity of the subgraph induced by

non-recurrent edges.

172

7.3 Mutation

Main := try ([[pick_edge, pick_loop]]; [pick_target];

{mutate_edge_edge, mutate_edge_loop, mutate_loop_edge})

pick_edge(a,b,c:list; s:string)

s:a
1

c
2

b
s:a

1
c

2

b

where s != "OUTPUT"

pickloop(a,b:list)

a
1
b

a
1
b

pick_target(a:list; s:string)

s:a
1

s:a
1

where s != "OUTPUT"

mutate_edge_edge(a,b,c,d:list; r:int)

a
1

b
2

c
3

r:d

a
1

b
2

c
3

1:d

mutate_edge_loop(a,b,c:list; r:int)

a
1

b
2

r:c

a
1

b
2

1:c

mutate_loop_loop(a,b,c:list; r:int)

a
1

b
3

r:c

a
1

b
3

1:c

Figure 7.5: A program for mutating arbitrary edges in an RFG. The mutated edge becomes

recurrent and may target any (non-output) node.

173

7 Evolving Recurrent Graphs by Graph Programming

i i

o

This individual is to undergo an edge mutation

that mutates an edge to be a recurrent edge.

0

1

1

0 1

0

110

0

0

0

1

1

0

i i

o

(1) [[pick edge, pick loop]]:

An edge e to mutate is chosen at random and

marked red and its target t is marked blue. In

this case, the chosen edge is a loop.

0

1

1

0 1

0

110

0

0

0

1

1

0

i i

o

(2) [pick_target]:

A new target node t′ is chosen uniformly at ran-

dom from the nodes which are not t and not

outputs. A blue marked loop is added to t′.

0

1

1

0 1

0

110

0

0

0

1

1

0

i i

?

o(3) {mutate edge edge, mutate edge loop

mutate loop edge}:
The edge e is mutated to be a recurrent edge tar-

geting t′. The new target has been marked with

a star ‘?’ for visual clarity. Finally, all marks are

removed.

0

1

1

0 1

0

110

0

0

0

1

1

0

Figure 7.6: A trace of the application of the recurrent edge mutation program in Figure 7.5.

For visual simplicity, node labels have been omitted. Additionally, we are omitting

the ordering index component of edge labels; the integers shown correspond to

whether or not an edge is recurrent.

174

7.3 Mutation

7.3.2 Recurrent Edge Mutation

We present a mutation operator which modifies our RFGs by uniformly picking any edge and

then mutating it so that it becomes a recurrent edge. This transformation is indifferent to

acyclicity of the graph. Our mutation operator is given in Figure 7.5. While it may require

more rules, this mutation operator is conceptually simpler than the one discussed in Section

7.3.1; the additional rules handle permutations of loops and edges.

When an edge mutation is called, this program is applied with probability prec. Again,

recall from Chapter 3 that the double square bracket syntax “[[r_1, ..., r_k]]” means

‘apply this rule-set with a uniform distribution across all matches for all rules’. Then the

initial probabilistic rule-set call of the program picks any edge or loop uniformly at random,

marking the edge red and its target blue. There is one exception to allowed matches; the

source must not be an output, as seen in the condition of pick_edge, as we have previously

stated that we do not want out outputs to have recurrent edges. However, this can be relaxed

if desired. After an edge to mutate has been chosen, the rule pick_edge is probabilistically

applied, picking some non-output non-blue node, and adding a blue unlabelled loop to that

node. This rule chooses the new target of our mutating edge, making exceptions for output

nodes and the current target of the mutating edge. Note that it can in principle choose

the source of the mutating edge, as long as the mutating edge is not a loop. The three

rules, mutate_edge_edge, mutate_edge_loop and mutate_loop_edge, describe the three

permutations of mutations now possible. By applying one of these rules, we redirect the

mutating edge to target the chosen target, and the mutating edge becomes a recurrent edge.

Hence we have a mutation operator that picks an edge uniformly at random, as long as the

source of that edge is not an output node. This edge is redirected so that it is a recurrent

edge that does not target its previous target node or an output node.

We give an example execution of our mutation operator in Figure 7.6. For visual simplicity,

we do not show ordering relations, and instead only show recurrence relations on edges,

hence each edge is labelled with only 1 integer. Here, a recurrent loop is chosen by the rule

pick_loop. The application of pick_target chooses a new target for the loop. Then the

mutate_loop_edge rule is applied, deleting the mutating edge and creating a new, recurrent

edge targeting the chosen target.

175

7 Evolving Recurrent Graphs by Graph Programming

7.4 Comparison with Recurrent Cartesian Genetic Programming

In this section we compare our approach to RCGP. We claim that R-EGGP strictly generalises

the landscape of RCGP, just as we claimed that EGGP strictly generalises the landscape of

standard CGP in Section 5.6.1. From Section 5.6.1 we know that the non-recurrent edge

mutations we use here are strict generalisations of the non-recurrent edge mutations used in

RCGP. However, as recurrent edge mutations allow edges to target any node in the graph,

it may be the case that the neighbourhoods lost by order-preserving mutations are still

available via recurrent edge mutations that happen to preserve acyclicity. It is also clear that

any recurrent mutation in RCGP may be replicated with a recurrent mutation in R-EGGP.

We recall the execution of a RCGP individual from [241]:

1. Set all active nodes to output zero.

2. Apply the next set of inputs.

3. Update all active nodes once from inputs to outputs and read the outputs.

4. Repeat from 2 until all input sets have been applied.

It is clear from this that there is no way to describe a pair of nodes both of which access

each others’ previous state. The reason for this is that ‘recurrent’ mutations in RCGP do not

explicitly induce recurrent behaviour; instead they may create cycles which, in combination

with the ordering imposed on nodes, leads to recurrent behaviour. However we can express

such a solution as an RFG as shown in Figure 7.1, where there exists a cycle of recurrent

edges between the MAX, ADD and MUL nodes.

Not only do we have access to solutions which may not be directly expressed in RCGP, we

also clearly have access to additional mutations. Consider a solution which is expressible in

RCGP where there exists a pair of nodes, v1, v2, and an edge, v1 → v2. If we assume that

v2 appears later in the ordering than v1, then this edge exhibits recurrent behaviour. It is

impossible in RCGP for one of v2’s edges to mutate to target v1 and for both edges to exhibit

recurrent behaviour. However, this is possible in R-EGGP by a recurrent edge mutation.

Hence we have that R-EGGP can express any mutations available in RCGP. We also have

that there are solutions which can be expressed in R-EGGP which can not be expressed in

RCGP, and that there are mutations available in R-EGGP that transform solutions which

can be expressed in RCGP into solutions which can not. Therefore R-EGGP generalises the

landscape of RCGP with respect to both available solutions and available mutations.

176

7.5 Digital Counter Experiments

7.5 Digital Counter Experiments

We investigate R-EGGP’s ability to learn digital counters. These are a class of stateful digital

circuits which have fixed behaviour and need not be evaluated on different input sequences,

which greatly simplifies their evaluation and makes them very practical for benchmarking.

We investigate 2 classes of counter, both of which we will assume are driven with a signal 1.

The first class, ring counters, count according to a one-hot encoding. For example, the 3-bit

ring counter has trace given by

Time i0 o0 o1 o2

1 1 1 0 0

2 1 0 1 0

3 1 0 0 1

4 1 1 0 0

5 1 0 1 0

6 1 0 0 1

7 1 1 0 0

8 1 0 1 0

9 1 0 0 1

(7.2)

The second class of digital counters, Johnson counters, are similar to ring counters, except

that they circulates strings of 1s, rather than a single 1. The 3-bit Johnson counter has trace

given by

Time i0 o0 o1 o2

0 1 0 0 0

1 1 1 0 0

2 1 1 1 0

3 1 1 1 1

4 1 0 1 1

5 1 0 0 1

6 1 0 0 0

7 1 1 0 0

8 1 1 1 0

9 1 1 1 1

(7.3)

.

177

7 Evolving Recurrent Graphs by Graph Programming

Digital Circuit Number of Inputs Number of Outputs

3-bit ring counter (3-RC) 1 3

4-bit ring counter (4-RC) 1 4

5-bit ring counter (5-RC) 1 5

6-bit ring counter (6-RC) 1 6

3-bit Johnson counter (3-JC) 1 3

4-bit Johnson counter (4-JC) 1 4

5-bit Johnson counter (5-JC) 1 5

6-bit Johnson counter (6-JC) 1 6

Table 7.1: Digital counter benchmark problems.

We study 3, 4, 5 and 6 bit instantiations of each class of counter. A full listing of our

benchmark problems is given in Table 7.1.

To evaluate a candidate solution we consider the sequence of outputs in comparison to

the target sequence, following [242]. We run our circuits for 100 time steps. The fitness is

initially 100, and is decremented by 1 for every correct output the candidate makes until it

makes a mistake. By correct output, we mean the entire n-bit output, rather than comparing

individual bits of the output. Once the candidate has made a mistake, any further correct

predictions decrement the fitness by 0.01. This encourages circuits to generate correct se-

quences and provides a gradient which rewards early correct predictions over later correct

predictions. This is particularly useful in the problems we study here, as simply measuring

the fitness by the overall number of correct predictions induces some unhelpful local optima.

For example, a candidate for a 3-bit ring counter problem can output ‘100’ at every time step

and achieve a fitness of 66.

We compare to RCGP where, across all problems, we use the function set

{AND,OR,NAND,NOR}. (7.4)

As digital counters are a new class of benchmark problems, we therefore have to propose

appropriate parameters for both algorithms. For both R-EGGP and RCGP, we use a fixed

50 node representation, the 1 +λ EA with λ = 4 and a recurrent edge probability prec = 0.1.

With R-EGGP, we use a mutation rate of 0.02, which is a simple re-scaling of the mutation

rate used in Section 6.3 to match the reduced size. We attempted to apply the same logic with

178

7.6 Digital Counter Results

R-EGGP RCGP

Problem ME IQR ME IQR p A

3-RC 2,683 2,105 3,495 3,263 0.01 -

4-RC 7,875 7,433 13,930 12,383 10−9 0.74

5-RC 20,850 17,683 42,268 28,110 10−14 0.81

6-RC 56,510 45,023 155,878 135,965 10−21 0.89

3-JC 12,995 11,898 18,135 17,280 10−3 0.63

4-JC 44,163 37,765 75,378 97,943 10−6 0.69

5-JC 104,513 94,438 211,318 207,130 10−10 0.75

6-JC 213,958 177,330 446,180 399,185 10−14 0.82

Table 7.2: Results from Digital Counter benchmarks for RCGP and R-EGGP. The p value is

from the two-tailed Mann–Whitney U test. Where p < 0.05
8 , the effect size from

the Vargha–Delaney A test is shown; large effect sizes (A > 0.71) are shown in

bold.

RCGP (i.e. a mutation rate of 0.08) but, through some trial-and-error, found a mutation rate

of 0.05 to be preferable. We run each algorithm on each problem 100 times to sample data

points. We set a maximum generation cap of 20, 000, 000 but this is never reached as every

run is successful. For RCGP experiments, we use the publicly available implementation [243].

7.6 Digital Counter Results

The results of our Digital Counter experiments are given in Table 7.2. For each approach

and on each problem, we list the MEs required to solve the problem and IQR in evaluations.

We test for statistical significance with the two-tailed Mann–Whitney U test producing the

p values shown. Where p < 0.05
8 , the effect size from the Vargha–Delaney A test is shown;

large effect sizes (A > 0.71) are shown in bold.

Overall, we see that R-EGGP requires fewer evaluations (measured by median) than RCGP

on all problems. For every problem except the easiest problem, the 3-bit ring counter (3-

RC), we find that the differences are statistically significant (p < 0.05
8). For 5 of these 7

significant results, we observe a large effect size (A > 0.71). Only on the easiest ring counter

and the two easiest Johnson counter problems (3-RC, 3-JC, 4-JC) do we not see a large effect

179

7 Evolving Recurrent Graphs by Graph Programming

Figure 7.7: Box-plots with data overlayed for the following symbolic regression problems; (A)

6-bit Ring Counter (6-RC), (B) 6-bit Johnson Counter (6-JC). Overlayed data is

jittered for visual clarity.

size. From these results we can conclude that R-EGGP can significantly outperform RCGP

under comparable conditions on stateful digital circuit synthesis tasks. As we observed with

the EGGP digital circuit benchmark problems, we see the p values decreasing and A values

increasing as the difficulty of the task increases, suggesting that in particular R-EGGP scales

better to harder problems than RCGP. We give box-plots of results for the 6-bit ring counter

(6-RC) and 6-bit Johnson counter (6-JC) in Figure 7.7.

180

7.7 Mathematical Sequence Experiments

Mathematical Sequence No. Inputs No. Outputs First 5 Elements

Fibonacci Sequence (Fib) 1 1 1, 1, 2, 3, 5

Hexagonal Numbers (Hex) 1 1 1, 6, 15, 28, 45

Lazy Caterers (Laz) 1 1 1, 2, 4, 7, 11

Table 7.3: Mathematical sequence benchmark problems.

7.7 Mathematical Sequence Experiments

We also study R-EGGP’s ability to synthesise some famous mathematical sequences. Again,

these problems have fixed behaviour which greatly simplifies their evaluation thereby making

them practical for benchmarking. We study 3 famous Mathematical Sequences, taken from

[242]. These are the Fibonacci sequence, hexagonal number sequence and the lazy caterers

sequence. We assume that programs implementing each of these are driven with an input

signal of 1. Table 7.3 details these problems.

We use the same fitness function as in our digital counter experiments, initialising the fitness

equal to the sequence length and decrementing it by 1 for every successful prediction followed

by 0.01 for every successful prediction after a mistake was made. The Fibonacci sequence

is evaluated for a sequence length of 501, whereas the other 2 problems are evaluated for a

sequence length of 100.

We replicate the experimental conditions used in [242] using the function set

{+,−,×,÷}, (7.5)

where our division operator ÷ need not be protected as a NaN output is simply an incorrect

prediction.

For both algorithms, we use a fixed 20 node representation and the 1 + λ EA with λ = 4.

The probability of creating recurrent edges is set prec = 0.1, and the mutation rate is set

to 0.05. We run each algorithm on each problem 100 times to sample data points. We set

a maximum generation cap of 20, 000, 000 but, as with the Digital Counter Experiments,

this is never reached as every run is successful. For RCGP experiments, we use the publicly

available implementation [243].

1We ran into some problems with integer overflows at the 100th element of the Fibonacci sequence.

181

7 Evolving Recurrent Graphs by Graph Programming

R-EGGP RCGP

Problem ME IQR ME IQR p A

Fib 6,513 13,033 6,275 14,935 0.99 -

Hex 8,158 14,903 16,988 37,715 10−3 0.62

Laz 11,063 24,943 10,605 34,315 0.78 -

Table 7.4: Results from mathematical sequence benchmarks for RCGP and R-EGGP. The p

value is from the two-tailed Mann–Whitney U test. Where p < 0.05
3 , the effect size

A from the Vargha–Delaney A test is shown.

7.8 Mathematical Sequence Results

The results of our mathematical sequence experiments are given in Table 7.4. For each

approach and on each problem, we list the MEs required to solve the problem and the IQR

in evaluations. We test for statistical significance with the two-tailed Mann–Whitney U test

producing the p values shown. Where p < 0.05
3 , the effect size from the Vargha–Delaney A

test is shown.

Overall, we see relatively little difference in performance between R-EGGP and RCGP. On

2 of the problems, we see no statistical differences (p ≥ 0.05
3). On only 1 problem do we see a

statistical difference, the hexagonal numbers sequence problem (Hex), and on that problem

we do not see large effect (A ≤ 0.71).

These results have an interesting interaction with our symbolic regression results from

EGGP benchmarking in Section 6.7; we again see very few differences when comparing an

EGGP based approach to a CGP based approach on ‘symbolic’ problems. This again leads us

back to the discussion in Section 6.8 as to why this may be the case; these results appear to

reduce the credibility of the ‘bloat’ hypothesis as the overall representation size used in these

experiments is very small (20 nodes). However, the problems we are studying here are ones

of finding globally optimal solutions, rather than approximately optimal solutions within a

given budget, and that the problems here study a different class of graphs featuring recurrent

edges, we cannot discount that hypothesis entirely on the basis of these experiments.

182

7.9 Generalising n-bit Parity Check Experiments

7.9 Generalising n-bit Parity Check Experiments

In our final experiments for R-EGGP, we study the algorithm’s ability to learn n-bit parity

checking circuits that generalise. These are circuits which take in a sequence of n bits and

verify whether or not the input satisfies even or odd parity. For example, if the problem is

n-bit even parity, the circuit should return that the input is valid (1) if the input sequence

has an even number of 1s.

To train the circuits, we use 5 training bits. We consider each of the 25 unique 5-bit input

sequences and use a generalisation of the fitness function used before; we initialise the fitness

equal to the sum of sequence lengths and decrement it by 1 for every successful prediction

followed by 0.01 for every successful prediction after a mistake was made per sequence. This

is simply an extension to our earlier fitness function that supports multiple independent

sequences. Note that because we are checking the circuit’s outputs after 1, 2, 3, 4 and 5 bits

we are implicitly testing whether the learnt circuit correctly implements 1, 2, 3 and 4-bit

parity checks as well as 5-bit parity checks.

To test whether the circuit found by an evolutionary run generalises, we then test it on 14

test bits, considering each of the 214 unique 14-bit sequences. Again, because we are checking

the circuit’s outputs after 1, 2, . . . , 13 and 14 bits, we are implicitly checking if the circuit

correctly implements all parity checks with inputs of length 1 to 14. If the fitness at this

point is 0, we consider the solution to be generalised; it has been trained on 5-bit problems,

but generalises to at least 14-bit problems.

We refer to our even parity checking problem as n-EP and our odd parity checking problem

as n-OP. We use the function set

{AND,OR,NAND,NOR}, (7.6)

and use the same experimental conditions as in Section 7.5. For both R-EGGP and RCGP, we

use a fixed 50 node representation, the 1 +λ EA with λ = 4 and a recurrent edge probability

prec = 0.1. With R-EGGP, we use a mutation rate of 0.02 and for RCGP we use a mutation

rate of 0.05. We run each algorithm on each problem 100 times to sample data points. We

set a maximum generation cap of 20, 000, 000 but, as in experiments previously described,

this is never reached as every run is successful. For RCGP experiments, we use the publicly

available implementation [243].

As we will shortly see, we find both systems to be remarkably effective at solving these

problems. To artificially increase the difficulty of the task and thereby strengthen comparison,

183

7 Evolving Recurrent Graphs by Graph Programming

R-EGGP RCGP

Problem ME IQR SR ME IQR SR p A

n-EP 1,968 2,578 99% 2,735 4315 100% 10−3 0.61

n-OP 1,980 2,495 98% 2,700 3513 99% 0.06 -

n-EPh 3,080 3,633 99% 4,228 4,930 100% 10−3 0.62

n-OPh 2,098 1,925 99% 3,678 4,493 97% 10−6 0.70

Table 7.5: Results from generalising n-bit parity check benchmarks for RCGP and R-EGGP.

The p value is from the two-tailed Mann–Whitney U test. Where p < 0.05
4 , the

effect size A from the Vargha–Delaney A test is shown.

we also use the (h)arder function set

{OR,NOR}, (7.7)

and refer to the problems in which they are used as n-EPh and n-OPh respectively.

7.10 Generalising n-bit Parity Check Results

The results from our generalising n-bit parity checking experiments are given in Table 7.5.

We list the MEs required to solve the problem and the IQR in evaluations. We also give

the generalisation success rate (SR) of each algorithm, which is the proportion of runs in

which the found solution perfectly generalised to 14-bit sequences. We test for statistical

significance with the two-tailed Mann–Whitney U test producing the p values shown. Where

p < 0.05
4 , the effect size from the Vargha–Delaney A test is shown.

We find that on 3 of the problems (n-EP, n-EPh and n-OPh) R-EGGP found solutions more

quickly than RCGP with respect to evaluations used (measured by median) with statistical

significance (p < 0.05
4). On 1 problem, n-OP, we see lower MEs used but without statistical

significance. In no problems do we see a large effect size. From these results we can infer that

R-EGGP is in general more effective than RCGP at synthesising generalising n-bit parity

checks, although on the problems studied the difference in performance is not large.

It is interesting to examine the rate of successful generalisation of solutions found by both

algorithms. On all problems, the success rate (SR) was close to 100%. There are no significant

differences between SRs, but it is interesting to see that both algorithms are capable of finding

184

7.11 Conclusions and Future Work

n-bit parity checks which generalise to bit sequences longer than those they were trained on.

7.11 Conclusions and Future Work

In this chapter we have presented R-EGGP. We have presented an initialisation procedure

which generates RFGs and parameterised by probability prec which controls the rate of recur-

rent edges in the initial solution. We have also given two edge mutations, one which mutates

an edge to be non-recurrent while maintaining the acyclicity of the subgraph induced by

non-recurrent edges, and the other which mutates an edge to be recurrent.

We have extensively compared R-EGGP to RCGP on various benchmark problems. On

digital counter synthesis problems, we found that R-EGGP significantly outperforms RCGP

on many problems, particularly the most difficult problems. On mathematical sequence

synthesis problems, we found few statistical differences, but did observe that R-EGGP signif-

icantly outperforms RCGP on one problem. On three of the n-bit parity problems, we found

that R-EGGP significantly outperforms RCGP.

Overall, we have described and rigorously evaluated an approach for evolving RFGs which

has genetic operators described as P-GP 2 programs. We have found that this technique

can effectively learn solutions to a variety of recurrent program synthesis tasks and often

outperforms RCGP. In particular we have seen that R-EGGP can synthesise recurrent digital

circuits which generalise to solve problems they were not trained on.

There are a number of areas for future work on R-EGGP. Firstly, in our experiments

we have fixed the rate of recurrent edges prec = 0.1. It would be interesting to carry out

experiments varying this parameter. We expect that increasing prec would lead to a larger

solution size, as recurrent edges may add entire new subgraphs to the active component.

Whether this helps or hinders the evolutionary process is a matter for empirical analysis.

Interesting behaviour occurs at the two extremes of parameterisation of prec. When prec =

0, R-EGGP is equivalent to EGGP. However, when prec = 1, then all constraints of acyclicity

of the individual are removed. This leads to some interesting insights, for example that the

initialisation procedure might be viewed as a variant of the directed random graph model

from Section 3.3.4 with a fixed degree sequence (see [159]). Observations such as this may

then yield new understanding of the biases of initialisation. R-EGGP with prec = 1 may be

used as a model of of search in many interesting domains, for example, in the search for a

topology of an echo state network [108] or a random Boolean network [211].

185

8 Evolving Graphs with Semantic Neutral

Drift

Abstract

We introduce the concept of Semantic Neutral Drift (SND) for Evolving Graphs by Graph

Programming (EGGP), where we exploit equivalence laws to design semantics-preserving mu-

tations guaranteed to preserve individuals’ fitness scores. A number of digital circuit bench-

mark problems are implemented with rule-based graph programs and empirically evaluated,

demonstrating quantitative improvements in evolutionary performance. Analysis reveals that

the benefits of the designed SND reside in more complex processes than simple growth of

individuals, and that there are circumstances where it is beneficial to choose otherwise detri-

mental parameters for a Genetic Programming (GP) system if that facilitates the inclusion

of SND.

Relevant Publications

Content from the following publications is used in this chapter:

[11] T. Atkinson, D. Plump, and S. Stepney, “Evolving graphs with semantic neutral

drift,” Natural Computing, 2019.

187

8 Evolving Graphs with Semantic Neutral Drift

8.1 Introduction

In Genetic Programming (GP) the ability to escape local optima is key to finding globally

optimal solutions. Neutral drift, a mechanism whereby individuals with fitness-equivalent

phenotypes to the existing population may be generated by mutation [72] offers the search

of new neighbourhoods for sampling thus increasing the chance of leaving local optima. A

number of studies on neutrality in Cartesian Genetic Programming (CGP) [156,244,251] find

it to be an almost always beneficial property for studied problems. In general, comparative

studies [155] find that CGP using only mutation and neutral drift is able to compete with

traditional Tree-Based GP (TGP) which uses more familiar crossover operators (see [129]) to

introduce genetic variation.

A distinction has been made [244] between implicit neutral drift, where a genetic operator

yields a semantically equivalent child, and explicit neutral drift, where a genetic operator

only modifies intronic code. We note that many comparative studies largely focus on the

role of both types of neutral drift as byproducts of existing genetic operators and neutrality

within the representation [19,156,244,251] rather than as deliberately designed features of an

evolutionary system. We propose the opposite; to employ domain knowledge of equivalence

laws to specify mutation operators on the active components of individuals which always

induce neutral drift. Hence our work can be viewed as an attempt to explicitly induce

additional implicit neutral drift in the sense of [244].

We build on our approach, Evolving Graphs by Graph Programming (EGGP), by im-

plementing semantics-preserving mutations to directly achieve neutral drift on the active

components of individual solutions. Here, we implement logical equivalence laws as muta-

tions on the active components of candidate solutions to digital circuit problems to produce

semantically equivalent, equally fit, children. While our semantics-preserving mutations pro-

duce semantically equivalent children they do not guarantee preservation of size; our fitness

measures evaluate semantics only, not, for example, size or complexity.

We describe and implement Semantic Neutral Drift (SND) straightforwardly by using rule-

based graph programs in P-GP 2. This continues from Chapter 5 where we use P-GP 2 to

design acyclicity-preserving edge mutations for digital circuits that correctly identify the set

of all possible valid mutations. The use of P-GP 2 here enables concise description of complex

transformations such as De Morgan’s laws by identifying and rewriting potential matches for

these laws in the existing formalism of graph transformation. This reinforces the notion

that the direct encoding of solutions as graphs is useful as it allows immediate access to the

188

8.1 Introduction

phenotype of individual solutions and makes it possible to design complex mutations by using

powerful algorithmic concepts from graph programming.

We investigate four sets of semantics-preserving mutations for digital circuit design, three

built upon logical equivalence laws and a fourth taken from term-graph rewriting. We run

EGGP with each rule-set on a set of benchmark problems and establish statistically significant

improvements in performance for most of our visited problems. An analysis of our results re-

veals evidence that it is the semantic transformations, beyond simple ‘neutral growth’, which

are aiding performance. We then combine our two best performing sets of mutation operators

and evaluate this new set under the same conditions, achieving further improvements. We

also provide evidence that, although operators implementing semantics-preserving mutations

may be more difficult to use, the inclusion of those semantics-preserving mutations may allow

evolution to out-perform equivalent processes that use ‘easier’ operators.

The rest of this chapter is organised as follows. In Section 8.2 we review existing literature

on neutral drift in GP. In Section 8.3 we describe our extension to EGGP where we incor-

porate deliberate neutral drifts into the evolutionary process. In Section 8.4 we describe our

experimental setup and in Section 8.5 we give the results from these experiments. In Section

8.6 we provide in-depth analysis of these results to establish precisely what components of our

approach are aiding performance. In Section 8.7 we conclude our work and propose potential

future work on this topic.

189

8 Evolving Graphs with Semantic Neutral Drift

8.2 Neutrality in Genetic Programming

Neutral drift remains a controversial subject in Evolutionary Computation, see [72] for a

survey on this matter. Here, we focus on neutrality in the context of GP as the most relevant

area to our own work; there is also literature on, for example, Genetic Algorithms (GAs) [93]

and landscape analysis [20].

The process of neutral drift might be described as the mutation of individual candidate

solutions to a given problem without advantageous or deleterious effect on their fitness. This

exposes the Evolutionary Algorithm (EA) to a fitness ‘plateau’ with each fitness-equivalent

individual offering a different portion of the landscape to sample. Neutral drift can be viewed

as random walks on the neighbourhoods of surviving candidate solutions. In a system with

neutral drift, an apparently local optimum might be escaped by ‘drifting’ to some other

fitness-equivalent solution that has advantageous mutations available to it.

The most apparent demonstration of neutral drift in GP literature occurs in CGP [157],

where individuals encode directed acyclic graphs; some portion of a genome may be ‘inactive’,

contributing nothing to the phenotypic fitness, because it represents a subgraph that is not

connected to the phenotype’s main graph. These inactive genes can mutate without influenc-

ing an individual’s fitness and then, at some later point, may become active. Early work on

CGP has found that by allowing neutral drift to take place (by choosing a fitness-equivalent

child over its parent in the 1 + λ algorithm), the success rate of experiments significantly

improves [251]. A later claim that neutrality in CGP aids search in needle-in-haystack prob-

lems [266] has been contested by a counter-claim that better performance can be achieved by

random search [43]. It has been found that better performance can be achieved with neutral

drift enabled by increasing the amount of redundant material present in individuals [156].

Further, distinction has been established between explicit and implicit neutral drift [244].

Explicit neutral drift occurs on inactive components of the individual, whereas implicit neu-

tral drift occurs when active components of the individual are mutated but the fitness does

not change. The authors were able to isolate explicit neutral drift and demonstrate that it

offers additive benefits beyond those of implicit neutral drift.

Outside of CGP, [19] describes Linear Genetic Programming (LGP), where the results of

individual instructions may never be used. There are notable similarities between CGP and

LGP with respect to their representation of neutral code as unused elements of a list of

functions. In both approaches, unused material may undergo explicit neutral drift thereby

exposing the search process to new neighbourhoods. A study of evolvability in LGP [103]

190

8.2 Neutrality in Genetic Programming

found that neutrality cooperates with ‘variability’ (the ability of a system to generate phe-

notypic changes) to generate adaptive phenotypic changes which aid the overall ability of

the system to respond to the landscape. Recent work [104] studying the role of neutrality in

small LGP programs found that the robustness of a genotype (the proportion of its neigh-

bours within the landscape which are neutral changes) has a complex and non-monotonic

relationship with the overall evolvability of the genotype. A detailed discussion of the role of

neutrality in LGP can be found in [27].

In [54], binary decision diagrams are evolved with explicit neutral mutations. Although

those neutral mutations are not isolated for their advantages/disadvantages, a later work has

found that a higher rate of neutral drift on binary decision diagrams is advantageous [55].

Koza also makes some reference to the ideas we employ in Section 8.3 when he describes

the editing digital circuits by applying De Morgan’s laws to them [129, Ch.6]. A study of

neutrality in TGP for Boolean functions [247] found a correlation between using a more

effective function set and the existence of additional neutrality when using that function set.

While not directly related to neutrality, a number of investigations have been carried out

exploring the notion of semantically aware genetic operators to improve the locality of mech-

anisms such as crossover in TGP [162,168]. We refer the reader to the extensive survey [246]

on this field of research. Whereas neutrality is the process whereby phenotypically identical

and genotypically distinct individuals are visited by the evolutionary process, semantically

aware genetic operators attempt to produce phenotypically ’close’ individuals to improve the

locality of the search neighbourhood. It should be noted that employing semantically aware

genetic operators may sometimes lead to a loss of diversity [178]. It could be argued that

the deliberate neutral operators we propose in this work are a form of semantically aware

mutation operators designed to explicitly exploit neutrality.

Neutral drift has some parallels with work on biological evolution. Kimura’s Neutral Theory

of Molecular Evolution [127] posits that most mutations in nature are neither advantageous or

deleterious, instead introducing ‘neutral’ changes that do not affect phenotypes but account

for much of the genetic variation within species. While Kimura’s theory remains controversial

(see [87]), it corresponds to the notions of neutral mutation described in GP literature.

Throughout the literature we have covered, neutrality is mostly considered in the sense

of explicit neutral drift as defined in [244]. Conversely, in our work here we are focusing

on neutral drift on the active components of individual solutions with some relationship,

therefore, to the neutral mutations on binary decision diagrams in [54].

191

8 Evolving Graphs with Semantic Neutral Drift

8.3 Semantic Neutral Drift

8.3.1 The Concept

SND is the augmentation of an evolutionary system with semantics-preserving mutations.

These mutations are added to the standard mutation and crossover operators, which are

intended to introduce variation to search. In this section we refer to mutation operators

and individuals generally, not just our specific operation. For individual solutions, i, j, and

mutation operator, m, we write i →m j to mean that j can be generated from i by using

mutation m. A semantics-preserving mutation is one that guarantees that the semantic

meaning of a child generated by that mutation is identical to that of its parent, for any

choice of parents and a given semantic model. This definition is adequate for our domain of

GP, where there is no distinction between the genotype and phenotype.

For our digital circuits case study, this semantic equivalence is well-defined: two circuits

are semantically equivalent if they describe identical truth tables. Therefore, semantics-

preserving mutations in this context are ones which preserve an individual’s truth table. As

we will be evaluating individuals by the number of incorrect bits in their truth tables, there

may be individuals with equivalent fitness but different truth tables. Therefore, semantic

equivalence is distinct from, but related to, fitness equivalence.

Additionally, semantics-preserving mutations do not necessarily induce neutral drift. In the

circumstance that a fitness function considers more than the semantics of an individual, there

is no guarantee that the child of a parent generated by a semantics-preserving mutation has

equal fitness to its parent. For example, if a fitness function penalised the size of an individual,

a semantics-preserving mutation which introduces additional material (i.e. increases its size)

would generate children less fit than their parents under this measure.

We identify a special class of fitness functions, where fitness depends only on semantics,

and so where semantics-preserving mutations are guaranteed to preserve fitness. In this

circumstance, any use of semantics-preserving mutations is a deliberate, designed-in, form

of neutral drift. The fitness function in our case study is an example of this; the fitness

of an individual depends only on its truth table. Formally we have the following: a set of

semantics-preserving mutation operators, M , over search space, S, with respect to a fitness

function, f , that considers only semantics guarantees that

∀i, j ∈ S,m ∈M : (j →m i)⇒ (f(i) = f(j)).

Consider an evolutionary run that has reached a local optimum; no available mutations or

192

8.3 Semantic Neutral Drift

Figure 8.1: A simple visualisation of SND. Individuals exist in one dimension along the x-axis

with their associated fitness on the y-axis. Normal mutations (black arrows) allow

the EA to hill-climb by sampling from adjacent points. A semantics-preserving

mutation (red arrow) allows the EA to leave a local optimum to move to a different

slope where it can then climb to the global optimum.

crossover operators offer positive improvements with respect to the fitness function. It may

be the case that a solution exists elsewhere in the landscape that is equally fit but has a neigh-

bourhood with positive mutations available. By applying a semantics-preserving mutation

to transform the best found solution into this other, semantically equivalent, solution, the

evolutionary process gains access to this better neighbourhood to continue its search. Hence

the proposed benefit of SND is the same as conventional neutral drift: that by transforming

discovered solutions we gain access to different parts of the landscape that may allow the

population to escape local optima. The distinction here is that we are employing domain

knowledge to deliberately preserve semantics, rather than accessing neutral drift as a byprod-

uct of other evolutionary processes. We investigate the hypothesis that this deployment of

domain knowledge yields more meaningful neutral mutations than simple rewrites of intronic

code, and that this leads the EA to more varied, and therefore useful, neighbourhoods.

A simple visualisation of SND is given in Figure 8.1. Here the landscape exists in one

dimension, the x-axis, with fitness of individuals given in the y-axis. In this illustration, the

individual has reached a local optimum, then a semantics-preserving mutation moves it to a

193

8 Evolving Graphs with Semantic Neutral Drift

different ‘hill’ from which it is able to reach the global optimum.

While our experiments will focus on the role of SND when evolving graphs with EGGP,

we argue that the underlying concept is extendable to other GP systems. For example, Koza

noted the possibility of applying De Morgan’s laws to GP trees [129, Ch.6] which, if used in a

continuous process rather than as a solution optimiser, would induce SND. It is also plausible

to apply similar operators to CGP [157] representations, although the ordering imposed on

the representation raises some technical difficulties with respect to where newly created nodes

should be placed. The potential for Embedded CGP [253] to effectively grow and shrink the

overall size of the genotype offers some hope in this direction.

8.3.2 Designing Semantic Neutral Drift

We extend EGGP by applying semantics-preserving mutations to members of the popula-

tion each generation. We focus on digital circuits as a case study, and design mutations

which modify the individual’s active components by exploiting domain knowledge of logical

equivalence.

For the function set, {AND,OR,NOT}, there are a number of known logical equivalences.

Here we use De Morgan’s laws:

DeMorganF1: ¬(a ∧ b) = ¬a ∨ ¬b;
DeMorganF2: ¬(a ∨ b) = ¬a ∧ ¬b;
DeMorganR1: ¬a ∨ ¬b = ¬(a ∧ b);
DeMorganR2: ¬a ∧ ¬b = ¬(a ∨ b),

and the identity and double negation laws:

ID-ANDF : a = a ∧ a;

ID-ANDR: a ∧ a = a;

ID-ORF : a = a ∨ a;

ID-ORR: a ∨ a = a;

ID-NOTF : a = ¬¬a;

ID-NOTR: ¬¬a = a.

Here we investigate different subsets of these semantics-preserving rules. We encode them

as graph transformation rules to apply to the active component of an individual. In the

context of the 1+λ EA, we apply one of the rules from the subset to the surviving individual

of each generation.

194

8.3 Semantic Neutral Drift

Main := {mark_out, mark_active}!; mark_neutral!;

try [demorgan f1, demorgan f2, demorgan r1, demorgan r2];

remove_edge!; unmark_edge!; unmark_node!

mark out(a:list)

"OUTPUT":a
1

"OUTPUT":a
1

mark_active(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

mark neutral(a:list; s:string)

s:a
1

s:a
1

where s != "INPUT"

remove_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

unmark_edge(a,b,c:list)

a
1

c
2

b
a

1
c

2

b

unmark node(a:list)

a
1

a
1

demorgan_f1(a,b,c,d,e,f,g:list)

"NOT":1
1

"AND":2
2

f
3

g
4

a
5

b
6

c

d e

"OR":2
1

"AND":2
2

"NOT":1
3

"NOT":1
4

a
5

b
6

d e

Figure 8.2: A P-GP 2 program for performing semantics-preserving mutations to digital cir-

cuits.

Encoding these semantics-preserving rules is non-trivial for our individuals as they incor-

porate sharing; multiple nodes may use the same node as an input, and therefore rewriting

or removing that node, e.g. as part of De Morgan’s, may disrupt the semantics elsewhere

195

8 Evolving Graphs with Semantic Neutral Drift

in the individual. To overcome this, we need a more sophisticated rewriting program. The

graph program in Figure 8.2 is designed for the logical equivalence laws DeMorganF1|F2 and

DeMorganR1|R2; analogous programs are used for other operators. The program Main in

Figure 8.2 works as follows:

{mark out, mark active}! : Mark all active nodes with the given rule-set applied as long

as possible. Once this rule-set has no matches, all inactive nodes must be unmarked: these

are ‘neutral’ nodes that do not contribute to the semantics of the individual.

mark neutral! : Mark these neutral nodes grey with the rule applied as long as possible.

We can then rewrite the individual while preserving semantics with respect to shared nodes

by incorporating neutral nodes into the active component rather than overwriting existing

nodes.

try [demorgan f1, demorgan f2, demorgan r1, demorgan r2] : pick some rule with uni-

form probability from the subset of the listed rules that have valid matches. When a rule

has been chosen, a match is chosen for it from the set of all possible matches with uniform

probability. The probabilistic rule-set call is surrounded by a try statement to catch the fail

case that none of the rules have matches.

In Figure 8.2 we show one of the 4 referenced rules, demorgan f1, which corresponds to the

logical equivalence law DeMorganF1; the others may be given analogously. On the left hand

side is a match for the pattern ¬(a ∧ b) in the active component and 2 neutral nodes. If the

matched pattern were directly transformed, any nodes sharing use of the matches for node 2

or node 3 could have their semantics disrupted. Instead, the right-hand-side of demorgan f1

changes the syntax of node 1 to correspond to ¬a ∨ ¬b by absorbing the matched neutral

nodes (preserving the graph’s semantics) without rewriting nodes 1 or 2 and disrupting their

semantics. Nodes 3 and 4 are marked green and their newly created outgoing edges are

marked red. These marks are used later in the program to clean up any previously existing

outgoing edges they have to other parts of the graph.

remove edge: once a semantics-preserving rule has been applied, the rule is applied as long

as possible to remove the other outgoing edges of green marked absorbed nodes.

unmark edge!; unmark node!: return the graph to an unmarked state, where nodes and

edges with any mark (indicated by magenta edges and nodes in the rules) have their marks

removed.

This program highlights the helpfulness of graph programming for this task. The proba-

196

8.4 Digital Circuit Experiments

Set Rules

De Morgan (DM) DeMorganF1, DeMorganF2, DeMorganR1, DeMorganR2

De Morgan and

Negation (DMN)

DeMorganF1, DeMorganF2, DeMorganR1, DeMorganR2,

ID-NOTF , ID-NOTR

Identity (ID) ID-ANDF , ID-ANDR, ID-ORF , ID-ORR, ID-NOTF , ID-

NOTR

Collapse/Copy

(CC)

collapse1, collapse2, copy1, copy2

Table 8.1: The studied semantics-preserving rule-sets.

bilistic application of complex transformations, such as De Morgan’s law, to only the active

components of a graph-like program with sharing is non-trivial, but can be concisely described

by a graph program.

8.3.3 Variations on our approach

We identify 3 sets of logical equivalence rules to study, alongside another example of semantics-

preserving transformation taken from term-rewriting theory. These sets are detailed in Table

8.1. The first 3 sets comprise the logical equivalence laws already discussed. The last, CC,

refers to collapsing and copying from term graph rewriting (see [84]). Collapsing is the pro-

cess of merging semantically equivalent subgraphs, and copying is the process of duplicating

a subgraph.

The rules collapse2 and copy2 are shown in Figure 8.3. These collapse and copy, respec-

tively, function nodes of arity 2 without garbage collection. We only require rules for arity 1

and arity 2 as our function sets in experiments are limited to arity 2. This final set is included

for several reasons: it takes a different form from the domain-specific logical equivalence laws

in the other 3 sets; it allows us to investigate if the apparent overlap between term-graph

rewriting and EAs bears fruit; it appears to resemble gene duplication, which is a natural

biological process believed to aid evolution [267].

197

8 Evolving Graphs with Semantic Neutral Drift

copy_2(a,b,c,d,e,f,g,h,i,j:list; s:string)

a
1

s:2
2

b
3

j
4

h
5

i
6

c

f g

d

a
1

s:2
2

b
3

s:2
4

h
5

i
6

c

f g

d

collapse_2(a,b,c,d,e,f,g,h,i,j:list; s:string)

a
1

s:2
2

b
3

s:2
4

i
5

j
6

c

e g

d

f h

a
1

s:2
2

b
3

s:2
4

i
5

j
6

c

e g

d

f h

Figure 8.3: The rules copy 2 and collapse 2. The rule copy 2 matches a 2-arity function

node that is shared by 2 active nodes and absorbs a neutral node to effectively copy

that 2-arity function node and redirect one of the original node’s shared incoming

edges to that copy. The rule collapse 2 attempts the reverse of copy 2 by

matching 2 active identical 2-arity function nodes and redirecting one of those

nodes’ incoming edges to the other. The node which has lost an incoming edge,

if it was shared by no other nodes, may now become neutral.

198

8.4 Digital Circuit Experiments

Digital Circuit No.

Inputs

No.

Out-

puts

1-bit Adder (1-Add) 3 2

2-bit Adder (2-Add) 5 3

3-bit Adder (3-Add) 7 4

2-bit Multiplier (2-Mul) 4 4

3-bit Multiplier (3-Mul) 6 6

3:8-bit De-Multiplexer (DeMux) 3 8

4×1-bit Comparator (COMP) 4 18

3-bit Even Parity (3-EP) 3 1

4-bit Even Parity (4-EP) 4 1

5-bit Even Parity (5-EP) 5 1

6-bit Even Parity (6-EP) 6 1

7-bit Even Parity (7-EP) 7 1

Table 8.2: Digital circuit benchmark problems.

8.4 Digital Circuit Experiments

To evaluate our approach, we study a subset of digital circuit benchmark problems used

in Chapter 6, listed in Table 8.2. We perform 100 runs of each of our 4 neutral drift sets

(Table 8.1) on each problem (Table 8.2). We use the 1+λ EA with λ = 4. We use a mutation

rate of 0.01 and fix all individuals to use 100 function nodes. The fitness function used is the

number of incorrect bits in an individual’s truth table compared to the target truth table,

hence we are minimising the fitness. We are able to achieve 100% success rate in finding

global optima in our evolutionary runs, so we compare the number of evaluations required to

find perfect fitness.

The function set used here is {AND, OR, NOT}, rather than the set {AND, OR, NAND, NOR} used

in Chapter 5 and [155, Ch.2]. Our function set is chosen to directly correspond to the logical

equivalence laws used. To give context to the results in Section 8.5, and to highlight that

the chosen function set is the harder of the two, we run EGGP with both function sets and

detail the results in Table 8.3. For additional context, the comparative study in Chapter 6

has shown EGGP to perform favourably in comparison to CGP on these problems with the

199

8 Evolving Graphs with Semantic Neutral Drift

EGGP

Problem {AND, OR, NOT} {AND, OR, NAND, NOR}
ME IQR ME IQR p A

1-Add 15,538 18,963 7,495 8,764 10−7 0.71

2-Add 162,003 172,781 82,688 79,333 10−8 0.73

3-Add 742,948 679,040 309,570 288,865 10−16 0.83

2-Mul 21,733 28,319 14,263 13,801 10−4 0.65

3-Mul 1,326,880 907,544 932,430 643,529 10−6 0.68

DeMux 28,123 17,450 17,100 10,763 10−9 0.75

COMP 408,448 275,581 147,343 128,304 10−17 0.85

3-EP 7,403 8,051 4,295 5,500 10−4 0.66

4-EP 26,715 20,430 16,445 13,568 10−9 0.73

5-EP 76,608 57,518 42,778 29,454 10−10 0.75

6-EP 175,908 120,504 80,940 56,283 10−15 0.83

7-EP 380,600 237,965 157,755 118,065 10−19 0.87

Table 8.3: Baseline results from digital circuit benchmarks for EGGP on the {AND, OR, NOT}
and {AND, OR, NAND, NOR} function sets. ME/IQR: the median/inter-quartile range

of the number of evaluations used to solve the problem. The p value is from

the two-tailed Mann–Whitney U test. Where p < 0.05
12 , the effect size from the

Vargha–Delaney A test is shown; large effect sizes (A > 0.71) are shown in bold.

{AND, OR, NAND, NOR} function set.

We use a two-tailed Mann–Whitney U test to establish a statistically significant difference

between the median number of evaluations using the two different function sets. When a

result is statistically significant (p < 0.05
12) we also use a Vargha–Delaney A test to measure

the effect size. On every problem, using {AND, OR, NOT} takes significantly (p < 0.05
12) more

effort (in terms of evaluations) than when using {AND, OR, NAND, NOR}, and on all but the

easiest problems, the effect size is large (A > 0.71). This justifies our assertion that the

former function set is ‘harder’ to evolve.

200

8.5 Digital Circuit Results

Neutral Rule-set

Circuit DM DMN ID CC

ME p A ME p A ME p A ME p A

1-Add 8,950 10−7 0.72 9,893 10−5 0.68 9,093 10−7 0.71 8,275 10−7 0.72

2-Add 65,692 10−14 0.81 49,200 10−21 0.88 73,275 10−12 0.79 103,393 10−5 0.68

3-Add 255,003 10−19 0.87 186,647 10−25 0.93 279,140 10−18 0.86 592,815 0.09 –

2-Mul 19,853 0.36 – 16,680 0.01 – 13,312 10−7 0.71 19,995 0.29 –

3-Mul 955,418 10−3 0.63 678,403 10−11 0.77 591,748 10−22 0.89 975,558 10−4 0.65

DeMux 19,633 10−5 0.68 16,678 10−12 0.79 29,700 0.59 – 19,098 10−5 0.67

COMP 542,290 10−3 0.63 453,730 0.44 – 298,758 10−4 0.66 576,263 10−4 0.64

3-EP 6,283 0.05 – 5,248 10−3 0.61 5,990 10−3 0.61 5,860 0.08 –

4-EP 23,828 0.06 – 20,278 10−5 0.66 18,745 10−6 0.69 20,295 10−3 0.62

5-EP 57,333 0.01 – 58,408 10−3 0.62 43,313 10−10 0.76 60,087 0.01 –

6-EP 129,910 10−5 0.67 134,770 0.03 – 104,392 10−9 0.74 113,037 10−6 0.68

7-EP 232,735 10−9 0.75 330,572 0.05 – 221,790 10−12 0.78 219,237 10−12 0.78

Table 8.4: Results from digital circuit benchmarks for the various proposed neutral rule-sets.

The p value is from the two-tailed Mann–Whitney U test. Where p < 0.05
12 , the

effect size from the Vargha–Delaney A test is shown; large effect sizes (A > 0.71)

are shown in bold.

8.5 Digital Circuit Results

The results from our experiments are given in Table 8.4. Each neutral rule-set is listed with

the Median Evaluations (MEs) required to solve each benchmark problem.

We use a two-tailed Mann–Whitney U test to demonstrate statistical significance in the

difference of the MEs for these runs and the unmodified EGGP results given in Table 8.3.

For most problems and neutral rule-sets, the inclusion of SND yields statistically signifi-

cant improvements in performance. There are some exceptions: for the 4×1-bit comparator

(COMP) problem, the inclusion of neutral rule-sets leads either to insignificant differences or

to significantly worse performance for every rule-set except the Identity (ID), which performs

significantly better. The De Morgan’s rule-set (DM) and Copy/Collapse rule-set (CC) appear

to yield the smallest benefit, finding significant improvement on only 8 of the 13 benchmark

201

8 Evolving Graphs with Semantic Neutral Drift

Problem DMN ID EGGP p

MAS IQR MAS IQR MAS IQR DMN vs. ID DMN vs. EGGP ID vs. EGGP

3-Add 96.9 1.3 92.3 1.2 50.8 2.6 10−33 10−34 10−34

COMP 99.3 95.6 92.3 0.5 67.0 2.3 10−34 10−34 10−34

Table 8.5: Observed average solution size of the surviving population for the DMN rule-set,

ID rule-set and EGGP without a neutral rule-set. Results are for the 3-Bit Adder

(3-Add) and 4×1-Bit Comparator (COMP) problems. For each result, the Median

Average Size (MAS) and Interquartile Range (IQR) are given. The p value is from

the two-tailed Mann–Whitney U test.

problems respectively. Additionally, both of these rule-sets yield significantly worse perfor-

mance for the 4×1-bit COMP problem. The De Morgan’s and Negation rule-set (DMN)

also finds significant improvement on only 8 of the 13 benchmark problems, but we see no

statistical differences on the 4×1-bit COMP problem. Further, the DMN rule-set offers the

best performance on the 2-bit and 3-bit adder problems (2-Add and 3-Add), in terms of MEs,

p value and effect size. The ID rule-set achieves the best performance on the 2-bit and 3-bit

multiplier problems (2-Mul and 3-Mul) but fails to achieve significant improvements on the

3:8-bit de-multiplexer problem (DeMux).

Our results show that, for some problems and certain neutral rule-sets, the inclusion of

neutral drift may improve performance with respect to the effort (measured by the number

of evaluations) required. Additionally, they offer strong evidence for the claim that there

are some neutral rule-sets which may generally improve performance for a wide range of

problems, particularly evidenced by the DMN and ID rule-sets.

We identify ID as the best performing rule-set and DMN as the second best performing

rule-set. For this reason, these rule-sets are the subject of further analysis in Section 8.6.

202

8.6 Analysis

8.6 Analysis

8.6.1 Neutral Drift or Neutral Growth?

Analysis of the run-time of EGGP augmented with the DMN and ID neutral rule-sets reveals

their bias towards searching the space of larger solutions. When we refer to larger solutions,

given that EGGP uses fixed-size representations, we refer to the proportion of the individual

graph which is active, defined by the number of nodes to which there is a path from an output

node. We demonstrate this with the results given in Table 8.5. Here, we measure the average

(mean) size of the single surviving member throughout evolutionary runs on the 3-Add and

COMP problems and give the median and IQR of these average sizes over 100 runs. The

size of an individual is the number of active function nodes (those which are reachable from

output nodes) contained within it. We give these values for DMN, ID and EGGP alone. We

use a two-tailed Mann–Whitney U test to measure for statistical differences between these

observations. On both problems, DMN has a higher Median Average Size (MAS) than both

ID and EGGP alone (p < 0.05
2) and ID also has a higher MAS than EGGP alone (p < 0.05

2).

This observation challenges existing ideas that increasing the proportion of inactive code

aids evolution [156]. We are able to achieve improvements in performance while effectively

reducing the proportion of inactive code. It may be the case that high proportions of inactive

code are helpful only when other forms of neutral drift are not available.

The result that DMN and ID increase the active size of individuals initially appears to

challenge our hypothesis that it is SND that aids evolution. An alternative explanation could

be that it is ‘neutral growth’, where our neutral rule-sets increase the size of individuals, that

biases search towards larger solutions, which then happen to be better candidates for the

problems we study. However, the CC neutral rule-set exclusively features neutral growth and

neutral shrinkage, exploiting no domain knowledge beyond the notion that identical nodes in

identical circumstances perform the same functionality, and featuring no meaningful semantic

rewriting. We therefore compare how CC and DMN perform with different numbers of nodes

available, to determine whether larger solutions are indeed better candidates for the studied

problems.

We run DMN, CC and standard EGGP on the 2-Add, 3-Add and COMP problems, with

fixed representation sizes of 50, 100 and 150 nodes. If it is the case that larger solutions are

better candidates, and that our neutral rule-sets bias towards neutral growth, then we would

expect to see degradation of performance (more evaluations needed) with a size of 50, and

improvements (fewer evaluations needed) with a size of 150, over a baseline size of 100.

203

8 Evolving Graphs with Semantic Neutral Drift

Figure 8.4: Results of running DMN, CC and EGGP on (A) 2-Add, (B) 3-Add and (C)

COMP problems. The y-axis gives the MEs required to solve each problem across

100 runs. The x-axis groups setups by algorithm and then lists the observed MEs

when running that algorithm with 50, 100 or 150 nodes as the fixed representation

size.

The results of these runs are shown in Figure 8.4. For 2-Add and 3-Add with the DMN

neutral rule-set, performance actually degrades when increasing the fixed size from 100 to

150, while remaining relatively similar when decreasing the size to 50. For EGGP alone and

for the CC neutral rule-set, performance remains relatively similar when increasing the fixed

204

8.6 Analysis

size from 100 to 150, but degrades when decreasing the size to 50. These observations imply

that the DMN rule-set is not simply growing solutions to a more beneficial search space, since

it performs better when limited to a smaller space. Therefore, on these problems, there is

some other property of the DMN rule-set that is benefiting performance.

For the COMP problem, trends remain similar for EGGP alone and the CC neutral rule-

set. However, the performance of the DMN rule-set degrades when the fixed size is decreased

from 100 to 50. This suggests that the COMP problem is in some way different from the

other problems. Further, when DMN is run on the COMP problem, the average proportion of

active code is nearly 100%. This may offer an explanation to why the DMN rule-set struggles

to outperform standard EGGP on the COMP problem, which has more than twice as many

outputs (18) as the next nearest problem (8, DeMux). DMN’s bias towards growth paired

with the high number of outputs may give some of the problem’s many outputs little room

to change and configure to a correct solution.

8.6.2 DMN and ID in Combination

We investigate the effect of using DMN and ID, our two best performing neutral rule-sets, in

combination. This combined set, which we refer to as DMID, consists of the following logical

equivalence laws:

DeMorganF1, DeMorganF2, DeMorganR1, DeMorganR2,

ID−ANDF , ID−ANDR, ID−ORF , ID−ORR, ID−NOTF and ID−NOTR.

We use this set under the same experimental conditions described in Section 8.4 to produce

the results given in Table 8.6. In Table 8.6 we provide p and A values in comparison to the

DMN and ID results in Table 8.4 and the EGGP results in Table 8.3.

The DMID rule-set significantly outperforms DMN on 5 of the 12 problems, and shows

no significant difference for the other 7 problems. DMID significantly outperforms ID on

4 problems (notably the 2 and 3-Bit Adder problems), shows no significant difference on 3

problems, and is significantly outperformed by ID on 4 problems (notably the 3-Mul, COMP

and 7-EP). DMID significantly outperforms EGGP without neutral rule-sets on all but 2

problems, with the exception being the COMP and 7-EP problems that DMN also fails to

find significant benefits on. These results position DMID and ID on a Pareto front of studied

problems, with DMID effectively dominating DMN but neither DMID nor ID universally

outperforming each other.

205

8 Evolving Graphs with Semantic Neutral Drift

Problem DMID vs. DMN vs. ID vs. EGGP

ME IQR p A p A p A

1-Add 7,415 5,756 10−4 0.64 0.02 - 10−12 0.78

2-Add 43,633 29,065 0.13 – 10−8 0.73 10−23 0.91

3-Add 162,568 112,074 0.02 - 10−11 0.77 10−28 0.95

2-Mul 12,020 8,761 10−3 0.63 0.30 – 10−8 0.73

3-Mul 604,480 471,956 0.51 – 0.04 0.59 10−13 0.80

DeMux 20,938 11,040 10−3 0.63 10−6 0.69 10−5 0.68

COMP 399,140 315,459 0.45 – 10−4 0.66 0.95 –

3-EP 3,930 3,105 10−3 0.60 10−3 0.61 10−7 0.71

4-EP 16,778 10,730 0.02 - 0.13 – 10−9 0.75

5-EP 52,868 31,445 0.29 – 10−3 0.61 10−5 0.66

6-EP 121,978 90,429 10−3 0.61 0.11 – 10−6 0.68

7-EP 326,040 224,121 0.95 – 10−7 0.70 0.05 -

Table 8.6: Results from digital circuit benchmarks for the DMID neutral rule-set. The p value

is from the two-tailed Mann–Whitney U test. Where p < 0.0514, the effect size

from the Vargha–Delaney A test is shown; large effect sizes (A > 0.71) are shown

in bold. Statistics are given in comparison to the DMN and ID neutral rule-sets

and EGGP.

8.6.3 {AND, OR, NOT}: A Harder Function Set?

In Table 8.3 we show that solving problems with the function set {AND, OR, NOT} is significantly

more difficult than when using the function set {AND, OR, NAND, NOR}. We justify using the

former function set over the latter in our experiments as it lends itself to known logical

equivalence laws despite costing performance. When we introduce these logical equivalence

laws to the evolutionary process with the {AND, OR, NOT} function set, this ‘cost’ no longer

universally holds. We identify 3-Add, 3-Mul, COMP and 7-EP as the 4 hardest problems,

based on the MEs required to solve them, Table 8.3. EGGP with the {AND, OR, NOT} function

set and augmented with the DMID neutral rule-set significantly (p < 0.05) outperforms

EGGP with the {AND, OR, NAND, NOR} function set on two of the problems.

These two are the 3-Add (p = 10−10, A = 0.76) and 3-Mul problems (p = 10−5, A = 0.68).

206

8.6 Analysis

Figure 8.5: Box-plots showing observed evaluations required to solve (A) 3-Bit Multiplier and

(B) 4 × 1-Bit COMP problems using EGGP augmented with the DMID neutral

rule-set (DMID) and EGGP with the {AND, OR, NAND, NOR} function set (AONN).

Vertical jitter is included for visual clarity.

In contrast, the reverse holds for COMP (p = 10−18, A = 0.85) and 7-EP (p = 10−14,

A = 0.80). Note that for 3 of these circumstances (excluding 3-Mul), the significant difference

occurs with large effect size (A > 0.71).

Figure 8.5 shows the number of evaluations across 100 runs for the 3-Mul and COMP

problems, for (A) EGGP with the {AND, OR, NOT} function set and augmented with the

DMID neutral rule-set and (B) EGGP with the {AND, OR, NAND, NOR} function set. Here the

difference in medians and IQRs for these two EAs can be clearly seen; with EGGP with the

DMID neutral rule-set requiring MEs outside of the IQR of EGGP with the {AND, OR, NAND,

207

8 Evolving Graphs with Semantic Neutral Drift

NOR} function set for the 3-Mul problem. In stark contrast, the third quartile of evaluations

required for the COMP problem lies below the first quartile of EGGP with the DMID neutral

rule-set.

This offers an interesting secondary result: there are circumstances and problems where

it may be beneficial to choose representations that on their own would yield detrimental

results, if that decision then facilitates the inclusion of SND, which may in combination

provide enhanced performance over the original representation.

8.7 Conclusions and Future Work

We have investigated the augmentation of EGGP for learning digital circuits with SND. From

our experimental results, we can draw a number of conclusions both for our own specific

setting and for the broader evolutionary community.

Firstly, we offer further evidence that there are circumstances where neutral drift aids

evolution, building upon existing works that offer evidence in this direction. Additionally,

the precise nature of our neutral drift by design offers evidence that neutral drift on the

active component of individuals, rather than the intronic components, can aid evolution. For

every benchmark problem studied, at least one neutral rule-set was able to yield significant

improvements in performance.

Secondly, we have shown that by using graphs as a representation and graph program-

ming as a medium for mutation, it is possible to directly inject domain knowledge into an

evolutionary system to improve performance. The application of De Morgan’s logical equiv-

alence laws to graphs with sharing is non-trivial, but becomes immediately accessible in our

graph evolution framework. Our ability to design complex domain-specific mutation opera-

tors supports the view that that the choice of representation of individuals in an EA matters.

This injection of domain knowledge has been shown to offer benefits beyond simple ‘neutral

growth’.

Thirdly, while the approach we have proposed here offers promising results, the specific

design of neutral drift matters. There are neutral rule-sets that appear to dominate each

other, as is found comparing the DMID rule-set to the DMN rule-set. There are also neutral

rule-sets which outperform each other on different problems, as is demonstrated comparing

the DMID rule-set to the ID rule-set. As we highlighted in comparing DMID to EGGP with

what initially appeared to be a preferential function set, there are circumstances where a GP

208

8.7 Conclusions and Future Work

practitioner may want to deliberately degrade the representation in order to access beneficial

neutral drift techniques. There are also other circumstances where the cost of incorporating

these techniques may outweigh their immediate benefits.

There are a number of immediate extensions to our work that we believe should be inves-

tigated. Firstly, the use of the complete function set, {AND, OR, NAND, NOR, NOT}, alongside the

DMID semantics-preserving mutations and additional mutations for converting between AND

and OR gates and their negations, via NOT, should be investigated. It may be the case that

this overall combination yields better results than either of the function sets and semantics-

preserving mutations we have covered in this work. Additionally, while semantics-preserving

mutations have generally improved performance with respect to the number of evaluations re-

quired to solve problems, it would be worthwhile to measure the clock-time cost of executing

these transformations in every generation. Then it would be possible to study the trade-off

between gained efficiency and additional overhead. Future work should also investigate the

potential use of our proposed approach in CGP and TGP as discussed in Section 8.1.

While we do not address theoretical aspects of SND here, it may be possible to prove

convergence of EAs equipped with SND under certain properties, such as the completeness

of the semantics-preserving mutations used with respect to equivalence classes.

There are a number of application domains to investigate for future work: hard search prob-

lems where individual solutions may be represented by graphs and where there are known

semantics-preserving laws. A primary candidate is the evolution of Bayesian Network topolo-

gies, a well-studied field [133], as there are known equivalence classes for Bayesian Network

topologies [39]. A secondary candidate is learning quantum algorithms using the ZX-calculus,

which represents quantum computations as graphs [42], and is equipped with graphical equiv-

alence laws that preserve semantics.

209

9 Evolving Graphs with Horizontal Gene

Transfer

Abstract

In this chapter we introduce a form of neutral Horizontal Gene Transfer (HGT) to Evolving

Graphs by Graph Programming (EGGP). We introduce the µ × λ Evolutionary Algorithm

(EA), where µ parents each produce λ children who compete only with their parents. HGT

events then copy the entire active component of one surviving parent into the inactive compo-

nent of another parent, exchanging genetic information without reproduction. Experimental

results from symbolic regression problems show that the introduction of the µ × λ EA and

HGT events improve the performance of EGGP. Comparisons with Tree-Based Genetic Pro-

gramming (TGP) and Cartesian Genetic Programming (CGP) strongly favour our proposed

approach. We also investigate the effect of using HGT events in neuroevolution tasks. We

again find that the introduction of HGT improves the performance of EGGP, demonstrating

that HGT is an effective cross-domain mechanism for recombining graphs.

Relevant Publications

Content from the following publications is used in this chapter:

[10] T. Atkinson, D. Plump, and S. Stepney, “Evolving graphs with horizontal gene

transfer,” in Proc. Genetic and Evolutionary Computation Conference, GECCO 2019,

ACM, 2019, pp. 968-–976.

[12] T. Atkinson, D. Plump, and S. Stepney, “Horizontal gene transfer for recombining

graphs,” Genetic Programming and Evolvable Machines, 2020.

211

9 Evolving Graphs with Horizontal Gene Transfer

9.1 Introduction

Recombination of genetic material is commonly viewed as a key component of a successful

Genetic Programming (GP) system. Koza [129] recommends that most offspring be produced

by crossover, rather than by asexual reproduction and mutation. In contrast, Cartesian

Genetic Programming (CGP) [155] traditionally uses the elitist 1+λ Evolutionary Algorithm

(EA), where all offspring are produced by asexual reproduction and mutation; variation and

the ability to leave local optima are a byproduct of neutral drift in the neutral parts of the

genome [156].

Existing work on Evolving Graphs by Graph Programming (EGGP) has used only asexual

reproduction and mutation. Here we extend EGGP to incorporate Horizontal Gene Transfer

(HGT) ‘events’, where the genetic information of one parent is shared with another. Our

system operates using the elitist ‘µ×λ’ EA, such that in each generation there are µ parents,

which each produce λ children, which compete only with their own parent. This is effectively

µ parallel 1 + λ EAs, with genetic information shared horizontally between elite individuals.

To avoid disrupting elitism (by modifying the active components of individuals) or sharing

junk (by copying neutral components of individuals), we copy only the active components

of one parent onto the neutral component of another; it may later be activated through

mutation.

Here we replace neutral components with new material directly. This is inspired by hor-

izontal gene transfer1 (or lateral gene transfer) found in nature. Biological horizontal gene

transfer is the movement of genetic material between individuals without mating, and is

distinct from normal ‘vertical’ movement from parents to offspring [119]. Horizontal gene

transfer plays a key role in the spread of anti-microbial resistance in bacteria [83] and evi-

dence has been found of plant-plant horizontal gene transfer [265] and plant-animal horizontal

gene transfer [200]. The mechanism of horizontal gene transfer in transferring a segment of

DNA into another individual’s DNA may have a clear analogy when considering bit-string

based Genetic Algorithms (GAs) such as the Microbial GA [92], the equivalent analogy is

not as obvious when dealing with graphs. Hence we use the term metaphorically: when we

refer to HGT, we mean the movement of genetic material between individual graphs without

mating. This is the new mechanism we present in this work.

Our approach is not the first work to recombine and share genetic information in graph-

like programs. Parallel Distributed Genetic Programming (PDGP) uses Subgraph Active-

1Here we make a distinction between the computational and the biological.

212

9.1 Introduction

Active Node (SAAN) crossover [188] to share material within a population of Cartesian

grid-based programs. A number of crossover operators have been used in CGP, including

uniform crossover [154], arithmetic crossover on a vector representation [41], and subgraph

crossover [112]. Empirical comparison [106] shows that these crossover operators do not

always aid performance, and that CGP with mutation only can sometimes be the best per-

forming approach. Current advice [155, 243] is that the ‘standard’ CGP approach is to use

mutation alone. Our recombination features no modification of active components and does

not produce children; nevertheless HGT events followed by edge mutations may perform

operations very similar to PDGP SAAN crossover [188] and CGP subgraph crossover [112].

However, our precise mechanism, where active components are passed into neutral compo-

nents without any limitations to accessibility, does not obviously translate to PDGP and

CGP, which are limited to Cartesian grids.

We perform comparative symbolic regression experiments and find that HGT improves

performance on many of the studied problems. Comparisons with Tree-Based GP (TGP)

and CGP strongly favour EGGP with HGT. We demonstrate the cross-domain effectiveness

of HGT by synthesising neural networks for pole balancing problems. We find that in both

Markovian and non-Markovian settings, HGT aids the efficiency of search. We strengthen the

argument that HGT works across domains by deliberately choosing to evolve much smaller,

more dense graphs in our neuroevolution experiments in comparison to our symbolic regres-

sion experiments.

The rest of this work is organised as follows. In Section 9.2 we introduce EGGP with a

new feature: depth control. In Section 9.3 we describe our HGT approach, and the µ × λ
EA. In Section 9.4 we describe experimental settings for comparing our HGT approach to the

existing EGGP approach, and to CGP and TGP on various symbolic regression problems.

In Section 9.5 we present the results of our symbolic regression experiments. In Section 9.6

we describe the dynamics of the pole balancing problems, the genetic operators used for

neuroevolution and the parameters used in these experiments. In Section 9.7 we present the

results of our neuroevolution experiments. Finally, in Section 9.8, we summarise our findings

and set out directions for future work.

213

9 Evolving Graphs with Horizontal Gene Transfer

i i

o

This individual is to undergo an edge mutation pre-

serving acyclicity and a maximum depth D = 4.

i

(4, 0)

i

(3, 0)

(0, 1)
(2, 1)

(0, 4) (0, 3)
o(1) The individual is annotated with depth informa-

tion. Each node has an associated ‘depth up’ value

u indicating the length of the longest path to a root

node (excl. outputs), and a ‘depth down’ value d in-

dicating the length of the longest path to a leaf node.

These are listed as a pair (u, d) for each node.

i

(4, 0)

i

(3, 0)

(0, 1)
(2, 1)

(0, 4) (0, 3)
o

(2) An edge to mutate is chosen at random and

marked (green) alongside its source node s and tar-

get node t.

i

(4, 0)

i

(3, 0)

(0, 1)
(2, 1)

(0, 4) (0, 4)
o

(3) Invalid candidate nodes for redirection are identi-

fied. If a node v has a directed path to s it is marked

invalid (red), as targeting it would introduce a cycle.

If the depth down value of a node v is dv and the

depth up value of s is us, when us + dv + 1 > D, v

is marked invalid (blue), as targeting it would exceed

the maximum depth.

i i

o

(4) The edge e (now shown in red) is mutated to target

some randomly chosen unmarked (non-output) node,

preserving acyclicity and maximum depth D. Finally,

all annotations are removed.

Figure 9.1: An example of edge mutation preserving acyclicity and depth. Some annotations

from step (1) are omitted for visual clarity.

214

9.2 Depth Control

9.2 Depth Control

Here we introduce the notion of depth control to EGGP. The motivation for this is that, as we

will see in Section 9.3, we have a desire to keep our solutions relatively small. Additionally,

investigation into the use of depth control may help clarify our discussions of bloat in Section

6.8. Depth control prevents mutations that would cause a child to exceed a given maximum

depth, D. We annotate individuals with information regarding the depth associated with

each node. The ‘depth up’ u (or ‘depth down’ d) of a node is the length of the longest path

from that node to a root (or leaf) node. We label each node v with the values (u, d). An

exception is made for output nodes, which have u = −1 as their outgoing edges are not

considered part of the ‘depth’ of the individual.

Once an individual has been annotated, we can identify pairs of nodes that, if an edge were

inserted between them, would cause the individual to exceed the maximum depth, D. If we

wish to insert an outgoing edge for node v1, then we eliminate any other node v2 as a viable

candidate on the following criteria: If the depth up value of v1 is u1, and the depth down

value of v2 is d2, then it is impossible to insert an edge and preserve the maximum depth D

if u1 + d2 + 1 > d: we have a path of length u1 from v1 to a root node, and a path of length

d2 from v2 to a leaf node, hence the overall path from a root to a leaf would be u1 + d2 + 1,

which exceeds D. If u1 + d2 + 1 ≤ d, inserting an edge from v1 to v2 would preserve D.

We use this strategy in both edge mutation and node mutation. In edge mutation, we

use annotations to identify invalid targets for the mutating edge. In node mutation, we use

annotations to identify invalid targets for new edges to be inserted for the mutating node.

We give an example of depth preserving edge mutation in Figure 9.1; an edge of an individual

is mutated, but all possible targets that would break acyclicity or a maximum depth D = 4

are ignored.

Note that we omit the P-GP 2 programs that do this, as the annotation programs are

relatively simple and then our existing mutation operators described in Chapter 5 are modified

with simple rule conditions that forbid edge re-directions or edge insertions based on these

annotations as we have described.

215

9 Evolving Graphs with Horizontal Gene Transfer

9.3 Horizontal Gene Transfer in Evolving Graphs by Graph

Programming

In this Section we describe the introduction of HGT events to EGGP. HGT events involve

the transfer of active material from a donor to the neutral region of a recipient (Section

9.3.1). To accommodate the need for multiple surviving individuals, we introduce the µ× λ
EA (Section 9.3.2) as an alternative to the 1 + λ EA previously used in EGGP.

9.3.1 Active-Neutral Transfer

HGT involves the movement of genetic material between individuals of a population with-

out reproduction. Given a population P , we choose a donor and recipient individual. We

copy the entire active component of the donor (excluding output nodes); we remove sufficient

neutral material at random from the recipient to fit this active component within the fixed

representation size. The copied active component is inserted into the recipient’s neutral com-

ponent, where it remains neutral until it is activated by some mutation. This type of HGT,

which we refer to as ‘Active-Neutral Transfer’, is guaranteed to preserve the fitness of both

the donor and recipient, preventing it from disrupting the elitism of the EA. The intention

is to promote the production of higher quality offspring by the recipient, by activating its

received genetic material through mutation. This process is mutually beneficial; the donor

has a mechanism for propagating its genes, while the recipient stands to improve the surviv-

ability of its offspring. Once material has been transferred, there are a number of possible

consequences: the neutral donor material can drift, or become active, through mutation. In

this way it is possible for processes such as SAAN crossover in PDGP [188] or block-based

crossover in CGP [112] to arise out of Active-Neutral transfer followed by mutation.

Our strategy for choosing a donor and recipient is as follows. A recipient is first chosen

based on a uniform distribution over the population, P , excluding the best performing mem-

ber. We refer to this best performing member as the ‘leader’, which we exclude from receiving

genetic material so that it can undergo neutral drift without any disruption. Throughout

the evolutionary process, it is likely that the leader will change several times, meaning that

the entire population is likely to receive genetic material at some point. Once a recipient is

chosen, a donor is selected from the population excluding the recipient based on a roulette

wheel. The donor may be the leader, allowing the leader to propagate its own genes to other

members of the population. The use of a roulette wheel means that any individual can donate

material, but the better performing individuals are more likely to do so.

216

9.3 Horizontal Gene Transfer in Evolving Graphs by Graph Programming

i i

o

A gene recipient is

chosen at random, ex-

cluding the leader.

i i

o

A gene donor is cho-

sen by roulette selec-

tion. The donor cannot

be the recipient.

i i

o

Sufficient inactive ma-

terial is removed from

the recipient to create

space.

i i

All active material is

copied from the donor,

excluding outputs.

i i

o

The active mate-

rial from the donor

is inserted as inac-

tive material in the

recipient.

The recipient now con-

tains the donor’s ge-

netic material, but nei-

ther individuals’ seman-

tics have changed.

Figure 9.2: An example of Active-Neutral transfer. The active material of a donor is copied

into the neutral material of a recipient. Neither individuals’ semantics are changed

by this process. Grey nodes and dashed edges indicate the neutral material of

individuals; they do not indicate any actual information stored on the individual.

The donor’s function nodes are shown as squares for clarity.
217

9 Evolving Graphs with Horizontal Gene Transfer

We give an example of Active-Neutral transfer in Figure 9.2. The entire active component

of a gene donor is copied into the neutral material of the recipient while maintaining the

overall representation size.

Again note that we do not include the P-GP 2 programs to execute the Active-Neutral

transfer event. The reason for this is that these programs are quite simple and easy to

conceptualise. Firstly, a program is applied to the donor, removing outputs and inactive

material. This can be done with a simple depth-first search from the outputs of the donor to

identify the active components of the donor. Similarly, a program is applied to the recipient,

removing inactive material equal to the active components of the donor. The number of nodes

to remove can be calculated ahead-of-time, again by a depth first search from the outputs

of the donor. Finally, the two graphs are merged via a disjoint union, which is not a native

feature of P-GP 2 and must be implemented externally, and a final program is applied which

merges the input nodes so that there are no duplicates.

We take the view that Active-Neutral transfer is distinct from traditional recombination

operators. While both approaches map a pair of individuals to a single individual, the inten-

tion and behaviour are different. In recombination it is hoped that a child will be produced

which is an approximate midpoint between its parents, introducing immediate variation to

the search process. In contrast, our Active-Neutral transfer operator does not vary the gene

recipient but instead biases future mutations to promising areas of the landscape.

9.3.2 The µ× λ Evolutionary Algorithm

We cannot use Active-Neutral transfer with the 1 + λ algorithm except for sharing genetic

material between the offspring; this is likely to be ineffective as direct offspring have much

material in common. We therefore introduce the µ × λ EA, a special case of the µ + λ EA.

In each generation of the µ × λ EA, there are µ parents. Each of the µ parents generates

λ offspring, and compete for survival only with their own offspring. Without HGT, this

effectively creates multiple parallel 1 +λ algorithms. The same cannot be said of a µ+λ EA,

where children of one of the µ parents may replace any of the parents in the next generation.

In each generation we perform a single Active-Neutral transfer operation with probability

pHGT . We then follow the procedure set out in Section 9.3.1 by selecting a gene recipient

from the µ parents (ignoring the best performing parent, the ‘leader’) and selecting a donor

from the remaining µ− 1 parents by roulette selection.

218

9.4 Symbolic Regression Experiments

9.4 Symbolic Regression Experiments

To evaluate the effect of HGT, we return to the 14 symbolic regression problems studied in

Chapter 6. We choose these problems as EGGP did not particularly outperform TGP or

CGP on them as described in Section 6.7. In comparison we already have effective digital

circuit synthesis and have found that EGGP outperforms CGP on digital circuit benchmarks

as described in Section 6.4; we therefore have less motivation to improve upon these results.

We compare EGGPHGT to: standard EGGP; the depth control variant EGGPDC ; the

depth control variant using the µ × λ EA (and no HGT), EGGPµ×λ. These experiments

allow us to test the following null hypotheses:

• H1: there are no statistical differences when using the depth control variant EGGPDC

in comparison to standard EGGP.

• H2: there are no statistical differences when using the µ×λ EA for EGGP in comparison

to the 1 + λ EA, with both approaches using depth control.

• H3: there are no statistical differences when using the HGT approach for EGGP in

comparison to using the µ × λ EA without HGT, with both approaches using depth

control.

• H4: there are no statistical differences when using the HGT approach for EGGP in

comparison to standard EGGP.

We test these null hypotheses for each benchmark problem. From these tests, we build an

image of how the various features contribute to the performance of EGGPHGT , and clarify

whether the added HGT feature is truly improving performance by isolating it from the other

new features.

We also compare our HGT approach to two other approaches from the literature: TGP [129]

and CGP [155]. These experiments allow us to test the following null hypotheses:

• H5: there are no statistical differences when using

EGGPHGT in comparison to GP.

• H6: there are no statistical differences when using

EGGPHGT in comparison to CGP.

Again, we test each of these null hypotheses for each benchmark problem. H5 and H6

allow us to measure the progress made by introducing HGT to EGGP in comparison to other

approaches in literature.

219

9 Evolving Graphs with Horizontal Gene Transfer

9.4.1 Experimental Settings

We again evaluate all individuals using the Mean Square Error (MSE) fitness function.We

measure statistics taken over 100 independent runs of each approach on each dataset.

For all EGGP variants, we use a fixed 100 nodes and a mutation rate mr = 0.03. For

EGGP and EGGPDC we use the 1 + λ EA with λ = 4; for EGGPµ×λ and EGGPHGT we

use µ = 3 and λ = 1. This induces a ‘minimal’ version of the µ × λ EA with µ = 3 being

the minimal value we could choose for µ such that HGT occurs not only from the ‘leading’

thread, but also between threads, and λ = 1 being the minimal value for λ. For EGGPDC ,

EGGPµ×λ and EGGPHGT we set the maximum depth, D = 10, and limit the maximum

size to 50 active nodes. The maximum active size is ensured by removing and replacing any

generated individual that exceeds the maximum size; it is necessary to prevent errors in the

HGT approach where, for example, the size of the donor’s active component exceeds that of

the recipient’s neutral component (causing the overall number of nodes to grow when copying

the entire active component over). In practice, this condition is used in very few instances,

as depth control constrains the size. The rate pHGT is 0.5.

For TGP and CGP we follow the experimental conditions described in Section 6.6. For

CGP, we use 100 fixed nodes, and a mutation rate of 0.03. We use the 1 + λ EA with λ = 4.

We do not use any of the published CGP crossover operators. We also use no form of depth

control with CGP, as the approach is known to have inherent anti-bloat biases [237].

For TGP, the population size is 500, with 1 elite individual surviving in each generation.

Subtree crossover is used with a probability of 0.9, and when it is not used, the ‘depth steady’

subtree replacement mutation operator is used which, when replacing a subtree of depth d,

generates a new subtree of depth between 0 and d [169]. Tournament selection is used to select

reproducing individuals, with a tournament size of 4, and the maximum depth allowed of any

individual is 10. We add each new individual to the population one-by-one, discarding one

of the children produced by each crossover operator. This allows us to immediately replace

invalid individuals with respect to the maximum depth, guaranteeing that every individual

in a new population is valid and should be evaluated. To initialise the population, we use the

ramped half-and-half technique [129], with a minimum depth of 1 and a maximum depth of

5.

For all experiments, the maximum number of evaluations allowed is 24 950. In TGP this

is achieved by allowing the search to run for 50 generations. In EGGP and CGP, we use

the optimisation from [155, Ch.2], where individuals are evaluated only when their active

220

9.5 Symbolic Regression Results

components are mutated; there is no fixed number of mutations, and the search continues until

the total number of evaluations is performed. There is no analogous optimisation for TGP, as

TGP individuals contain no neutral material. Again, we stress that this optimisation makes

a large difference to the depth of search; for example, in CGP running on F1, the median

number of generations is 12 385, but if all individuals are evaluated (rather than only those

with active region mutations), the number of generations would be capped at 6237 (assuming

elite individuals are never re-evaluated).

9.4.2 Implementation

Our CGP experiments are based on the publicly available CGP library [243] with modifica-

tions made to accommodate the ‘active evaluations only’ optimisation and the use of vali-

dation and training sets. Our TGP experiments are based on the Distributed Evolutionary

Algorithms in Python (DEAP) evolutionary computation framework [70] with modifications

made to accommodate our crossover strategy, mutation operator, and use of validation and

training sets.

9.5 Symbolic Regression Results

Table 9.1 lists the Median Fitness (MF) and Interquartile Range (IQR) of each approach on

each dataset over 100 runs. Overall, the lowest MF score is achieved by EGGPHGT in 10

cases, EGGPDC in 2 cases and TGP in 2 cases. There are no cases where EGGP, EGGPµ×λ

or CGP achieve the lowest MF score.

To test for statistical significance we use the two-tailed Mann–Whitney U test. We use a

significance threshold of 0.05 and perform a Bonferroni procedure for each hypothesis giving

a corrected significance threshold of α = 0.05
14 . Where we get a statistically significant result

(p < α), we also calculate the effect size, using the non-parametric Vargha–Delaney A Test.

A ≥ 0.71 corresponds to a large effect size. These results of these statistical tests for all

hypotheses are given in Table 9.2.

9.5.1 Building EGGPHGT : H1, H2, H3, H4

The introduction of depth control (H1) appears to have relatively little effect and is sometimes

detrimental. In 12 of our benchmark problems, we observe no significant difference when

introducing the feature. On 2 problems, standard EGGP achieves a statistically significant

221

9 Evolving Graphs with Horizontal Gene Transfer

E
G

G
P

E
G

G
P
D
C

E
G

G
P
µ×

λ
E

G
G

P
H
G
T

T
G

P
C

G
P

F
M

F
IQ

R
M

F
IQ

R
M

F
IQ

R
M

F
IQ

R
M

F
IQ

R
M

F
IQ

R

F
1

4
.4

5
E

-3
7
.3

5E
-3

6.26E
-3

6
.4

5
E

-3
3
.59E

-3
1.39E

-3
2
.4

7
E

-3
1.79E

-3
5.77E

-3
3.40E

-3
6.74E

-3
4.30E

-3

F
2

8
.1

7
E

6
6.05

E
6

1
.4

1
E

7
9
.9

5E
6

8.06E
6

5.02E
6

5
.9

4
E

6
3.06E

6
1.28E

7
7.86E

6
1.73E

7
2.54E

6

F
3

1
.1

8
E

-2
7
.3

4E
-3

1.48E
-2

4
.2

7
E

-3
9
.92E

-3
3.82E

-3
7
.2

2
E

-3
4.00E

-3
1.04E

-2
3.56E

-3
1.48E

-2
4.39E

-3

F
4

2
.5

8
E

1
3

1.05
E

9
2
.5

8
E

1
3

3.57E
8

2.58E
13

7.51E
10

2.58E
13

1.96E
9

3.55E
13

8.35E
13

2.58E
13

2.35E
9

F
5

3
.9

6
E

0
3.56

E
0

4
.4

8
E

0
4
.3

0E
0

2.30E
0

2.61E
0

6
.9

0
E

-1
2.08E

0
5.13E

0
3.81E

0
7.17E

0
1.47E

0

F
6

1
.6

9
E

1
2.24

E
1

2
.1

1
E

1
3
.9

9E
1

7.23E
0

1.18E
1

4.46E
0

6.24E
0

2
.6

1
E

0
6.86E

0
9.28E

0
2.03E

1

F
7

3
.0

6
E

2
7.40

E
2

4
.1

6
E

2
6
.7

6E
2

2.20E
2

1.53E
2

1
.5

1
E

2
9.62E

1
4.20E

2
3.50E

2
5.76E

2
4.39E

2

F
8

3
.9

1
E

-2
7
.4

3E
-2

1.03E
-1

1
.1

3
E

-1
2
.85E

-2
2.00E

-2
2
.1

9
E

-2
1.21E

-2
1.09E

-1
4.99E

-2
4.49E

-2
9.59E

-2

F
9

7
.0

9
E

2
5.40

E
3

2
.5

9
E

3
1
.3

6E
4

1.81E
2

3.68E
2

1.57E
2

3.53E
2

1
.4

6
E

2
3.04E

1
1.71E

2
1.11E

3

F
10

1
.5

2
E

-1
2
.0

5E
-1

2.36E
-1

2
.2

2
E

-1
1
.07E

-1
8.30E

-2
7
.6

9
E

-2
5.75E

-2
3.22E

-1
5.62E

-2
1.66E

-1
1.42E

-1

F
11

3
.9

3
E

1
7.26

E
1

4
.5

3
E

1
6
.3

3E
1

2.43E
1

1.37E
1

1
.5

9
E

1
1.20E

1
3.88E

1
3.37E

1
4.96E

1
4.73E

1

F
12

1
.2

1
E

3
5.25

E
2

1
.2

2
E

3
5
.2

0E
2

6.95E
2

1.19E
2

6
.8

3
E

2
1.44E

2
1.25E

3
5.02E

1
7.08E

2
5.19E

2

F
18

4
.0

7
E

4
9.27

E
3

4
.0

8
E

4
3
.9

1E
4

4.40E
3

3.86E
4

3
.6

9
E

-1
2.07E

4
4.13E

4
3.54E

2
1.20E

2
4.10E

4

F
21

1
.0

7
E

0
6.16

E
-4

1
.0

7
E

0
1.38E

-5
1.07E

0
7.74E

-4
1.07E

0
6.88E

-4
1.07E

0
4.90E

-4
1.07E

0
1.53E

-5

T
a
b

le
9.1:

R
esu

lts
fro

m
sy

m
b

olic
reg

ressio
n

b
en

ch
m

ark
s

as
d

escrib
ed

in
S

ection
9.4.

M
F

in
d

icates
th

e
M

ed
ian

F
itn

ess

over
ob

serv
ed

ru
n

s;
th

e
low

est
(b

est)
M

F
resu

lt
across

all
algorith

m
s

is
h

igh
ligh

ted
in

b
o
ld

.
IQ

R
in

d
icates

th
e

In
ter-q

u
artile

ra
n

ge
in

fi
tn

ess.

222

9.5 Symbolic Regression Results

H1 H2 H3 H4 H5 H6

F p A p A p A p A p A p A

F1 0.08 - < α 0.76 < α 0.71 < α 0.76 < α 0.92 < α 0.91

F2 < α 0.70 < α 0.76 < α 0.68 < α 0.71 < α 0.87 < α 0.95

F3 < α 0.68 < α 0.82 < α 0.70 < α 0.72 < α 0.75 < α 0.91

F4 0.98 - 0.33 - 0.08 - 0.52 - < α 0.68 0.89 -

F5 0.06 - < α 0.76 < α 0.70 < α 0.84 < α 0.86 < α 0.99

F6 0.26 - < α 0.78 < α 0.63 < α 0.84 0.37 - < α 0.63

F7 0.12 - < α 0.74 < α 0.71 < α 0.76 < α 0.93 < α 0.94

F8 ≥ α - < α 0.75 < α 0.62 < α 0.77 < α 0.95 < α 0.79

F9 0.02 - < α 0.78 0.77 - < α 0.69 0.23 - 0.17 -

F10 0.01 - < α 0.74 < α 0.65 < α 0.76 < α 0.99 < α 0.81

F11 0.57 - < α 0.76 < α 0.73 < α 0.85 < α 0.90 < α 0.89

F12 0.85 - < α 0.76 0.12 - < α 0.81 < α 0.89 0.15 -

F18 0.84 - < α 0.71 < α 0.68 < α 0.85 < α 0.91 < α 0.62

F21 ≥ α - < α 0.66 0.11 - 0.57 - 0.32 - < α 0.62

Table 9.2: Statistical tests for hypotheses H1 - H6. The p value is from the two-tailed Mann–

Whitney U test. The corrected threshold for statistical significance is α = 0.05
14 .

Where p < α, the effect size from the Vargha–Delaney A test is shown; large effect

sizes (A > 0.71) are shown in bold. Where α ≤ p < 0.005, p is listed as ≥ α.

lower (better) median fitness than EGGPDC , but never with large effect. These results

indicate that depth control is not necessarily a helpful feature for EGGP, but never causes

EGGP to outperform EGGPDC with large effect, and in many cases makes no significant

difference to performance. This implies that the performance of EGGPHGT (discussed later)

cannot be explained by its new depth control feature alone. We suggest that these results

may be due to neutral material contributing to active nodes’ ‘depth up’ values, preventing the

active component from undergoing certain mutations even if these mutations would produce

an active component of a valid depth. There may be circumstances where this restriction of

the landscape hinders the performance of EGGPDC .

Comparing EGGPµ×λ and EGGPDC (H2) we find that the introduction of the µ × λ EA

yields a statistically significant lower median fitness and a large effect size on 12 of the 14

problems. On 1 problem (F4) there is no significant difference, and on 1 problem (F21)

223

9 Evolving Graphs with Horizontal Gene Transfer

EGGPDC achieves a statistically significant lower median fitness, but without large effect.

Overall, our study of H2 provides substantial evidence that the µ×λ EA aids the performance

of EGGP, and should potentially be adopted generally.

The differences between EGGPHGT and EGGPµ×λ (H3) are more subtle than the com-

parison of H2, but there is a prevalent trend. The introduction of HGT yields a statistically

significant lower median fitness in 10 problems, 3 of which occur with large effect, and no sig-

nificant differences on the other 4. These results suggest that HGT is, generally, a beneficial

feature capable of yielding major differences in performance. We observe no instances where

HGT leads to a significant decrease in performance.

Overall, the results from studying our hypotheses H1, H2 and H3 allow us to explain

the success of EGGPHGT in comparison to TGP and CGP (discussed in Section 9.5.2) as a

composition of the core EGGP approach, the use of the µ × λ EA and the introduction of

Active-Neutral HGT events. Each of our 3 new features has been added to our approach in

isolation, allowing us to isolate the beneficial properties of µ× λ and HGT events. The role

of depth control remains unclear; alone, it appears to be unhelpful but may interact with

the HGT process with respect to maintaining smaller individuals. An extended investigation

into the role of depth control in our designed approach is desirable in the future.

H4 compares our final proposed approach, EGGPHGT , to our original EGGP approach.

The proposed approach achieves a statistically significant lower median fitness in 12 of the

14 problems; 11 of which occur with large effect. On the 2 remaining problems, we observe

no significant differences. Therefore the combination of our 3 features – depth control, µ× λ
and HGT – lead to a marked improvement over standard EGGP for the studied problems.

9.5.2 EGGPHGT vs. TGP & CGP: H4, H6

EGGPHGT achieves a statistically significant lower median fitness in comparison to TGP (H5)

on 11 problems, 10 of which show a large effect. On the other 3 problems, we observe no

statistical differences. On a clear majority of the studied problems, EGGPHGT significantly

outperforms a standard TGP system, and is never outperformed by that TGP system.

EGGPHGT achieves a statistically significant lower median fitness in comparison to CGP

(H6) on 11 problems, 9 of which show a large effect. On 3 of the other 4 problems, there is

no significant difference, and on only 1 problem (F21) is there a statistical difference favour-

ing CGP, but without large effect. Hence we have EGGPHGT significantly outperforming

CGP under similar conditions on a majority of benchmark problems, and was itself only

224

9.6 Neuroevolution Experiments

outperformed on 1 problem.

Collectively, these results place EGGPHGT favourably in comparison to the literature.

Although our experiments are not exhaustive – they are not the product of full parameter

sweeps, but rather are testing approaches under standard conditions – they demonstrate that

EGGP with HGT is a viable and competitive approach for symbolic regression problems.

9.6 Neuroevolution Experiments

We also evaluate the HGT mechanism for a very different class of graphs; Artificial Neural

Networks (ANNs). With small modifications, our EGGP system and our HGT mechanism

together form a neuroevolution system.

There are a number of significant differences between the types of graphs we are studying

in this section and those of the previous symbolic regression experiments. Firstly, the FGs we

study in this section utilise the full FG representation, with recurrence, weights and biases.

Secondly, the graphs seen in the previous experiments have a large number of nodes (100) and

are relatively sparse (1-2 edges per node). In comparison the graphs in these experiments

have less nodes (10) but are much more dense (10 edges per node). In Section 9.6.1 we

explain the Pole Balancing Benchmark problems we study. In Section 9.6.1 we describe our

experimental configuration.

9.6.1 Pole Balancing Benchmarks

Pole balancing problems have a long and extensive history of use as benchmarking problems

for neural network training. The form of problem we use here is described in detail in [258].

The main concept of a pole balancing problem is that there exists a cart upon which N poles

are attached. The cart is restricted to moving left or right along a single dimension of a

2-dimensional plane, and its movements, alongside gravity, affect the angles of the poles with

respect to the vertical. If any of the poles fall outside a certain angle from the vertical, or if

the cart moves beyond a certain distance from its starting point, the simulation is considered

a failure. The neural network being evaluated controls the cart by applying horizontal forces

to it. This enables the network to accelerate the cart to the left or the right, thereby balancing

the poles and keeping the cart within a given distance from its starting points. The equations

of motion governing the dynamics of the N -pole pole balancing problem are as follows:

The displacement of the cart from the origin, 0, is x and we denote the cart’s velocity and

225

9 Evolving Graphs with Horizontal Gene Transfer

Figure 9.3: Pole balancing simulations. Figure taken from [128]

acceleration by ẋ and ẍ, respectively. The acceleration of the cart may be calculated by

ẍ =
F − µcsign(ẋ) + ΣN

i=1F̃i

M + ΣN
i=1m̃i

, (9.1)

where we have introduced the effective force, F̃i, associated with the ith pole, given by

F̃i = miliθ̇
2
i sin θi +

3

4
cos(θi)(

µpiθ̇i
mili

+ g sin θi), (9.2)

and the effective mass m̃i associated with the ith pole, given by

m̃i = mi

(
1− 3

4
cos2 θi

)
, (9.3)

where i = 1, . . . , N .

Once the cart’s acceleration, ẍ, has been calculated, it is then possible to calculate the

angular acceleration of the ith pole. We denote the angle of each pole by θi, measured in

radians, with 0 being vertical. Thus θ̇i is the angular velocity of the ith pole, and θ̈i is the

angular acceleration of the ith pole, with the latter is given by

θ̈i = − 3

4li

(
ẍ cos(θi) + g sin θi +

µpiθ̇i
mili

)
. (9.4)

In our experiments we consider 2-pole problems such that N = 2. Variables used in these

equations are listed in Table 9.3. Constants used in these equations are listed in Table 9.4 In

general, we take constant values from [80].

The initial configuration and simulation of the system is taken from [80]. This is done

to maximise the strength of our comparisons with other approaches from the literature; a

226

9.6 Neuroevolution Experiments

Symbol Units Description

x m Horizontal displacement of the cart from 0.

ẋ m/s Velocity of the cart.

ẍ m/s2 Acceleration of the cart.

θi rad Angle of the ith pole from vertical.

θ̇i rad/s Angular velocity of the ith pole.

θ̈i rad/st Angular acceleration of the ith pole.

F N The force applied to the cart by the controller.

Table 9.3: Variables used in pole balancing experiments.

Symbol Value (units) Description

µc 5× 10−4 (-) Friction between the cart and the track.

µpi µp1 = µp2 = 2× 10−6(−) Friction between the ith pole and the cart.

M 1.0 (kg) Mass of the cart.

mi m1 = 0.1,m2 = 0.01 (kg) Mass of the ith pole.

li l1 = 0.5, l2 = 0.05 (m) Length of the ith pole.

g −9.81 (m/s2) Acceleration due to gravity.

Table 9.4: Constants used in pole balancing experiments. These values are taken from [80].

number of techniques are evaluated on these tasks in [80]. The initial state of the system is

defined by

x = 0, ẋ = 0, θ1 =
4π

180
, θ̇1 = 0, θ2 = 0, θ̇2 = 0. (9.5)

The cart starts in the centre of the track with the 1st, longer pole 4 degrees from vertical,

and the 2nd, shorter pole inline with the vertical. The limits, beyond which a simulation

ends, are that displacement x is bounded to the range [−2.4, 2.4] and that both pole angles,

θ1 and θ2, are bounded to the ranges [−36π
180 ,

36π
180], i.e., they cannot fall beyond 36 degrees from

the vertical. The system is simulated using the 4th order Runge–Kutta approximation and a

time-step of 0.1s. The neural network is updated every 2 time steps, and its output is scaled

to the range [−10, 10]N which is then used as the force F applied to the cart. A solution is

considered successful if it is able to keep both poles upright, and the cart within the bounds

of the track, for 100, 000 simulated time-steps. Otherwise, the fitness assigned to a network

227

9 Evolving Graphs with Horizontal Gene Transfer

is equal to 100, 000 minus the number of time steps the network was able to keep the poles

upright and the cart within the track. We are therefore minimising the fitness value, and the

evolutionary run will successfully terminate once we find a network with a fitness of 0.

In our experiments, we study 2 problems; Markovian and non-Markovian. In the Markovian

case, the network is presented with the full state of the system, with 6 input variables made

up of the position and velocity of the cart and the angles and angular velocities of both poles.

In the non-Markovian case, the network is only presented with the position of the cart and

the angles of both poles. The latter problem is generally believed to be more difficult as it

requires the network to internally account for the velocities of the cart and the poles based

on observations. We rescale these values to present to the neural network, by dividing x by

1.2, ẋ by 1.5, each θi by 36π
180 and each θ̇i by 115π

180 .

9.6.2 Representation and Genetic Operators

The FGs we study in this section are similar to the cyclic FGs studied in Chapter 7, except

that their edges are also labelled with weights, which are represented as integers and converted

to rationals by dividing by 1000, as was done in the neural network examples of Section 4.2.4.

We make further simplifications to the networks by preventing direct loops and ignoring node

biases (all of which are assumed to be 0).

Our topological operators are the same as those used in Chapter 7 with minor modifications

to prevent direct looping edges. We therefore use edge mutation, which may produce recurrent

edges with probability prec. We fix our nodes’ functions to be the bi-sigmoidal activation

function given by

bisig(x) =
1− e−x

1 + e−x
, (9.6)

and therefore do not require function mutations. We do, however, require new mutation

operators to modify weights. This is implemented with a single-rule P-GP 2 program that

matches an edge uniformly at random and rewrites its weight to a uniformly chosen value

from the specified weight range using the rand int syntax. We can therefore distinguish

between mutation rates; edge redirections may be applied according to a binomial distribution

with edge mutation rate mre, and weight mutations may be applied according to a binomial

distribution with weight mutation rate mrw.

For HGT to be viable we require that the number of active function nodes in solutions be

at most half the total function nodes. However, we find that when initialising our relatively

dense neural networks with recurrent connections, it may take exceptionally long to find a

228

9.6 Neuroevolution Experiments

viable starting point that satisfies this constraint. We therefore modify the initialisation

procedure of Chapter 7. Firstly, we modify it to take into account our new restriction of no

direct looping edges. Secondly, recurrent edges are added immediately after nodes are added,

rather than after all nodes are added. This change reduces the average size of generated

individuals, making our implementation more viable, but also prevents cycles from existing

in the initial graphs. Cycles can be introduced throughout the evolutionary process via

mutation.

9.6.3 Experimental Settings

We deliberately choose representation parameters that cause the graphs we study here to be

topologically distinct from the graphs we have studied for symbolic regression in Section 9.4.

By doing this, we further verify HGT as a cross-domain technique that is applicable in a

variety of scenarios.

We use a fixed representation size of 10 nodes, with a maximum permitted number of

active nodes of 5. Hence, in terms of the number of function nodes, the graphs we study

here are much smaller than the 100-function node graphs we studied earlier. Each function

node has an arity of 10, that is, there are 10 connections per neuron. Therefore the graphs

we study here are significantly more dense, with respect to the number of edges, than the

graphs we studied earlier where each function node had 1 or 2 outgoing edges. We are

learning potentially cyclic graphs with recurrent edges, and set the probability of recurrent

edges, prec = 0.1. In contrast, the graphs studied earlier were acyclic. Finally, our edges are

associated with weights, with a weight range of [−2.0, 2.0]. In contrast, the edges we studied

earlier did not feature edge weights. Overall, the graphs we study in these experiments are

distinct from those studied in Section 9.4 in that they are much smaller, much more dense,

may contain recurrent edges and cycles and also utilise edge weights.

In all experiments we again use the µ×λ EA with µ = 3 and λ = 1. Whenever we generate

an individual that exceeds the permitted size of 5, we discard it and immediately generate a

new one. We set the edge mutation rate mre = 0.05, and the weight mutation rate mrw = 0.1.

We find that very occasional runs take a long time to terminate due to local optima. This is

likely because of the small representation size that we have deliberately opted for, which allows

for very little inactive material. To make our experiments computationally tractable while still

having every evolutionary run terminate, we therefore introduce a restarting procedure; if an

evolutionary run has not seen improvement in 1000 generations, its population is randomised.

229

9 Evolving Graphs with Horizontal Gene Transfer

EGGPHGT EGGPµ×λ

Problem ME IQR ME IQR p A

Markovian 812 848 1,194 1,478 10−4 0.61

Non-Markovian 6,230 8,928 10,577 17,074 10−6 0.63

Table 9.5: Results from pole balancing benchmarks for EGGPHGT and EGGPµ×λ. The p

value is from the two-tailed Mann–Whitney U test. The effect size A from the

Vargha–Delaney A test is shown.

We study 2 variants of EGGP:

1. EGGPHGT is the µ× λ EA with HGT as described and pHGT = 1.

2. EGGPµ×λ is simply the µ × λ EA without HGT. This variant is used as a control for

HGT.

We run each algorithm on each problem 200 times. These experiments allow us to test

the null hypotheses that there are no statistical differences when using the HGT mechanism

in comparison to the µ × λ EA alone. We carry out statistical tests to test for significant

differences introduced by the HGT mechanism on the studied problems. If our statistical

tests reject the null hypothesis, and we see lower Median Evaluations (MEs) required for each

problem when using HGT, then we can infer that the HGT mechanism is indeed improving

performance for these neuroevolution tasks.

9.7 Neuroevolution Results

The results from our neuroevolution experiments are given in Table 9.5. For each problem

and algorithm, we list the MEs and IQRs in evaluations. To test for statistical significance we

use the two-tailed Mann–Whitney U test [147], which (essentially) tests the null hypothesis

that two distributions have the same medians. We use a significance threshold of 0.05 and

perform a Bonferroni procedure for each hypothesis giving a corrected significance threshold

of α = 0.05
2 . Where we get a statistically significant result (p < α), we also calculate the

effect size, using the non-parametric Vargha–Delaney A Test [248]. A ≥ 0.71 corresponds to

a large effect size.

As we can see in Table 9.5, on both problems we record lower MEs for EGGPHGT in

230

9.7 Neuroevolution Results

Figure 9.4: Box-plots with data overlayed for both neuroevolution problems. We give re-

sults for EGGPHGT (HGT) and EGGPµ×λ (No HGT); (A) Markovian, (B) non-

Markovian. Overlayed data is jittered for visual clarity.

comparison to EGGPµ×λ. Our Mann–Whitney U test reveals both results to be statistically

significant (p < 0.05
2), although without large effect. We give box-plots of the results of both

problems in Figure 9.4, highlighting the degree to which HGT improves the efficiency of

search. Taking into account the MEs and statistical significance, we can infer that HGT is

indeed improving performance for these neuroevolution tasks. However, that we observe no

large effect suggests that the change in MEs as a result of HGT is not large. This lack of large

effect is in line with our statistical tests comparing EGGPHGT and EGGPµ×λ in Section 9.5.

Empirical comparison with other neuroevolution techniques on these problems is a difficult

task. When these problems have been studied in the literature, they have not been standard-

231

9 Evolving Graphs with Horizontal Gene Transfer

Mean Evaluations

Technique Markovian Non-Markovian

CNE [80] [259] 22,100 76,906

SANE [80] [163] 12,600 262,700

RPG [80] [260] 4,981 5,649

ESP [80] [79] 3,800 7,374

NEAT [223] 3,600 20,918

NEVa [235] 2,177 -

EGGPHGT 1,175 8,891

CGPANN [238] 1,111 -

CoSyNE [80] 954 1,249

CMA-ES [80] [107] 895 3,521

Table 9.6: MEs reported from various literature. Where a result is given, the publication

it is taken from is referenced. A number of results are taken from comparative

experiments in [80], in which case we also provide a reference for the approach after

the reference to [80]. Results are ordered by MEs on Markovian pole balancing.

ised in many respects. For example, some implementations use Euler integration [125, 238],

whereas others use Runge-Kutta integration [80,223]. In some cases the longer pole starts at

1 degree from vertical [223, 238] and in others it starts at 4 degrees from vertical [80]. Some

publications use ‘bang-bang’ force (where the network outputs ±10 newtons) [125], whereas

others have networks output continuous force [80,238] as we have done. These distinctions, in

combination with a general lack of publicly available implementations and that even standar-

dising these conditions may unfairly bias against certain approaches chosen parameters, make

a conventional statistical comparison difficult. For a more detailed discussion of problems

drawing in drawing comparisons between methods on these tasks, see [236, Chapter 11].

However, the intention of our experiments is not to propose a state-of-the-art neuroevolu-

tion technique. Instead, we are investigating whether HGT works for graphs very different

to those studied for symbolic regression. Nevertheless, we do list in Table 9.6 the MEs used

by EGGPHGT in comparison to results reported in literature. While not a direct empirical

comparison, this does give some notion of how the proposed algorithm compares. To this

effect, results in [80] are helpful in that they have standardised comparisons over a number

of approaches. In Table 9.6 we can see that EGGPHGT does quite well on Markovian pole

232

9.8 Conclusions and Future Work

balancing, outperforming a number of techniques and performing similarly to CGPANN [238]

which used much larger representation and had the longest pole starting at 1 degree from

the vertical. However, the non-Markovian results are less impressive, with EGGPHGT being

outperformed by all but 3 techniques in literature. We do take some reassurance from the

fact that, on both problems, EGGPHGT outperforms the popular neuroevolution technique,

‘Neuroevolution of Augmenting Topologies’ (NEAT) [223].

The cause of the disparity between the two studied problems in comparison with the

literature may be a result of our chosen parameters. We chose a recurrent edge rate of

prec = 0.1, and it is generally believed that solutions to the non-Markovian problem are more

dependent of memory than solutions to the Markovian problem. Therefore increasing prec and

thereby increasing the amount of memory usage in the network may improve performance.

Additionally, the non-Markovian problem is generally viewed as harder, and we may have

hampered our search process by choosing such small, dense graphs. This may have reduced

the evolvability of the system and the effect of this may be more prevalent on the harder

problem, particularly if it has more local optima. Clearly, additional experiments with respect

to parameterisation are required to establish the cause of this and improve EGGPHGT ’s

performance on the non-Markovian task.

9.8 Conclusions and Future Work

In this work we have introduced a new and effective form of neutral HGT in the EGGP

approach. Our approach utilises Active-Neutral transfer to copy the active components of

one elite parent into the neutral material of another. Experimental results show that both

HGT and the introduction of the µ×λ EA lead to improvements in performance on benchmark

symbolic regression problems. Comparing the final approach, EGGPHGT , to TGP and CGP

yields highly favourable results on a majority of problems.

We have also carried out neuroevolution experiments with HGT. Empirical comparisons on

double pole balancing problems reveal that, for both Markovian and non-Markovian tasks,

HGT improves the efficiency of search. This result is particularly interesting for two reasons.

Firstly, we have evidence of positive effect of HGT for both symbolic regression and neuroevo-

lution problems suggesting that this technique may function as a cross-domain recombination

operator. Secondly, we deliberately chose to evolve very small, dense, graphs in our neuroevo-

lution experiments to make the differences with our symbolic regression benchmarks more

stark. That HGT remained beneficial reinforces the idea that it is useful.

233

9 Evolving Graphs with Horizontal Gene Transfer

These results have implications for broader research in EAs and GP. The reuse and recom-

bination of genetic material is generally assumed to be a useful feature of an evolutionary

system (e.g. TGP crossover [129]), but our Active-Neutral HGT events achieve reuse without

altering the active components of individuals. Hence our approach contributes evidence to

the notion that neutral drift aids evolutionary search [72]. Active-Neutral HGT events move

beyond neutrality through mutation; we are effectively biasing the neutral components of

individuals towards areas of the landscape we know to be ‘good’ with respect to the fitness

function. While this is empirically beneficial here, it remains unknown whether this neutral

biasing is helpful outside of the EGGP approach. Our favourable comparisons with TGP

and CGP support this direction of thought; TGP offers recombination without neutral drift,

whereas (vanilla) CGP offers neutral drift without recombination.

Our work here opens up a number of avenues for further research. It is desirable to

investigate the influence of population parameters µ, λ and the HGT rate pHGT on the

performance of the described approach. Here, we have chosen small values of µ and λ and

relatively high values of pHGT ; it is therefore interesting to consider whether larger values of µ

and λ help or hinder the HGT process, and whether it is necessary to introduce multiple HGT

events in a single generation when using larger populations. A possible way to investigate this

could be through a graph equivalent of the Microbial Genetic Algorithm [92] as this could

work as a minimal extension that supports the use of a larger population. Additionally,

an investigation isolating depth control from HGT would help clarify whether HGT is more

useful when individuals are smaller or larger.

There are two variants of HGT that should be investigated further. The first is a ‘partial’

HGT mechanism, where only a small subgraph of the active component of the donor is copied

into the recipient. With such a mechanism, it would even be possible to take fragments of

genetic material from several donors during a HGT event, thereby increasing the variance in

the recipients received genetic material. However, empirical comparisons would certainly be

necessary to clarify whether this is a preferable approach, and it is not yet clear how such a

mechanism should be parameterised. Open questions are how should a subgraph be selected?

how large should a subgraph be? how many subgraphs should be copied into the recipient,

and how many donors should they come from?

Another interesting variant of HGT is ‘headless chicken’ HGT where the donor is substi-

tuted with a randomly generated individual. In this case, we would be replacing neutral

material with randomly generated material. An empirical comparison between this variant

and standard HGT could reveal any side effects caused by the HGT mechanism; if the head-

234

9.8 Conclusions and Future Work

less chicken mechanism is effective, then we may have to reconsider our explanations for

the effectiveness of HGT. However, we doubt that the headless chicken mechanism would

compete with or outperform HGT, particularly in the symbolic regression problems, as we

already have a large degree of neutral material in the genotype which undergoes neutral drift

thereby achieving a similar randomising effect.

235

10 Conclusions and Future Work

This chapter is arranged as follows. In Section 10.1 we conclude the findings of this thesis

and draw together conclusions from our different chapters. Finally, in Section 10.2 we set out

areas for future work.

10.1 Overall Conclusions

In this thesis we have shown that rule-based graph programming can be used to design effec-

tive and novel Evolutionary Algorithms (EAs) over graphs. By designing genetic operators

in this way, we have been able to create new systems which contribute new knowledge to the

field of evolutionary computation with respect to representation of solutions, representation

of genetic operators, new EAs, empirical studies and the effect of neutrality. In this section

we review the findings of this thesis.

As we discuss the findings of this thesis, we relate them to the thesis aims set out in Section

1.2. These aims are:

1. To extend the graph programming language GP 2 to a probabilistic variant capable

of expressing probabilistic transformations of graphs necessary to implement genetic

operators for evolution.

2. To investigate whether and how these probabilistic graph programs can be used to

design genetic operators for learning graphs.

3. To establish the benefits of using probabilistic graph programs as genetic operators,

through empirical comparisons and theoretical discussion.

4. To investigate how probabilistic graph programs can be used to implement complex

domain-specific rewrites in the context of evolution.

5. To empirically study the benefits and costs of using such rewrites throughout an evo-

lutionary process.

237

10 Conclusions and Future Work

6. To investigate how graphs can be recombined through probabilistic graph programs.

7. To empirically study the benefits and costs of using such recombinations throughout

an evolutionary process.

Probabilistic graph programming

The first issue identified in this thesis was that the available rule-based graph programming

language GP 2 did not have native support for the probabilistic constructs necessary to design

stochastic genetic operators over graphs. To overcome this, we proposed P-GP 2 in Chapter

3 which extends GP 2’s syntax, allowing a programmer to specify probability distributions

over outcome graphs. Through numerous examples of randomised graph algorithms and

P-GP 2 based genetic operators, we have seen that P-GP 2 is highly practical with specific

application in evolutionary computation, and broader application beyond the scope of this

thesis. P-GP 2 has been used in 5 of the technical chapters of this thesis at both descriptive

and implementation levels, and is therefore a fundamental contribution that enables the other

findings of the work presented.

By extending GP 2 to P-GP 2, which is capable of expressing probabilistic transformations

of graphs, we have directly addressed aim 1. However, while GP 2 is computationally complete

[184] it is not clear whether P-GP 2 is complete in the sense of describing any probability

distribution over graphs. Given the relatively simple syntax available in P-GP 2, it appears

likely that this is not the case. There may be domains where we desire genetic operators over

graphs whose probability distributions we cannot express in P-GP 2’s current form. So while

aim 1 has been met in the context of this thesis, there is clearly more work to be done in this

endeavour. An additional consideration of the contribution of P-GP 2 is that we have used

the implementation of P-GP 2 to perform empirical experiments addressing aims 3, 5 and 7.

Representation of solutions

The issue of representation of solution was resolved through the introduction of Function

Graphs (FGs) in Chapter 4. By describing a class of graphs capable of expressing both

stateful and stateless programs in a variety of domains, we are able to design genetic op-

erators over those graphs that are sufficiently generic and cross-domain. This contribution,

taken alongside the generic representations of Cartesian Genetic Programming (CGP) [157],

Parallel Distributed Genetic Programming (PDGP) [188] and Neuroevolution of Augment-

ing Topologies (NEAT) [222], demonstrates the importance of the choice of representation

238

10.1 Overall Conclusions

in evolutionary computation and the benefits of using the generic representation of graphs.

Further, it can be argued that it is the representation itself that enables our genetic operators,

making the case that representation of solutions must be carefully designed as it may have

significant consequences for the overall EA.

While these findings do not explicitly address any of the thesis aims we have set out, they

are fundamental to many other findings of this thesis. Our choice of representation was a

central consideration in the design of our genetic operators and, in particular, enabled our

extensions to Semantic Neutral Drift (SND) and Horizontal Gene Transfer (HGT). As a

result, these findings have contributed to addressing aims 2, 4 and 6.

Representation of genetic operators

Representation of genetic operators is an aspect of evolutionary computation that has seen

little attention. Often when a genetic operator is proposed it is described in text or through

diagrams e.g. [129,157,188]. In this thesis we have consistently described our genetic operators

as P-GP 2 programs, which has a number of interesting consequences. Firstly, by choosing P-

GP 2 as a representation, we are able to straightforwardly reason about our genetic operators,

as seen in our argument of the correctness of edge mutation in Section 5.3.1 or in our argument

of Evolving Graphs by Graph Programming (EGGP), generalising the landscape of CGP in

Section 5.6.1. Secondly, the choice of representation of genetic operators may significantly

aid the practitioner in the proposal of new ideas, as demonstrated in Chapter 8 where we are

able to concisely describe complex graph rewrites to yield more efficient evolutionary search.

That is not to say that it would be impossible to implement these rewrites without P-GP 2 -

ultimately all P-GP 2 code used compiles to C code. However, in this thesis it is the chosen

representation of the operators that has facilitated design, prototyping and implementation

of our proposed ideas. We therefore argue that appropriate choice of representation of genetic

operators can significantly aid both the evolutionary computation practitioner’s ambitions

and their audience’s understanding. In particular we have seen that P-GP 2 is a particularly

practical and effective paradigm for the representation of genetic operators over graphs.

Our findings on the representation of genetic operators directly addresses aim 2: we have

proposed many probabilistic graph programs that can be used as genetic operators for learn-

ing graphs. Through our use of P-GP 2 we have seen that probabilistic programs can be used

to design a variety of genetic operators which can be used to efficiently evolve graphs. Addi-

tionally, it is through our choice of representation of genetic operators that we gain access to

239

10 Conclusions and Future Work

the complex SND rewrites, addressing aim 4, and the HGT mechanism, addressing aim 6.

New Evolutionary Algorithms

In Chapter 5 we combined FGs with P-GP 2 programs to propose the first EA with genetic

operators described through rule-based graph programming. Our approach, EGGP, comes

with initialisation, atomic edge mutation and atomic node mutation operators, all of which are

described and implemented as P-GP 2 programs. We have seen arguments for the correctness

of our mutation operators, and made the case that EGGP’s landscape strictly generalises

that of CGP in Section 5.6.1. EGGP has demonstrated an impressive ability to work across

domains; through this thesis we have seen EGGP and its variants used to evolve digital

circuits, symbolic expressions, digital counters, mathematical sequences, generalising digital

parity checks and Artificial Neural Networks (ANNs).

A remarkable aspect of EGGP is how readily it can be extended. In Chapter 7 we gave

minor modifications of the initialisation and mutation operators that allowed us to learn

stateful programs. This variant is named Evolving Recurrent Graphs by Graph Programming

(R-EGGP). In Chapter 8 we implemented SND through new genetic operators, based on

known logical equivalence laws, to equip EGGP with additional pathways for neutral drift

to occur. The implementation of this was achieved simply in the creation of new P-GP 2

programs which were applied to the surviving members of the population in each generation.

In Chapter 9 we implemented HGT as a mechanism for passive sharing of genetic information.

This was implemented through some simple P-GP 2 programs in combination with a disjoint

union operator, which together were applied once per generation with a given probability. In

Chapter 9 we also saw that our operators from Chapter 7 in combination with HGT and new

weight mutation operators make it possible to evolve ANNs for control tasks.

The extendable nature of EGGP has allowed us to investigate many new ideas as we have

just described. In the design and evaluation of these extensions, we have achieved a number

of favourable comparisons with approaches from the literature. We therefore conclude that

EGGP and its variants provide useful tools for the evolution of graphs with applications in

many fields.

Our new evolutionary techniques address a number of our thesis aims. By proposing

EGGP and R-EGGP we have directly addressed aim 2, demonstrating that probabilistic

graph programs can be used to design generic operators for learning graphs. Our discussion

of the landscapes induced by EGGP’s genetic operators, both with respect to correctness and

240

10.1 Overall Conclusions

generality, addresses aim 3 by highlighting theoretical benefits of using probabilistic graph

programming to describe genetic operators. By extending EGGP through the incorporation

of SND, we have investigated how probabilistic graph programs can be used to implement

domain-specific rewrites, directly addressing aim 4. Similarly, by extending EGGP to allow

for HGT, we have investigated how graphs can be recombined through probabilistic graph

programs, directly addressing aim 6.

Empirical results

The conclusions of this thesis are founded on rigorous empirical study. To demonstrate

the effectiveness of the proposed approaches, we have performed extensive comparisons with

approaches from the literature. In Chapter 6 we found that EGGP significantly outper-

forms CGP on many digital circuit synthesis tasks with respect to the evaluations required.

Additional experiments with Ordered EGGP (O-EGGP) suggest that the improvement in

performance is a result of the generalised landscape of EGGP. However we also found fewer

statistical differences between EGGP, CGP and Genetic Programming (GP) on symbolic

regression tasks. This disparity was in some sense overcome in Chapter 9 where we found

that EGGP along with HGT significantly outperforms EGGP, CGP and GP on many of these

same problems with respect to the quality of solutions found. We also established, in Chapter

7, that R-EGGP significantly outperforms Recurrent CGP (RCGP) on many digital counter

synthesis and n-bit parity check synthesis tasks, although we observed fewer differences on

mathematical sequence synthesis tasks. An interesting intersection between our digital circuit

comparisons and our digital counter comparisons is that the difference in performance be-

tween the EGGP variant and the CGP variant increases with problem difficulty. Overall, on

a majority of problems that we have studied, we have that EGGP or some variant is the best

performing algorithm in comparison to the alternatives we have taken from the literature.

We have also performed extensive comparisons between our EGGP variants to verify

whether our individual proposals are responsible for yielding meaningful improvements in per-

formance. In Chapter 8 we performed experiments comparing various semantics-preserving

rule-sets allowing us to identify the best performing rule-sets for further study. By performing

comparative experiments between the EGGP system equipped with SND and the standard

EGGP system with an ‘easier’ function set, we were able to find cases where choosing other-

wise detrimental parameters may yield statistically significant improvements in performance

if that choice then facilitates neutral drift. In Chapter 9 we performed experiments comparing

the various components of the EGGP extension that supported HGT. Through studying the

241

10 Conclusions and Future Work

results of this decomposition we concluded that the observed improvements in performance

were due to a mixture of our new µ × λ EA and our HGT mechanism. We also performed

experiments comparing R-EGGP with and without HGT for the evolution of ANNs. We

intentionally chose a different solution space of particularly small and dense graphs and

again found that the inclusion of HGT aided the evolutionary search. These results together

strengthen the case that HGT is a general mechanism for recombination of FGs.

Through empirical evaluation of EGGP and R-EGGP, we have directly addressed aim 3.

Through our comparisons of several different neutral rule-sets and our analysis of SND, we

have empirically studied the benefits of using complex domain-specific rewrites implemented

as probabilistic graph programs, addressing aim 5. Similarly, through our comparisons of

EGGP with HGT, we have empirically studied the benefits of using recombinations imple-

mented as probabilistic graph programs.

Effect of neutrality

An emergent theme in this thesis has been in the study of the effect of neutral drift on the

evolution of graphs. In Chapter 8 we found that by introducing known logical equivalence

laws to the evolutionary system we could improve the efficiency of search in many cases. We

have described a technique whereby domain knowledge is used to build additional neutral drift

directly into the landscape, which can significantly improve performance. In Chapter 9 we

exploited the neutral components of the individual to achieve a form of genetic recombination

that does not affect the fitness of either parents, but allows meaningful code reuse to occur as

a byproduct of the HGT mechanism and our existing atomic mutations. In this case, we have

found a way to bias the neutral components of the individual towards genetic material that

we believe to be effective according to the fitness function. We are in effect biasing neutral

drift towards ‘good’ parts of the landscape.

We have therefore presented 2 distinct instances where adding new mechanisms for neutral

drift and increasing the occurrence of neutral drift may significantly improve the efficiency

of search over graphs. These findings build upon those of various works which assert the

benefits of neutral drift [103, 156, 266] and also go further; we are presenting evidence that

the specific design of the mechanisms of neutral drift may influence and improve upon the

performance of the system. These findings have an interesting interaction with our earlier

discussion of representation, both with respect to solutions and genetic operators, as the

techniques that provide these new insights into neutral drift are based on exploitation of

242

10.1 Overall Conclusions

the solution representation and depend on complex rewrites which can readily be described,

implemented and reasoned about through P-GP 2.

Our findings on the effect of neutrality do not directly address any of our thesis aims. How-

ever, the fact that we have established these conclusions through our use of genetic operators

designed in P-GP 2 using complex domain-specific rewrites and graph recombinations does

add further evidence for the benefits of each of these in relation to thesis aims 3, 5 and 7,

respectively.

In summary

The findings of this thesis are summarised as follows:

1. Probabilistic graph programming is a practical paradigm for designing genetic operators

over graphs and has further applications beyond evolutionary computation.

2. FGs are a suitably generic class of graphs for the evolution of solutions to various

problems of interest.

3. EGGP is an intuitive and extendable EA that uses probabilistic graph programming to

describe genetic operators.

4. EGGP is effective in comparison to approaches from the literature, particularly on

digital circuit synthesis tasks.

5. R-EGGP is an extension to EGGP that facilitates the evolution of stateful programs.

6. R-EGGP is effective in comparison to approaches from the literature, particularly on

digital counter synthesis and n-bit parity check tasks.

7. EGGP can be extended to incorporate SND. In particular, we have shown that logical

equivalence laws implemented as probabilistic graph programs can be applied through-

out the evolutionary process to build neutral pathways into the evolutionary landscape.

8. SND may improve the efficiency of search. In particular, we have found that there are

circumstances where it is preferable to choose parameters which would otherwise be

detrimental to performance if that facilitates the implementation of SND.

9. EGGP can be extended to incorporate HGT. HGT allows for genetic recombination of

FGs without modifying the active components of any individuals.

10. HGT may improve the efficiency of search. In particular, we have found that EGGP

with HGT often outperforms other approaches from the literature on symbolic regres-

243

10 Conclusions and Future Work

sion problems.

11. By taking R-EGGP in combination with HGT and weight mutations, it is possible to

efficiently solve neuroevolution tasks.

10.2 Future Work

Our work on EGGP opens up a number of directions for future work. While we have al-

ready set out areas for future work in each chapter that are specific to the findings of that

chapter, here we describe some particularly promising areas of future work. In Section 10.2.1

we describe a number of potential application areas, and discuss the necessary extensions

to support some of these areas. In Section 10.2.2 we describe the extension of EGGP to

hierarchical graphs, and the potential consequences for learning programs with meaningful

abstraction of data types. Finally, in Section 10.2.3 we present a possible mechanism for

meta-learning of landscapes based on higher-order graph transformation.

10.2.1 New Domains

As we have described in Chapter 6 there are a number of application areas where our existing

EGGP system may be directly applied:

1. Approximate circuits, as in [165,249,250], by introducing a multi-objective EA such as

SPEA2 [268] as a replacement of the 1 + λ algorithm.

2. Cryptographic circuits, as in [179,180].

3. Image processing, as in [88,89,201].

4. Multi-step forecasting, as in [58].

5. A number of other plausible problems are discussed in [253], including the lawnmower

problem and the hierarchical if-and-only-if problem.

Additionally, as we described in Chapter 7, by setting prec = 1 in R-EGGP, it may be

possible to learn topologies in many interesting domains, for example, in the search for a

topology of an echo state network [108] or a random Boolean network [211].

There are, however, a number of domains where our systems cannot be applied in their

current forms. In this section we describe 3 particularly appealing problem domains and

discuss how EGGP may be modified to support them.

244

10.2 Future Work

i

i

i

o

o

o

This individual is to undergo an edge mu-

tation preserving acyclicity and balance of

nodes’ numbers of inputs and outputs.

i

i

i

o

o

o

(1): An edge to mutate is chosen at ran-

dom and marked (red) alongside its source

node s (blue) and target node t (red).

i

i

i

o

o

o

(2): Invalid candidate nodes for redirec-

tion are identified. If a node v has a di-

rected path to s it is marked blue, or a di-

rected path from t it is marked red. Swap-

ping edges in either case may introduce a

cycle.

i

i

i

o

o

o

(3)The edge e is swaps targets with an-

other edge e′ who’s source has not been

marked. This transformation cannot in-

troduce a cycle and maintains the number

of inputs and outputs of each gate.

Figure 10.1: A suggestion for how edges may be swapped in a quantum circuit while preserv-

ing acyclicity and the constraint that the number of inputs to a quantum gate

must equal the number of outputs.

245

10 Conclusions and Future Work

Quantum circuits

Many attempts have been made to design evolutionary systems capable of automatically

synthesising quantum circuits; see [225] for a detailed review. Many of these systems also

propose a domain specific language which can then be decoded into a quantum circuit [149,

214,217]. The main reason for this is that quantum circuits are significantly more constrained

than their classical counterparts. A quantum circuit models the time-evolution of a fixed

dimension quantum state. For this reason a quantum gate is interpreted as a square matrix

and must have the same number of inputs and outputs. Further, both inputs and outputs

must be explicitly ordered to prevent any ambiguity. On top of these constraints, quantum

circuits are in general acyclic. It would be possible to use EGGP to evolve solutions in these

domain specific languages. Perhaps more interesting is to attempt to evolve quantum circuits

directly but doing this demands great care in the design of genetic operators as to respect

these constraints.

There are many open issues in the extension of EGGP to the evolution of direct repre-

sentations of quantum circuits. While we do not resolve all of them here, we do make a

suggestion with respect to atomic edge mutation. EGGP’s atomic edge mutation cannot be

directly applied to quantum circuits because it makes no guarantee all quantum gates will

have equal numbers of inputs and outputs. In fact it appears that, under the assumption

that the new target of the mutating edge is distinct from the previous target, this mutation

operator is guaranteed to break this constraint when applied to any valid quantum circuit.

We suggest that a more appropriate approach is to ‘swap’ edges while preserving acyclicity.

In Figure 10.1, we give a suggestion of how such a mutation could work.

If an extension to EGGP that supported quantum circuits was proposed, it would need

evaluating. The approach to benchmarking in [6] set out a possible way this could be done.

Additional experiments clarifying the difference between evolution of a direct representation

and evolution in a domain specific language would provide further insight into the general

field of quantum circuit synthesis.

Bayesian networks

As we discussed in Section 2.4 there are many approaches in the literature which attempt to

optimise Bayesian network structure via a graph-based EA (see [133]). It is natural therefore

for us to consider the same task through a variant of EGGP. Interestingly, the atomic edge

mutation of EGGP is directly applicable to Bayesian networks as a central constraint of

246

10.2 Future Work

i

i

i

i

o

i

i

o

o

o

Figure 10.2: A plausible model of a HFG. Modules, contained within nodes, could then be

modified, copied and deleted with hierarchical graph transformations [56].

Bayesian networks is acyclicity.

A particular intersection between the work we have covered and the evolution of Bayesian

networks is that Bayesian networks are already equipped with equivalence classes [39]. This

additional intersection, alongside our results demonstrating the effectiveness of SND in im-

proving the efficiency of evolutionary search, suggest that a graph programming-based ap-

proach to Bayesian network evolution may be particularly effective.

Deep neural network architectures

Evolution of Deep Neural Network (DNN) architectures has seen a surge of interest in recent

years [136,153,226]. Evolution of these architectures offers a potential avenue to higher quality

deep learning implementations and novel structures which provide new insights into the design

of deep learning architectures. Often the problem is framed as one of learning an architecture

for a particular task, in particular in image recognition tasks [153,226]. Architectures for these

tasks are in general acyclic, and the EGGP framework is highly applicable to these problems

with respect to the evolution of structure. However a significant roadblock to this is in our

representation of labels. Often it is desirable to treat an architecture layer as a node and have

multiple parameters associated with that layer, such as the number of filters, the dropout

rate, the kernel size and the use of pooling [153]. It is more difficult to express genetic

operators over these features if they are represented as a P-GP 2 list. Clearly more thought

must be given to the representation of layer parameters for such a system to be successful.

247

10 Conclusions and Future Work

i

i

i

i

o

i

i

o

o

o

⇓ Copy_Module⇓
i

i

i

i

o

i

i

o

i

i

o

o

o

Figure 10.3: A notion of how subgraph copying (see [56]) might be utilised in a modular

extension of EGGP to copy entire modules between function nodes.

10.2.2 Evolving Hierarchical Graphs

In Chapters 4 and 5 we presented ideas as to how EGGP could be extended to hierarchical

graphs and therefore gain access to a model of modularity. A particularly appealing model

of hierarchy is shown in Figure 10.2, where function nodes may then contain other EGGP

graphs. This model of hierarchy in principle allows for arbitrary levels of nesting and does

not require parameters specifying the number of modules. Components of the Hierarchical

Function Graphs (HFGs) may be modified through existing techniques of hierarchical graph

transformation [31,56,176], in the same way that we have used graph programming to modify

‘flat’ FGs. For example, it would be possible to use the formalism of [56] whereby a graph

contained within a node may be copied as a way of duplicating a module within a HFG. We

give a visual example of how this may work in Figure 10.3.

248

10.2 Future Work

An intriguing direction of thought is to use these structures to describe the decomposition

of data types. For example, we might wish to learn a function over floats. A 32-bit float can

be decomposed into 4 bytes, each of which can be decomposed into 8 bits. So it would in

principle to be possible to learn a hierarchical structure with 3 layers of hierarchy. At the

highest level, a function is expressed over floats. Inside each function node at the highest

level there is a graph representing a function over bytes. Inside each function node in the

second level, there is a graph representing a function over bits consisting of logic gates. This

offers a possible avenue for an EGGP-based system to automatically learn functions over

a higher-order data type as a composition of logic gates. As EGGP has been found to be

particularly effective at learning digital circuits, it may then be possible to ‘lift’ this efficient

form of search to more complex data. Whether or not this is more effective than simply

learning functions over a higher-order function set, as we did with our symbolic regression

experiments, is a matter for empirical study.

10.2.3 Meta-Learning of Landscapes

In this work we have proposed various genetic operators over graphs. More broadly, there

are works which attempt to induce genetic operators entirely, rather designing them by hand.

For example, [102] use a GP algorithm to evolve probability distributions for use as mutation

operators in an EA. GP has been applied to register machines [263] to learn programmatic

mutation operators for Genetic Algorithms (GAs) applied to a range of test problems. A

core motivation for such works is that by automatically synthesising genetic operators we

may discover landscapes which significantly aid the evolutionary process. Interestingly, there

is a natural intersection with this line of work and existing theory on higher-order graph

transformation. Higher-order Double-Pushout (DPO) rewriting [145] allows the manipulation

of DPO rules in a manner analogous to DPO rules rewriting graphs. Figure 10.4 shows the

commutative diagram for this concept; a pattern is matched in a rule, and that pattern is

replaced with a new pattern through deletion and then addition of new elements.

An interesting line of work would be the development and implementation of meta-learning

of mutation operators as P-GP 2 Programs. This could be achieved by applying higher-order

rules to graph transformation rules in the same manner that we have applied graph trans-

formation rules to graphs. It may then be possible to design meta-EAs that learn effective

mutations for sets of problems, rather than optimising solutions for individual problems. The

precise form that this should take remains unclear with numerous questions to be answered:

249

10 Conclusions and Future Work

Figure 10.4: A higher-order DPO diagram, figure taken from [145]. A higher-order rule

matches a pattern within a first order rule and updates that pattern, effectively

allowing transformation of rules themselves.

• Should meta-learning be of only rules, or of both rules and P-GP 2 programs?

• How should these 2nd order transformations of rules be implemented? Is it possible

to encode P-GP 2 rules as graphs which can then be manipulated with other P-GP 2

programs?

• How should this meta-evolution be structured? Is it more beneficial to evolve mutation

operators alongside solutions (as a self-configuring EA), or as a parameter for EAs (as

a generative hyper-heuristic, see [30])?

• How should an individual mutation operator be evaluated during the evolutionary pro-

cess?

The potential result of this is a 2nd order EA which can be pointed towards different,

difficult, domains and effectively induce landscapes which benefit search while respecting

the constraints of a given problem. As we are discussing higher-order evolution of graph

transformations and we know graphs to be a ubiquitous data structure, such an algorithm

would in principle be applicable to a great many domains.

250

References

[1] A. Agapitos, M. O’Neill, A. Kattan, and S. M. Lucas, “Recursion in tree-based Genetic

Programming,” Genetic Programming and Evolvable Machines, vol. 18, no. 2, pp. 149–

183, 2017, doi: 10.1007/s10710-016-9277-5.

[2] L. Altenberg, “Emergent phenomena in Genetic Programming,” in Proc. 3rd

International Conference on Evolutionary Programming. World Scientific, 1994, pp.

233–241.

[3] P. J. Angeline, “Subtree crossover: Building block engine or macromutation?” in Proc.

Second Annual Conference on Genetic Programming. Morgan Kaufmann, 1997, pp.

9–17.

[4] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary algorithm that

constructs recurrent neural networks,” IEEE Trans. Neural Networks, vol. 5, no. 1, pp.

54–65, 1994, doi: 10.1109/72.265960.

[5] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “Denser: deep evolutionary

network structured representation,” Genetic Programming and Evolvable Machines,

vol. 20, no. 1, pp. 5–35, Mar 2019, doi: 10.1007/s10710-018-9339-y.

[6] T. Atkinson, A. Karsa, J. Drake, and J. Swan, “Quantum program synthesis: Swarm

algorithms and benchmarks,” in Proc. European Conference on Genetic Programming,

EuroGP 2019, ser. LNCS, vol. 11451. Springer, 2019, pp. 19–34, doi: 10.1007/978-3-

030-16670-0˙2.

[7] T. Atkinson, D. Plump, and S. Stepney, “Probabilistic graph programming,” in

Pre-Proc. Graph Computation Models, GCM 2017, 2017. [Online]. Available: http:

//www.cs.york.ac.uk/plasma/publications/pdf/AtkinsonPlumpStepney.GCM17.pdf

[8] ——, “Evolving graphs by graph programming,” in Proc. European Conference on

Genetic Programming, EuroGP 2018, ser. LNCS, vol. 10781. Springer, 2018, pp. 35–

51, doi: 10.1007/978-3-319-77553-1˙3.

251

http://dx.doi.org/10.1007/s10710-016-9277-5
http://dx.doi.org/10.1109/72.265960
http://dx.doi.org/10.1007/s10710-018-9339-y
http://dx.doi.org/10.1007/978-3-030-16670-0_2
http://dx.doi.org/10.1007/978-3-030-16670-0_2
http://www.cs.york.ac.uk/plasma/publications/pdf/AtkinsonPlumpStepney.GCM17.pdf
http://www.cs.york.ac.uk/plasma/publications/pdf/AtkinsonPlumpStepney.GCM17.pdf
http://dx.doi.org/10.1007/978-3-319-77553-1_3

References

[9] ——, “Probabilistic graph programs for randomised and evolutionary algorithms,” in

Proc. International Conference on Graph Transformation, ICGT 2018, ser. LNCS, vol.

10887. Springer, 2018, pp. 63–78, doi: 10.1007/978-3-319-92991-0˙5.

[10] ——, “Evolving graphs with horizontal gene transfer,” in Proc. Genetic and

Evolutionary Computation Conference, GECCO 2019. ACM, 2019, pp. 968–976, doi:

10.1145/3321707.3321788.

[11] ——, “Evolving graphs with semantic neutral drift,” Natural Computing, 2019, doi:

10.1007/s11047-019-09772-4.

[12] ——, “Horizontal gene transfer for recombining graphs,” Genetic Programming and

Evolvable Machines, 2020, doi: 10.1007/s10710-020-09378-1.

[13] T. Bäck, F. Hoffmeister, and H. Schwefel, “A survey of evolution strategies,” in Proc.

International Conference on Genetic Algorithms, IGCA 1991, R. K. Belew and L. B.

Booker, Eds. Morgan Kaufmann, 1991, pp. 2–9.

[14] P. Bahr, “Convergence in infinitary term graph rewriting systems is simple,”

Mathematical Structures in Computer Science, vol. 28, no. 8, pp. 1363–1414, 2018,

doi: 10.1017/S0960129518000166.

[15] C. Bak, “GP 2: Efficient implementation of a graph programming language,” Ph.D.

dissertation, Department of Computer Science, University of York, 2015. [Online].

Available: http://etheses.whiterose.ac.uk/12586/

[16] C. Bak, G. Faulkner, D. Plump, and C. Runciman, “A reference interpreter for the

graph programming language GP 2,” in Proc. Graphs as Models (GaM 2015), ser.

EPTCS, vol. 181, 2015, pp. 48–64.

[17] C. Bak and D. Plump, “Compiling graph programs to C,” in Proc. International

Conference on Graph Transformation, ICGT 2016, ser. LNCS, vol. 9761. Springer,

2016, pp. 102–117, doi: 10.1007/978-3-319-40530-8˙7.

[18] W. Banzhaf, “Genetic programming for pedestrians,” Mitsubishi Electric Research

Labs, MERL Technical Report 93-03, 1993.

[19] ——, “Genotype-phenotype-mapping and neutral variation — a case study in Genetic

Programming,” in Proc. 3rd International Conference on Parallel Problem Solving from

Nature, PPSN III, ser. LNCS, vol. 866. Springer, 1994, pp. 322–332, doi: 10.1007/3-

540-58484-6˙276.

252

http://dx.doi.org/10.1007/978-3-319-92991-0_5
http://dx.doi.org/10.1145/3321707.3321788
http://dx.doi.org/10.1145/3321707.3321788
http://dx.doi.org/10.1007/s11047-019-09772-4
http://dx.doi.org/10.1007/s11047-019-09772-4
http://dx.doi.org/10.1007/s10710-020-09378-1
http://dx.doi.org/10.1017/S0960129518000166
http://etheses.whiterose.ac.uk/12586/
http://dx.doi.org/10.1007/978-3-319-40530-8_7
http://dx.doi.org/10.1007/3-540-58484-6_276
http://dx.doi.org/10.1007/3-540-58484-6_276

References

[20] L. Barnett, “Ruggedness and neutrality; the NKp family of fitness landscapes,” in Proc.

6th International Conference on Artificial Life. MIT Press, 1998, pp. 18–27.

[21] N. Behr, V. Danos, and I. Garnier, “Stochastic mechanics of graph rewriting,” in Proc.

31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016. ACM,

2016, pp. 46–55, doi: 10.1145/2933575.2934537.

[22] R. K. Belew, J. McInerney, and N. N. Schraudolph, “Evolving networks: using the

genetic algorithm with connectionist learning,” in Artificial Life II, ser. SFI Studies in

the Sciences of Complexity: Proceedings. Addison-Wesley, 1992, vol. 10, pp. 511–547.

[23] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró, “A benchmark evaluation of incre-

mental pattern matching in graph transformation,” in Proc. International Conference

on Graph Transformation, ICGT 2008, ser. LNCS, vol. 5214. Springer, 2008, pp.

396–410, doi: 10.1007/978-3-540-87405-8˙27.

[24] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[25] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview and

conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3, pp. 268–308, 2003.

[Online]. Available: http://doi.acm.org/10.1145/937503.937505

[26] M. Brameier, “On linear genetic programming,” Ph.D. dissertation, Technical

University of Dortmund, Germany, 2004. [Online]. Available: http://hdl.handle.net/

2003/20098

[27] M. F. Brameier and W. Banzhaf, Linear Genetic Programming. Springer, 2010, doi:

10.1007/978-0-387-31030-5.

[28] S. Brave, “Evolving recursive programs for tree search,” in Advances in

Genetic Programming. MIT Press, 1996, pp. 203–219.

[29] Z. Buk, J. Koutnik, and M. Snorek, “NEAT in HyperNEAT substituted with Genetic

Programming,” in Proc. International Conference on Adaptive and Natural Computing

Algorithms, ICANNGA 2009, ser. LNCS, vol. 5495. Springer, 2009, pp. 243–252, doi:

10.1007/978-3-642-04921-7˙25.

[30] E. K. Burke, M. R. Hyde, G. Kendall, and J. Woodward, “Automatic heuristic gener-

ation with genetic programming: Evolving a jack-of-all-trades or a master of one,” in

Proceedings Genetic and Evolutionary Computation Conference, GECCO 2007. ACM,

2007, pp. 1559–1565, doi: 10.1145/1276958.1277273.

253

http://dx.doi.org/10.1145/2933575.2934537
http://dx.doi.org/10.1007/978-3-540-87405-8_27
http://doi.acm.org/10.1145/937503.937505
http://hdl.handle.net/2003/20098
http://hdl.handle.net/2003/20098
http://dx.doi.org/10.1007/978-0-387-31030-5
http://dx.doi.org/10.1007/978-0-387-31030-5
http://dx.doi.org/10.1007/978-3-642-04921-7_25
http://dx.doi.org/10.1007/978-3-642-04921-7_25
http://dx.doi.org/10.1145/1276958.1277273

References

[31] G. Busatto, H.-J. Kreowski, and S. Kuske, “Abstract hierarchical graph transforma-

tion,” Mathematical Structures in Computer Science, vol. 15, no. 4, pp. 773–819, 2005,

doi: 10.1017/S0960129505004846.

[32] E. Cantú-Paz, “A survey of parallel genetic algorithms,” Calculateurs Paraleles, vol. 10,

1998.

[33] ——, “Master-slave parallel genetic algorithms,” in Efficient and Accurate Parallel

Genetic Algorithms. Springer, 2001, pp. 33–48, doi: 10.1007/978-1-4615-4369-5 3.

[34] L. Cardamone, D. Loiacono, and P. L. Lanzi, “Evolving competitive car controllers for

racing games with neuroevolution,” in Proc. Genetic and Evolutionary Computation

Conference, GECCO 2009. ACM, 2009, pp. 1179–1186, doi: 10.1145/1569901.1570060.

[35] ——, “On-line neuroevolution applied to the open racing car simulator,” in Proc. IEEE

Congress on Evolutionary Computation, CEC 2009. IEEE, 2009, pp. 2622–2629, doi:

10.1109/CEC.2009.4983271.

[36] D. Carlton and M. Zhang, “Parallel linear genetic programming,” in Proc. European

Conference on Genetic Programming, EuroGP 2011, vol. 6621. Springer, 2011, pp.

178–189, doi: 10.1007/978-3-642-20407-4 16.

[37] Y. Chen, S. Mabu, K. Hirasawa, and J. Hu, “Trading rules on stock markets

using genetic network programming with sarsa learning,” in Proc. Genetic and

Evolutionary Computation Conference, GECCO 2007. ACM, 2007, pp. 1503–1503,

doi: 10.1145/1276958.1277232.

[38] D. M. Chickering, “Learning Bayesian networks is NP-complete,” in Learning from

data, ser. LNS. Springer, 1996, vol. 112, pp. 121–130, doi: 10.1007/978-1-4612-2404-

4˙12.

[39] ——, “Learning equivalence classes of Bayesian-network structures,” J. machine

learning research, vol. 2, pp. 445–498, 2002, doi: 10.1162/153244302760200696.

[40] C. Clack and T. Yu, “Performance enhanced Genetic Programming,” in Proc.

6th International Conference on Evolutionary Programming, ser. LNCS, vol. 1213.

Springer, 1997, pp. 85–100, doi: 10.1007/BFb0014803.

[41] J. Clegg, J. A. Walker, and J. F. Miller, “A new crossover technique for Cartesian

Genetic Programming,” in Proc. Genetic and Evolutionary Computation Conference,

GECCO 2007. ACM, 2007, pp. 1580–1587, doi: 10.1145/1276958.1277276.

254

http://dx.doi.org/10.1017/S0960129505004846
http://dx.doi.org/10.1007/978-1-4615-4369-5_3
http://dx.doi.org/10.1145/1569901.1570060
http://dx.doi.org/10.1109/CEC.2009.4983271
http://dx.doi.org/10.1109/CEC.2009.4983271
http://dx.doi.org/10.1007/978-3-642-20407-4_16
http://dx.doi.org/10.1145/1276958.1277232
http://dx.doi.org/10.1007/978-1-4612-2404-4_12
http://dx.doi.org/10.1007/978-1-4612-2404-4_12
http://dx.doi.org/10.1162/153244302760200696
http://dx.doi.org/10.1007/BFb0014803
http://dx.doi.org/10.1145/1276958.1277276

References

[42] B. Coecke and R. Duncan, “Interacting quantum observables: categorical algebra and

diagrammatics,” New J. Physics, vol. 13, no. 4, p. 043016, 2011, doi: 10.1088/1367-

2630/13/4/043016.

[43] M. Collins, “Finding needles in haystacks is harder with neutrality,”

Genetic Programming and Evolvable Machines, vol. 7, no. 2, pp. 131–144, 2006,

doi: 10.1007/s10710-006-9001-y.

[44] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,

3rd ed. MIT Press, 2009.

[45] A. Corradini, T. Heindel, F. Hermann, and B. König, “Sesqui-pushout rewriting,” in

Proc. International Conference on Graph Transformation, ICGT 2006, ser. LNCS, vol.

4178. Springer, 2006, pp. 30–45, doi: 10.1007/11841883˙4.

[46] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe, “Algebraic

approaches to graph transformation — Part I: Basic concepts and double pushout ap-

proach,” in Handbook of Graph Grammars and Computing by Graph Transformation.

World Scientific, 1997, vol. 1, ch. 3, pp. 163–245.

[47] C. Cotta and J. Muruzábal, “On the learning of Bayesian network graph structures via

evolutionary programming,” in Proc. 2nd Workshop on Probabilistic Graphical Models,

2004, pp. 65–72.

[48] N. L. Cramer, “A representation for the adaptive generation of simple sequential pro-

grams,” in Proc. International Conference on Genetic Algorithms, ICGA 1985. L.

Erlbaum Associates Inc., 1985, pp. 183–187.

[49] V. Danos and C. Laneve, “Formal molecular biology,” Theoretical Computer Science,

vol. 325, no. 1, pp. 69–110, 2004, doi: 10.1016/j.tcs.2004.03.065.

[50] T. E. Davis and J. C. Pŕıncipe, “A markov chain framework for the simple ge-

netic algorithm,” Evolutionary Computation, vol. 1, no. 3, pp. 269–288, 1993, doi:

10.1162/evco.1993.1.3.269.

[51] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II,” IEEE Trans. Evolutionary Computation, vol. 6, no. 2,

pp. 182–197, 2002, doi: 10.1109/4235.996017.

[52] S. Doncieux, N. Bredeche, J.-B. Mouret, and A. E. G. Eiben, “Evolutionary robotics:

what, why, and where to,” Frontiers in Robotics and AI, vol. 2, p. 4, 2015, doi:

255

http://dx.doi.org/10.1088/1367-2630/13/4/043016
http://dx.doi.org/10.1088/1367-2630/13/4/043016
http://dx.doi.org/10.1007/s10710-006-9001-y
http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1016/j.tcs.2004.03.065
http://dx.doi.org/10.1162/evco.1993.1.3.269
http://dx.doi.org/10.1162/evco.1993.1.3.269
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.3389/frobt.2015.00004
http://dx.doi.org/10.3389/frobt.2015.00004

References

10.3389/frobt.2015.00004.

[53] S. Doncieux, J.-B. Mouret, N. Bredeche, and V. Padois, “Evolutionary robotics: Ex-

ploring new horizons,” in New horizons in evolutionary robotics, ser. SCI. Springer,

2011, vol. 341, pp. 3–25, doi: 10.1007/978-3-642-18272-3˙1.

[54] R. M. Downing, “Evolving binary decision diagrams using implicit neutrality,” in Proc.

IEEE Congress on Evolutionary Computation, CEC 2005. IEEE, 2005, pp. 2107–2113,

doi: 10.1109/CEC.2005.1554955.

[55] ——, “Neutrality and gradualism: encouraging exploration and exploitation simul-

taneously with binary decision diagrams,” in Proc. IEEE Congress on Evolutionary

Computation, CEC 2006. IEEE, 2006, pp. 615–622, doi: 10.1109/CEC.2006.1688367.

[56] F. Drewes, B. Hoffmann, and D. Plump, “Hierarchical graph transformation,”

J. Computer and System Sciences, vol. 64, no. 2, pp. 249–283, 2002, doi:

10.1006/jcss.2001.1790.

[57] M. Duarte, V. Costa, J. Gomes, T. Rodrigues, F. Silva, S. M. Oliveira, and A. L.

Christensen, “Evolution of collective behaviors for a real swarm of aquatic surface

robots,” PloS one, vol. 11, no. 3, p. e0151834, 2016, doi: 10.1371/journal.pone.0151834.

[58] I. Dzalbs and T. Kalganova, “Multi-step ahead forecasting using Cartesian Genetic

Programming,” in Inspired by Nature, ser. ECC. Springer, 2018, vol. 28, pp. 235–246,

doi: 10.1007/978-3-319-67997-6˙11.

[59] B. Edmonds, “Meta-Genetic Programming: Co-evolving the operators of variation,”

Elektrik, vol. 9, no. 1, pp. 13–29, 2001.

[60] L. N. M. N. P. N. Eduard Lukschandl, Henrik Borgvall, “Distributed java bytecode

genetic programming with telecom applications,” in Proc. Europgean Conference on

Genetic Programming, EuroGP2000, ser. LNCS, vol. 1802. Springer, 2000, pp. 316–

325, doi: 10.1007/978-3-540-46239-2˙24.

[61] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic Graph

Transformation, ser. Monographs in Theoretical Computer Science. Springer, 2006,

doi: 10.1007/3-540-31188-2.

[62] H. Ehrig, C. Ermel, U. Golas, and F. Hermann, Graph and Model Transformation, ser.

Monographs in Theoretical Computer Science. Springer, 2015.

[63] H. Ehrig, M. Pfender, and H. J. Schneider, “Graph-grammars: An algebraic approach,”

256

http://dx.doi.org/10.3389/frobt.2015.00004
http://dx.doi.org/10.3389/frobt.2015.00004
http://dx.doi.org/10.1007/978-3-642-18272-3_1
http://dx.doi.org/10.1109/CEC.2005.1554955
http://dx.doi.org/10.1109/CEC.2006.1688367
http://dx.doi.org/10.1006/jcss.2001.1790
http://dx.doi.org/10.1006/jcss.2001.1790
http://dx.doi.org/10.1371/journal.pone.0151834
http://dx.doi.org/10.1007/978-3-319-67997-6_11
http://dx.doi.org/10.1007/978-3-540-46239-2_24
http://dx.doi.org/10.1007/3-540-31188-2

References

in 14th Annual Symposium on Switching and Automata Theory, 1973, pp. 167–180,

doi: 10.1109/SWAT.1973.11.

[64] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 2nd ed., ser.

Natural Computing Series. Springer, 2015, doi: 10.1007/978-3-662-44874-8.

[65] P. Erdős and A. Rényi, “On random graphs,” Publicationes Mathematicae (Debrecen),

vol. 6, pp. 290–297, 1959.

[66] R. Etxeberria, P. Larranaga, and J. M. Picaza, “Analysis of the behaviour of genetic

algorithms when learning Bayesian network structure from data,” Pattern Recognition

Letters, vol. 18, no. 11-13, pp. 1269–1273, 1997, doi: 10.1016/S0167-8655(97)00106-2.

[67] M. Fernández, H. Kirchner, and B. Pinaud, “Strategic port graph rewriting: an inter-

active modelling framework,” Mathematical Structures in Computer Science, vol. 29,

no. 5, p. 615–662, 2019, doi: 10.1017/S0960129518000270.

[68] F. Fernández de Vega, M. Tomassini, W. F. Punch III, and J. M. Sánchez-Pérez,

“Experimental study of multipopulation parallel Genetic Programming,” in Proc.

European Conference on Genetic Programming, EuroGP 2010, 2000, pp. 283–293, doi:

10.1007/978-3-540-46239-2 21.

[69] D. B. Fogel, Evolutionary Computation: The Fossil Record, 1st ed. Wiley-IEEE Press,

1998.

[70] F.-A. Fortin, F.-M. D. Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP:

Evolutionary algorithms made easy,” J. Machine Learning Research, vol. 13, no. Jul,

pp. 2171–2175, 2012.

[71] E. Galvan-Lopez, “Efficient graph-based Genetic Programming representation with

multiple outputs,” International J. Automation and Computing, vol. 5, no. 1, pp. 81–89,

2008, doi: 10.1007/s11633-008-0081-4.

[72] E. Galván-López, R. Poli, A. Kattan, M. O’Neill, and A. Brabazon, “Neutrality in

evolutionary algorithms. . . what do we know?” Evolving Systems, vol. 2, no. 3, 2011,

doi: 10.1007/s12530-011-9030-5.

[73] J. Gauci and K. Stanley, “Generating large-scale neural networks through discovering

geometric regularities,” in Proc. Genetic and Evolutionary Computation Conference,

GECCO 2007. ACM, 2007, pp. 997–1004, doi: 10.1145/1276958.1277158.

[74] J. Gauci and K. O. Stanley, “Indirect encoding of neural networks for scalable go,” in

257

http://dx.doi.org/10.1109/SWAT.1973.11
http://dx.doi.org/10.1007/978-3-662-44874-8
http://dx.doi.org/10.1016/S0167-8655(97)00106-2
http://dx.doi.org/10.1017/S0960129518000270
http://dx.doi.org/10.1007/978-3-540-46239-2_21
http://dx.doi.org/10.1007/978-3-540-46239-2_21
http://dx.doi.org/10.1007/s11633-008-0081-4
http://dx.doi.org/10.1007/s12530-011-9030-5
http://dx.doi.org/10.1145/1276958.1277158

References

Proc. 11th International Conference on Parallel Problem Solving from Nature, PPSN

XI, ser. LNCS, vol. 6238. Springer, 2010, pp. 354–363, doi: 10.1007/978-3-642-15844-

5˙36.

[75] E. N. Gilbert, “Random graphs,” The Annals of Mathematical Statistics, vol. 30,

no. 4, pp. 1141–1144, 1959. [Online]. Available: http://www.jstor.org/stable/2237458

[76] B. W. Goldman and W. F. Punch, “Reducing wasted evaluations in Cartesian Genetic

Programming,” in Proc. European Conference on Genetic Programming, EuroGP 2013,

ser. LNCS, vol. 7831. Springer, 2013, pp. 61–72, doi: 10.1007/978-3-642-37207-0˙6.

[77] ——, “Analysis of Cartesian Genetic Programming’s evolutionary mechanisms,”

IEEE Trans. Evolutionary Computation, vol. 19, no. 3, pp. 359–373, 2014, doi:

10.1109/TEVC.2014.2324539.

[78] J. Gomes, P. Urbano, and A. L. Christensen, “Evolution of swarm robotics systems

with novelty search,” Swarm Intelligence, vol. 7, no. 2-3, pp. 115–144, 2013, doi:

10.1007/s11721-013-0081-z.

[79] F. Gomez and R. Miikkulainen, “Incremental evolution of complex general

behavior,” Adaptive Behavior, vol. 5, no. 3-4, pp. 317–342, 1997, doi:

10.1177/105971239700500305.

[80] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Accelerated neural evolution through

cooperatively coevolved synapses,” J. Machine Learning Research, vol. 9, no. May, pp.

937–965, 2008.

[81] F. J. Gomez and R. Miikkulainen, “Solving non-markovian control tasks with neu-

roevolution,” in Proc. 16th International Joint Conference on Artificial Intelligence,

IJCAI’99, vol. 2. Morgan Kaufmann, 1999, pp. 1356–1361.

[82] A. J. Graham and D. A. Pike, “A note on thresholds and connectivity in random

directed graphs,” Atl. Electron. J. Math, vol. 3, no. 1, pp. 1–5, 2008.

[83] C. Gyles and P. Boerlin, “Horizontally transferred genetic elements and their role in

pathogenesis of bacterial disease,” Veterinary pathology, vol. 51, no. 2, pp. 328–340,

2014, doi: 10.1177/0300985813511131.

[84] A. Habel, H.-J. Kreowski, and D. Plump, “Jungle evaluation,” in Recent Trends in

Data Type Specification, WADT’87, Selected Papers, ser. LNCS, vol. 332. Springer,

1988, pp. 92–112, doi: 10.1007/3-540-50325-0˙5.

258

http://dx.doi.org/10.1007/978-3-642-15844-5_36
http://dx.doi.org/10.1007/978-3-642-15844-5_36
http://www.jstor.org/stable/2237458
http://dx.doi.org/10.1007/978-3-642-37207-0_6
http://dx.doi.org/10.1109/TEVC.2014.2324539
http://dx.doi.org/10.1109/TEVC.2014.2324539
http://dx.doi.org/10.1007/s11721-013-0081-z
http://dx.doi.org/10.1007/s11721-013-0081-z
http://dx.doi.org/10.1177/105971239700500305
http://dx.doi.org/10.1177/105971239700500305
http://dx.doi.org/10.1177/0300985813511131
http://dx.doi.org/10.1007/3-540-50325-0_5

References

[85] A. Habel, J. Müller, and D. Plump, “Double-pushout graph transformation revisited,”

Mathematical Structures in Computer Science, vol. 11, no. 5, pp. 637–688, 2001, doi:

10.1017/S0960129501003425.

[86] A. Habel and D. Plump, “Relabelling in graph transformation,” in Proc. International

Conference on Graph Transformation , ICGT 2002, ser. LNCS, vol. 2505. Springer,

2002, pp. 135–147, doi: 10.1007/3-540-45832-8 12.

[87] M. W. Hahn, “Toward a selection theory of molecular evolution,” Evolution, vol. 62,

no. 2, pp. 255–265, 2007.

[88] S. Harding, “Evolution of image filters on graphics processor units using Cartesian

Genetic Programming,” in Proc. IEEE Congress on Evolutionary Computation, CEC

2008. IEEE, 2008, pp. 1921–1928, doi: 10.1109/CEC.2008.4631051.

[89] S. Harding, J. Leitner, and J. Schmidhuber, “Cartesian Genetic Programming for image

processing,” in Genetic Programming theory and practice X, ser. GEVO. Springer,

2013, pp. 31–44, doi: 10.1007/978-1-4614-6846-2˙3.

[90] S. Harding, J. F. Miller, and W. Banzhaf, “Developments in Cartesian Genetic

Programming: self-modifying CGP,” Genetic Programming and Evolvable Machines,

vol. 11, no. 3-4, pp. 397–439, 2010, doi: 10.1007/s10710-010-9114-1.

[91] ——, “Self modifying Cartesian Genetic Programming: finding algorithms that calcu-

late pi and e to arbitrary precision,” in Proc. Genetic and Evolutionary Computation

Conference, GECCO 2010. ACM, 2010, pp. 579–586, doi: 10.1145/1830483.1830591.

[92] I. Harvey, “The microbial genetic algorithm,” in European Conference on Artificial Life,

ECAL 2009, ser. LNCS, vol. 5778. Springer, 2009, pp. 126–133, doi: 10.1007/978-3-

642-21314-4˙16.

[93] I. Harvey and A. Thompson, “Through the labyrinth evolution finds a way: A silicon

ridge,” in Proc. Evolvable Systems: From Biology to Hardware, ICES 1996, ser. LNCS,

vol. 1259. Springer, 1997, pp. 406–422, doi: 10.1007/3-540-63173-9˙62.

[94] M. Hausknecht, J. Lehman, R. Miikkulainen, and P. Stone, “A neuroevolution approach

to general atari game playing,” IEEE Trans. Computational Intelligence and AI in

Games, vol. 6, no. 4, pp. 355–366, 2014, doi: 10.1109/TCIAIG.2013.2294713.

[95] R. Heckel, “Stochastic analysis of graph transformation systems: A case study in P2P

networks,” in Proc. Theoretical Aspects of Computing, ICTAC 2005, ser. LNCS, vol.

259

http://dx.doi.org/10.1017/S0960129501003425
http://dx.doi.org/10.1017/S0960129501003425
http://dx.doi.org/10.1007/3-540-45832-8_12
http://dx.doi.org/10.1109/CEC.2008.4631051
http://dx.doi.org/10.1007/978-1-4614-6846-2_3
http://dx.doi.org/10.1007/s10710-010-9114-1
http://dx.doi.org/10.1145/1830483.1830591
http://dx.doi.org/10.1007/978-3-642-21314-4_16
http://dx.doi.org/10.1007/978-3-642-21314-4_16
http://dx.doi.org/10.1007/3-540-63173-9_62
http://dx.doi.org/10.1109/TCIAIG.2013.2294713

References

3722, 2005, pp. 53–69, doi: 10.1007/11560647˙4.

[96] ——, “Graph transformation in a nutshell,” Electronic notes in theoretical computer

science, vol. 148, no. 1, pp. 187–198, 2006, doi: 10.1016/j.entcs.2005.12.018.

[97] R. Heckel, G. Lajios, and S. Menge, “Stochastic graph transformation systems,”

Fundamenta Informaticae, vol. 74, no. 1, pp. 63–84, 2006.

[98] R. Heckel and P. Torrini, “Stochastic modelling and simulation of mobile systems,” in

Graph Transformations and Model-Driven Engineering - Essays Dedicated to Manfred

Nagl on the Occasion of his 65th Birthday, ser. LNCS, vol. 5765. Springer, 2010, pp.

87–101, doi: 10.1007/978-3-642-17322-6˙5.

[99] T. Helmuth and L. Spector, “General program synthesis benchmark suite,” in Proc.

Genetic and Evolutionary Computation Conference, GECCO 2015. ACM, 2015, pp.

1039–1046, doi: 10.1145/2739480.2754769.

[100] K. Hirasawa, T. Eguchi, J. Zhou, L. Yu, J. Hu, and S. Markon, “A double-deck elevator

group supervisory control system using genetic network programming,” IEEE Trans.

Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 4, pp.

535–550, 2008, doi: 10.1109/TSMCC.2007.913904.

[101] J. H. Holland, “Adaptation in natural and artificial systems. an introductory analy-

sis with application to biology, control, and artificial intelligence,” Ann Arbor, MI:

University of Michigan Press, 1975.

[102] L. Hong, J. R. Woodward, J. Li, and E. Özcan, “Automated design of probability

distributions as mutation operators for evolutionary programming using Genetic Pro-

gramming,” in Proc. European Conference on Genetic Programming, EuroGP 2013,

ser. LNCS, vol. 7831. Springer, 2013, pp. 85–96, doi: 10.1007/978-3-642-37207-0˙8.

[103] T. Hu and W. Banzhaf, “Neutrality and variability: Two sides of evolvability in linear

Genetic Programming,” in Proc. Genetic and Evolutionary Computation Conference,

GECCO 2009. ACM, 2009, pp. 963–970, doi: 10.1145/1569901.1570033.

[104] ——, Neutrality, Robustness, and Evolvability in Genetic Programming. Springer,

2018, pp. 101–117, doi: 10.1007/978-3-319-97088-2˙7.

[105] L. Huelsbergen, “Learning recursive sequences via evolution of machine-language pro-

grams,” in Proc. Second Annual Conference on Genetic Programming. Morgan Kauf-

mann, 1997, pp. 186–194.

260

http://dx.doi.org/10.1007/11560647_4
http://dx.doi.org/10.1016/j.entcs.2005.12.018
http://dx.doi.org/10.1007/978-3-642-17322-6_5
http://dx.doi.org/10.1145/2739480.2754769
http://dx.doi.org/10.1109/TSMCC.2007.913904
http://dx.doi.org/10.1007/978-3-642-37207-0_8
http://dx.doi.org/10.1145/1569901.1570033
http://dx.doi.org/10.1007/978-3-319-97088-2_7

References

[106] J. Husa and R. Kalkreuth, “A comparative study on crossover in Cartesian Genetic

Programming,” in Proc. European Conference on Genetic Programming, EuroGP 2018,

ser. LNCS, vol. 10781. Springer, 2018, pp. 203–219, doi: 10.1007/978-3-319-77553-1˙13.

[107] C. Igel, “Neuroevolution for reinforcement learning using evolution strategies,” in IEEE

Congress on Evolutionary Computation, CEC 2003, vol. 4, IEEE. IEEE, 2003, pp.

2588–2595, doi: 10.1109/CEC.2003.1299414.

[108] H. Jaeger, “The “echo state” approach to analysing and training recurrent neural

networks-with an erratum note,” Bonn, Germany: German National Research Center

for Information Technology GMD Technical Report, vol. 148, no. 34, p. 13, 2001.

[109] D. Jungnickel, Graphs, Networks and Algorithms, 4th ed. Springer, 2013, doi:

10.1007/978-3-540-72780-4.

[110] V. Kabanets and J.-Y. Cai, “Circuit minimization problem,” in Proc. 32nd

annual ACM symposium on Theory of computing. ACM, 2000, pp. 73–79, doi:

10.1145/335305.335314.

[111] R. Kalkreuth, “Towards advanced phenotypic mutations in Cartesian Genetic

Programming,” arXiv preprint arXiv:1803.06127, 2018. [Online]. Available: https:

//arxiv.org/abs/1803.06127

[112] R. Kalkreuth, G. Rudolph, and A. Droschinsky, “A new subgraph crossover for Carte-

sian Genetic Programming,” in Proc. European Conference on Genetic Programming,

EuroGP 2017, ser. LNCS, vol. 10196. Springer, 2017, pp. 294–310, doi: 10.1007/978-

3-319-55696-3˙19.

[113] W. Kantschik and W. Banzhaf, “Linear-tree gp and its comparison with other gp

structures,” in Proc. European Conference on Genetic Programming, EuroGP 2001,

ser. LNCS, vol. 2038. Springer, 2001, pp. 302–312, doi: 10.1007/3-540-45355-5˙24.

[114] ——, “Linear-graph GP-a new GP structure,” in Proc. European Conference on

Genetic Programming, EuroGP 2002, ser. LNCS, vol. 2278. Springer, 2002, pp. 83–92,

doi: 10.1007/3-540-45984-7˙8.

[115] D. R. Karger, “Global min-cuts in RNC, and other ramifications of a simple min-cut

algorithm,” in Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA 1993). Society for Industrial and Applied Mathematics, 1993, pp. 21–30.

[Online]. Available: http://dl.acm.org/citation.cfm?id=313559.313605

261

http://dx.doi.org/10.1007/978-3-319-77553-1_13
http://dx.doi.org/10.1109/CEC.2003.1299414
http://dx.doi.org/10.1007/978-3-540-72780-4
http://dx.doi.org/10.1007/978-3-540-72780-4
http://dx.doi.org/10.1145/335305.335314
http://dx.doi.org/10.1145/335305.335314
https://arxiv.org/abs/1803.06127
https://arxiv.org/abs/1803.06127
http://dx.doi.org/10.1007/978-3-319-55696-3_19
http://dx.doi.org/10.1007/978-3-319-55696-3_19
http://dx.doi.org/10.1007/3-540-45355-5_24
http://dx.doi.org/10.1007/3-540-45984-7_8
http://dl.acm.org/citation.cfm?id=313559.313605

References

[116] ——, “Random sampling in matroids, with applications to graph connectivity and

minimum spanning trees,” in Proc. 34th IEEE Annual Symposium on Foundations

of Computer Science, FOCS 1993. IEEE, 1993, pp. 84–93, doi: 10.1109/S-

FCS.1993.366879.

[117] Y. Kassahun and G. Sommer, “Efficient reinforcement learning through evolutionary

acquisition of neural topologies,” in Proc. 13th European Symposium on

Artificial Neural Networks, ESANN 2005, 2005, pp. 259–266. [Online]. Available:

https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2005-72.pdf

[118] H. Katagiri, K. Hirasama, and J. Hu, “Genetic network programming - application to in-

telligent agents,” in IEEE International Conference on Systems, Man and Cybernetics,

SMC 2000, vol. 5. IEEE, 2000, pp. 3829–3834, doi: 10.1109/ICSMC.2000.886607.

[119] P. J. Keeling and J. D. Palmer, “Horizontal gene transfer in eukaryotic evolution,”

Nature Reviews Genetics, vol. 9, no. 8, p. 605, 2008.

[120] S. Kelly and M. I. Heywood, “Emergent tangled graph representations for atari game

playing agents,” in Proc. European Conference on Genetic Programming, EuroGP

2017, ser. LNCS, vol. 10196. Springer, 2017, pp. 64–79, doi: 10.1007/978-3-319-55696-

3˙5.

[121] ——, “Multi-task learning in atari video games with emergent tangled program graphs,”

in Proc. Genetic and Evolutionary Computation Conference, GECCO 2017. ACM,

2017, pp. 195–202, doi: 10.1145/3071178.3071303.

[122] C. J. Kennedy and C. Giraud-Carrier, “A depth controlling strategy for strongly

typed evolutionary programming,” in Proc. Genetic and Evolutionary Computation

Conference, GECCO ’99, vol. 1. Morgan Kaufmann, 1999, pp. 879–885. [Online].

Available: http://dl.acm.org/citation.cfm?id=2933923.2934037

[123] A. Khan, R. Heckel, P. Torrini, and I. Ráth, “Model-based stochastic simulation of

P2P voip using graph transformation system,” in Proc. International Conference on

Analytical and Stochastic Modeling Techniques and Applications, ASMTA 2010, ser.

LNCS, vol. 6148. Springer, 2010, pp. 204–217, doi: 10.1007/978-3-642-13568-2˙15.

[124] G. M. Khan, J. F. Miller, and D. M. Halliday, “Developing neural structure of two

agents that play checkers using Cartesian Genetic Programming,” in Proc. Genetic and

Evolutionary Computation Conference, GECCO 2008. ACM, 2008, pp. 2169–2174,

doi: 10.1145/1388969.1389042.

262

http://dx.doi.org/10.1109/SFCS.1993.366879
http://dx.doi.org/10.1109/SFCS.1993.366879
https://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2005-72.pdf
http://dx.doi.org/10.1109/ICSMC.2000.886607
http://dx.doi.org/10.1007/978-3-319-55696-3_5
http://dx.doi.org/10.1007/978-3-319-55696-3_5
http://dx.doi.org/10.1145/3071178.3071303
http://dl.acm.org/citation.cfm?id=2933923.2934037
http://dx.doi.org/10.1007/978-3-642-13568-2_15
http://dx.doi.org/10.1145/1388969.1389042

References

[125] M. M. Khan, G. M. Khan, and J. F. Miller, “Efficient representation

of recurrent neural networks for markovian/non-markovian non-linear control

problems,” in Proc. 10th International Conference on Intelligent Systems Design

and Applications, (ISDA 2010). IEEE, 2010, pp. 615–620. [Online]. Available:

https://doi.org/10.1109/ISDA.2010.5687197

[126] ——, “Evolution of neural networks using Cartesian Genetic Programming,” in Proc.

IEEE Congress on Evolutionary Computation, CEC 2010. IEEE, 2010, pp. 1–8, doi:

10.1109/CEC.2010.5586547.

[127] M. Kimura, The neutral theory of molecular evolution. Cambridge University Press,

1983.

[128] J. Koutnik, F. Gomez, and J. Schmidhuber, “Evolving neural networks in compressed

weight space,” in Proc. Genetic and Evolutionary Computation Conference, GECCO

2010. ACM, 2010, pp. 619–626, doi: 10.1145/1830483.1830596.

[129] J. R. Koza, Genetic Programming: on the programming of computers by means of

natural selection. MIT Press, 1993.

[130] ——, “Genetic Programming as a means for programming computers by natural selec-

tion,” Statistics and Computing, vol. 4, no. 2, pp. 87–112, Jun 1994.

[131] J. R. Koza, F. H. B. III, and O. Stiffelman, “Genetic Programming as a Darwinian

invention machine,” in Proc. European Conference on Genetic Programming, EuroGP

1999, ser. LNCS, vol. 1598. Springer, 1999, pp. 93–108, doi: 10.1007/3-540-48885-5˙8.

[132] C. Krause and H. Giese, “Probabilistic graph transformation systems,” in Proc.

International Conference on Graph Transformation, ICGT 2012, ser. LNCS, vol. 7562.

Springer, 2012, pp. 311–325, doi: 10.1007/978-3-642-33654-6˙21.

[133] P. Larrañaga, H. Karshenas, C. Bielza, and R. Santana, “A review on evolutionary

algorithms in Bayesian network learning and inference tasks,” Information Sciences,

vol. 233, pp. 109 – 125, 2013, doi: 10.1016/j.ins.2012.12.051.

[134] P. Larrañaga, M. Poza, Y. Yurramendi, R. H. Murga, and C. M. H. Kuijpers, “Structure

learning of Bayesian networks by genetic algorithms: A performance analysis of control

parameters,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no. 9,

pp. 912–926, 1996, doi: 10.1109/34.537345.

[135] K. S. Leung, K. H. Lee, and S. M. Cheang, “Evolving parallel machine programs for

263

https://doi.org/10.1109/ISDA.2010.5687197
http://dx.doi.org/10.1109/CEC.2010.5586547
http://dx.doi.org/10.1109/CEC.2010.5586547
http://dx.doi.org/10.1145/1830483.1830596
http://dx.doi.org/10.1007/3-540-48885-5_8
http://dx.doi.org/10.1007/978-3-642-33654-6_21
http://dx.doi.org/10.1016/j.ins.2012.12.051
http://dx.doi.org/10.1109/34.537345

References

a multi-alu processor,” in Proc. IEEE Congress on Evolutionary Computation, CEC

2002, vol. 2. IEEE, 2002, pp. 1703–1708, doi: 10.1109/CEC.2002.1004499.

[136] J. Liang, E. Meyerson, and R. Miikkulainen, “Evolutionary architecture search for

deep multitask networks,” in Proc. Genetic and Evolutionary Computation Conference.

ACM, 2018, pp. 466–473, doi: 10.1145/3205455.3205489.

[137] Y. Liu, G. Tempesti, J. A. Walker, J. Timmis, A. M. Tyrrell, and P. Bremner, “A

self-scaling instruction generator using Cartesian Genetic Programming,” in Proc.

European Conference on Genetic Programming, EuroGP 2011, ser. LNCS, vol. 6621.

Springer, 2011, pp. 298–309, doi: 10.1007/978-3-642-20407-4 26.

[138] E. G. López and K. Rodŕıguez-Vázquez, “Multiple interactive outputs in a single tree:

An empirical investigation,” in Proc. European Conference on Genetic Programming,

EuroGP 2007, ser. LNCS, vol. 4445. Springer, 2007, pp. 341–350, doi: 10.1007/978-3-

540-71605-1˙32.

[139] L. A. Lorena, M. G. Narciso, and J. Beasley, “A constructive genetic algorithm for the

generalized assignment problem,” Evolutionary Optimization, vol. 5, pp. 1–19, 2002.

[140] M. Löwe, “Algebraic approach to single-pushout graph transformation,” Theoretical

Computer Science, vol. 109, no. 1&2, pp. 181–224, 1993, doi: 10.1016/0304-

3975(93)90068-5.

[141] S. Luke, Essentials of Metaheuristics, 2nd ed. Lulu, 2013. [Online]. Available:

http://cs.gmu.edu/\simsean/book/metaheuristics/

[142] S. Luke and L. Panait, “A comparison of bloat control methods for Genetic Pro-

gramming,” Evolutionary Computation, vol. 14, no. 3, pp. 309–344, 2006, doi:

10.1162/evco.2006.14.3.309.

[143] S. Luke and L. Spector, “A comparison of crossover and mutation in Genetic Pro-

gramming,” in Proc. Second Annual Conference on Genetic Programming. Morgan

Kaufmann, 1997, pp. 240–248.

[144] P. Machado, F. B. Pereira, J. Tavares, E. Costa, and A. Cardoso, “Evolutionary Turing

machines: The quest for busy beavers,” in Recent Developments in Biologically Inspired

Computing. Idea Group Publishing, 2004, ch. 2, doi: 10.4018/978-1-59140-312-8.ch002.

[145] R. Machado, L. Ribeiro, and R. Heckel, “Rule-based transformation of graph rewriting

rules: Towards higher-order graph grammars,” Theoretical Computer Science, vol. 594,

264

http://dx.doi.org/10.1109/CEC.2002.1004499
http://dx.doi.org/10.1145/3205455.3205489
http://dx.doi.org/10.1007/978-3-642-20407-4_26
http://dx.doi.org/10.1007/978-3-540-71605-1_32
http://dx.doi.org/10.1007/978-3-540-71605-1_32
http://dx.doi.org/10.1016/0304-3975(93)90068-5
http://dx.doi.org/10.1016/0304-3975(93)90068-5
http://cs.gmu.edu/$\sim $sean/book/metaheuristics/
http://dx.doi.org/10.1162/evco.2006.14.3.309
http://dx.doi.org/10.1162/evco.2006.14.3.309
http://dx.doi.org/10.4018/978-1-59140-312-8.ch002

References

pp. 1–23, 2015, doi: 10.1016/j.tcs.2015.01.034.

[146] K. L. Mak, Y. S. Wong, and X. X. Wang, “An adaptive genetic algorithm for manu-

facturing cell formation,” The International J. Advanced Manufacturing Technology,

vol. 16, no. 7, pp. 491–497, 2000, doi: 10.1007/s001700070057.

[147] H. B. Mann and D. R. Whitney, “On a test of whether one of two random variables

is stochastically larger than the other,” Ann. Math. Statist., vol. 18, no. 1, pp. 50–60,

1947.

[148] M. Mascherini and F. M. Stefanini, “M-ga: A genetic algorithm to search

for the best conditional gaussian Bayesian network,” in Proc. International

Conference on Computational Intelligence for Modelling, Control and Automation

and International Conference on Intelligent Agents, Web Technologies and

Internet Commerce, CIMCA-IAWTIC’06, vol. 2. IEEE, 2005, pp. 61–67, doi:

10.1109/CIMCA.2005.1631446.

[149] P. Massey, J. A. Clark, and S. Stepney, “Evolving quantum circuits and programs

through Genetic Programming,” in Proc. Genetic and Evolutionary Computation

Conference, GECCO 2004, ser. LNCS, vol. 3103. Springer, 2004, pp. 569–580, doi:

10.1007/978-3-540-24855-2˙66.

[150] P. McCombie and P. Wilkinson, “The use of the simple genetic algorithm in finding the

critical factor of safety in slope stability analysis,” Computers and Geotechnics, vol. 29,

no. 8, pp. 699–714, 2002, doi: 10.1016/S0266-352X(02)00027-7.

[151] A. Meduna, Formal languages and computation: models and their applications. Auer-

bach Publications, 2014.

[152] E. Mezura-Montes and C. A. C. Coello, “A simple multimembered evolution strategy

to solve constrained optimization problems,” IEEE Trans. Evolutionary Computation,

vol. 9, no. 1, pp. 1–17, 2005, doi: 10.1109/TEVC.2004.836819.

[153] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,

H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep neural networks,” in

Artificial Intelligence in the Age of Neural Networks and Brain Computing. Else-

vier, 2019, pp. 293–312, doi: 10.1016/B978-0-12-815480-9.00015-3.

[154] J. F. Miller, “An empirical study of the efficiency of learning boolean functions us-

ing a Cartesian Genetic Programming approach,” in Proc. Genetic and Evolutionary

Computation Conference, GECCO 1999, vol. 2. Morgan Kaufmann, 1999, pp. 1135–

265

http://dx.doi.org/10.1016/j.tcs.2015.01.034
http://dx.doi.org/10.1007/s001700070057
http://dx.doi.org/10.1109/CIMCA.2005.1631446
http://dx.doi.org/10.1109/CIMCA.2005.1631446
http://dx.doi.org/10.1007/978-3-540-24855-2_66
http://dx.doi.org/10.1007/978-3-540-24855-2_66
http://dx.doi.org/10.1016/S0266-352X(02)00027-7
http://dx.doi.org/10.1109/TEVC.2004.836819
http://dx.doi.org/10.1016/B978-0-12-815480-9.00015-3

References

1142.

[155] J. F. Miller, Ed., Cartesian Genetic Programming. Springer, 2011, doi: 10.1007/978-

3-642-17310-3.

[156] J. F. Miller and S. L. Smith, “Redundancy and computational efficiency in Cartesian

Genetic Programming,” IEEE Trans. Evolutionary Computation, vol. 10, no. 2, pp.

167–174, 2006, doi: 10.1109/TEVC.2006.871253.

[157] J. F. Miller and P. Thomson, “Cartesian Genetic Programming,” in Proc. European

Conference on Genetic Programming, EuroGP 2000, ser. LNCS, vol. 1802. Springer,

2000, pp. 121–132, doi: 10.1007/978-3-540-46239-2 9.

[158] J. F. Miller, “Cartesian Genetic Programming: its status and future,”

Genetic Programming and Evolvable Machines, 2019, doi: 10.1007/s10710-019-09360-

6.

[159] M. Molloy and B. Reed, “A critical point for random graphs with a given degree

sequence,” Random structures & algorithms, vol. 6, no. 2-3, pp. 161–180, 1995.

[160] D. J. Montana, “Strongly typed Genetic Programming,” Evolutionary computation,

vol. 3, no. 2, pp. 199–230, 1995, doi: 10.1162/evco.1995.3.2.199.

[161] D. J. Montana and L. Davis, “Training feedforward neural networks using

genetic algorithms,” in Proc. 11th International Joint Conference on Artificial

Intelligence, IJCAI’89, vol. 1, 1989, pp. 762–767. [Online]. Available: http:

//ijcai.org/Proceedings/89-1/Papers/122.pdf

[162] A. Moraglio, K. Krawiec, and C. G. Johnson, “Geometric semantic Genetic Program-

ming,” in Parallel Problem Solving from Nature, PPSN XII, ser. LNCS, vol. 7491.

Springer, 2012, pp. 21–31, doi: 10.1007/978-3-642-32937-1˙3.

[163] D. E. Moriarty, “Symbiotic evolution of neural networks in sequential decision tasks,”

Ph.D. dissertation, University of Texas at Austin USA, 1997.

[164] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge University Press,

1995.

[165] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design of power-

efficient approximate multipliers for approximate artificial neural networks,” in Proc.

IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2016.

IEEE, 2016, pp. 1–7, doi: 10.1145/2966986.2967021.

266

http://dx.doi.org/10.1007/978-3-642-17310-3
http://dx.doi.org/10.1007/978-3-642-17310-3
http://dx.doi.org/10.1109/TEVC.2006.871253
http://dx.doi.org/10.1007/978-3-540-46239-2_9
http://dx.doi.org/10.1007/s10710-019-09360-6
http://dx.doi.org/10.1007/s10710-019-09360-6
http://dx.doi.org/10.1162/evco.1995.3.2.199
http://ijcai.org/Proceedings/89-1/Papers/122.pdf
http://ijcai.org/Proceedings/89-1/Papers/122.pdf
http://dx.doi.org/10.1007/978-3-642-32937-1_3
http://dx.doi.org/10.1145/2966986.2967021

References

[166] J. Muruzábal and C. Cotta, “A primer on the evolution of equivalence classes of

Bayesian-network structures,” in Parallel Problem Solving from Nature, PPSN VIII,

ser. LNCS, vol. 3242. Springer, 2004, pp. 612–621, doi: 10.1007/978-3-540-30217-9˙62.

[167] A. Naidoo and N. Pillay, “Using Genetic Programming for Turing machine induction,”

in Proc. European Conference on Genetic Programming, EuroGP 2008, ser. LNCS, vol.

4971. Springer, 2008, pp. 350–361, doi: 10.1007/978-3-540-78671-9˙30.

[168] Q. U. Nguyen, X. H. Nguyen, and M. O’Neill, “Semantic aware crossover for Ge-

netic Programming: The case for real-valued function regression,” in Proc. European

Conference on Genetic Programming, EuroGP 2009, ser. LNCS, vol. 5481. Springer,

2009, pp. 292–302, doi: 10.1007/978-3-642-01181-8˙25 .

[169] M. Nicolau, A. Agapitos, M. O’Neill, and A. Brabazon, “Guidelines for defining bench-

mark problems in Genetic Programming,” in Proc. IEEE Congress on Evolutionary

Computation, CEC 2015, May 2015, pp. 1152–1159, doi: 10.1109/CEC.2015.7257019.

[170] M. Nishiguchi and Y. Fujimoto, “Evolution of recursive programs with multi-

niche Genetic Programming (mnGP),” in Proc. 1998 IEEE International Conference

on Evolutionary Computation Proceedings. IEEE, 1998, pp. 247–252, doi:

10.1109/ICEC.1998.699720.

[171] P. Nordin, “A compiling genetic programming system that directly manipulates the

machine code,” in Advances in Genetic Programming. MIT Press, 1994, ch. 14, pp.

311–331.

[172] P. Nordin and W. Banzhaf, “Evolving turing-complete programs for a register machine

with self-modifying code.” in Proc. International Conference on Genetic Algorithms,

ICGA 1995. Morgan Kaufmann, 1995, pp. 318–325.

[173] J. R. Norris, Markov chains, ser. Cambridge series in statistical and probabilistic math-

ematics. Cambridge University Press, 1998.

[174] M. Oltean, “Evolving evolutionary algorithms using linear genetic program-

ming,” Evolutionary Computation, vol. 13, no. 3, pp. 387–410, 2005, doi:

10.1162/1063656054794815.

[175] M. O’Neill and C. Ryan, “Grammatical evolution,” IEEE Trans. Evolutionary

Computation, vol. 5, no. 4, pp. 349–358, 2001, doi: 10.1109/4235.942529.

[176] W. Palacz, “Algebraic hierarchical graph transformation.” J. Computer and System

267

http://dx.doi.org/10.1007/978-3-540-30217-9_62
http://dx.doi.org/10.1007/978-3-540-78671-9_30
http://dx.doi.org/10.1007/978-3-642-01181-8_25
http://dx.doi.org/10.1109/CEC.2015.7257019
http://dx.doi.org/10.1109/ICEC.1998.699720
http://dx.doi.org/10.1109/ICEC.1998.699720
http://dx.doi.org/10.1162/1063656054794815
http://dx.doi.org/10.1162/1063656054794815
http://dx.doi.org/10.1109/4235.942529

References

Science, vol. 68, no. 3, pp. 497–520, 2004, doi: 10.1016/S0022-0000(03)00064-3.

[177] F. B. Pereira, P. Machado, E. Costa, and A. Cardoso, “Graph based crossover – a case

study with the busy beaver problem,” in Proc. Genetic and Evolutionary Computation

Conference, GECCO 1999. Morgan Kaufmann, 1999, pp. 1149–1155.

[178] T. A. Pham, Q. U. Nguyen, X. H. Nguyen, and M. O’Neill, “Examining the diversity

property of semantic similarity based crossover,” in Proc. European Conference on

Genetic Programming, EuroGP 2013, ser. LNCS, vol. 7831. Springer, 2013, pp. 265–

276, doi: 10.1007/978-3-642-37207-0˙23.

[179] S. Picek, C. Carlet, S. Guilley, J. F. Miller, and D. Jakobovic, “Evolutionary algorithms

for boolean functions in diverse domains of cryptography,” Evolutionary computation,

vol. 24, no. 4, pp. 667–694, 2016.

[180] S. Picek, D. Jakobovic, J. F. Miller, L. Batina, and M. Cupic, “Cryptographic boolean

functions: One output, many design criteria,” Applied Soft Computing, vol. 40, pp.

635–653, 2016, doi: 10.1016/j.asoc.2015.10.066.

[181] D. Plump, “Term graph rewriting,” in Handbook of Graph Grammars and Computing

by Graph Transformation, H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, Eds.

World Scientific, 1999, vol. 2, ch. 1, pp. 3–61, doi: 10.1142/9789812815149 0001.

[182] ——, “The design of GP 2,” in Proc. Workshop on Reduction Strategies in

Rewriting and Programming, WRS 2011, ser. EPTCS, vol. 82, 2012, pp. 1–16, doi:

10.4204/EPTCS.82.1.

[183] ——, “Reasoning about graph programs,” in Proc. Computing with Terms and

Graphs, TERMGRAPH 2016, ser. EPTCS, vol. 225, 2016, pp. 35–44, doi:

10.4204/EPTCS.225.6.

[184] ——, “From imperative to rule-based graph programs,” J. Logical and Algebraic

Methods in Programming, vol. 88, pp. 154–173, 2017, doi: 10.1016/j.jlamp.2016.12.001.

[185] D. Plump and S. Steinert, “Towards graph programs for graph algorithms,” in Proc.

International Conference on Graph Transformation, ICGT 2004, ser. LNCS, vol. 3256.

Springer, 2004, pp. 128–143, doi: 10.1007/978-3-540-30203-2˙11.

[186] R. Poli, Parallel distributed Genetic Programming. University of Birmingham, Cog-

nitive Science Research Centre, 1996.

[187] ——, “Some steps towards a form of Parallel Distributed Genetic Programming,” in

268

http://dx.doi.org/10.1016/S0022-0000(03)00064-3
http://dx.doi.org/10.1007/978-3-642-37207-0_23
http://dx.doi.org/10.1016/j.asoc.2015.10.066
http://dx.doi.org/10.1142/9789812815149_0001
http://dx.doi.org/10.4204/EPTCS.82.1
http://dx.doi.org/10.4204/EPTCS.82.1
http://dx.doi.org/10.4204/EPTCS.225.6
http://dx.doi.org/10.4204/EPTCS.225.6
http://dx.doi.org/10.1016/j.jlamp.2016.12.001
http://dx.doi.org/10.1007/978-3-540-30203-2_11

References

Proc. First On-line Workshop on Soft Computing, 1996, pp. 290–295.

[188] ——, “Evolution of graph-like programs with parallel distributed Genetic Program-

ming,” in Proc. International Conference on Genetic Algorithms, ICGA 1997. Morgan

Kaufmann, 1997, pp. 346–353.

[189] ——, “Parallel Distributed Genetic Programming,” in New Ideas in Optimization.

McGraw-Hill, 1999, pp. 403–431.

[190] ——, “A simple but theoretically-motivated method to control bloat in genetic pro-

gramming,” in Proc. European Conference on Genetic Programming, EuroGP 2003,

ser. LNCS, vol. 2610. Springer, 2003, pp. 204–217, doi: 10.1007/3-540-36599-0˙19.

[191] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A field guide to

Genetic Programming. Lulu. com, 2008. [Online]. Available: https://dces.essex.ac.

uk/staff/rpoli/gp-field-guide/A Field Guide to Genetic Programming.pdf

[192] J. C. F. Pujol and R. Poli, “Evolving the topology and the weights of neural networks

using a dual representation,” Applied Intelligence, vol. 8, no. 1, pp. 73–84, 1998, doi:

10.1023/A:1008272615525.

[193] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image

classifier architecture search,” in Proc. the AAAI Conference on Artificial Intelligence,

vol. 33, 2019, pp. 4780–4789, doi: 10.1609/aaai.v33i01.33014780.

[194] C. R. Reeves, “A genetic algorithm for flowshop sequencing,” Computers & Operations

Research, vol. 22, no. 1, pp. 5–13, 1995, doi: 10.1016/0305-0548(93)E0014-K.

[195] C. W. Rempis, “Evolving complex neuro-controllers with interactively constrained

neuro-evolution,” Ph.D. dissertation, University of Osnabrück, 2012. [Online].

Available: http://d-nb.info/1030399018

[196] F. Rothlauf and D. E. Goldberg, “Pruefer numbers and genetic algorithms: A lesson on

how the low locality of an encoding can harm the performance of gas,” in Proc. Parallel

Problem Solving from Nature, PPSN VI, ser. LNCS, vol. 1917. Springer, 2000, pp.

395–404, doi: 10.1007/3-540-45356-3 39.

[197] G. Rozenberg and A. Salomaa, The mathematical theory of L systems. Academic

press, 1980.

[198] G. Rudolph, “Global optimization by means of distributed evolution strategies,” in

Proc. Parallel Problem Solving from Nature, PPSN I, ser. LNCS, vol. 496. Springer,

269

http://dx.doi.org/10.1007/3-540-36599-0_19
https://dces.essex.ac.uk/staff/rpoli/gp-field-guide/A_Field_Guide_to_Genetic_Programming.pdf
https://dces.essex.ac.uk/staff/rpoli/gp-field-guide/A_Field_Guide_to_Genetic_Programming.pdf
http://dx.doi.org/10.1023/A:1008272615525
http://dx.doi.org/10.1023/A:1008272615525
http://dx.doi.org/10.1609/aaai.v33i01.33014780
http://dx.doi.org/10.1016/0305-0548(93)E0014-K
http://d-nb.info/1030399018
http://dx.doi.org/10.1007/3-540-45356-3_39

References

1990, pp. 209–213, doi: 10.1007/BFb0029754.

[199] C. Ryan, J. J. Collins, and M. O’Neill, “Grammatical evolution: Evolv-

ing programs for an arbitrary language,” in Proc. European Conference on

Genetic Programming, EuroGP 1998, ser. LNCS, vol. 1391. Springer, 1998, pp. 83–96,

doi: 10.1007/BFb0055930.

[200] J. A. Schwartz, N. E. Curtis, and S. K. Pierce, “Fish labeling reveals a horizontally

transferred algal (Vaucheria litorea) nuclear gene on a sea slug (Elysia chlorotica) chro-

mosome,” The Biological Bulletin, vol. 227, no. 3, pp. 300–312, 2014, doi: 10.1086/B-

BLv227n3p300.

[201] L. Sekanina, S. L. Harding, W. Banzhaf, and T. Kowaliw, “Image processing and CGP,”

in Cartesian Genetic Programming. Springer, 2011, pp. 181–215, doi: 10.1007/978-3-

642-17310-3˙6.

[202] R. Serfozo, Basics of applied stochastic processes. Springer, 2009, doi: 10.1007/978-

3-540-89332-5.

[203] S. Shirakawa and T. Nagao, “Evolution of sorting algorithm using graph struc-

tured program evolution,” in 2007 IEEE International Conference on Systems, Man

and Cybernetics, SMC 2007. IEEE, 2007, pp. 1256–1261, doi: 10.1109/IC-

SMC.2007.4413828.

[204] ——, “Graph structured program evolution with automatically defined nodes,” in Proc.

Genetic and Evolutionary Computation Conference, GECCO 2009. ACM, 2009, pp.

1107–1114, doi: 10.1145/1569901.1570050.

[205] ——, “Graph structured program evolution: Evolution of loop structures,” in

Genetic Programming Theory and Practice VII, ser. GEVO. Springer, 2010, pp. 177–

194, doi: 10.1007/978-1-4419-1626-6˙11.

[206] S. Shirakawa, S. Ogino, and T. Nagao, “Graph structured program evolution,” in Proc.

Genetic and Evolutionary Computation Conference, GECCO 2007. ACM, 2007, pp.

1686–1693, doi: 10.1145/1276958.1277290.

[207] N. T. Siebel and G. Sommer, “Evolutionary reinforcement learning of artificial neural

networks,” International J. Hybrid Intelligent Systems, vol. 4, no. 3, pp. 171–183, 2007,

doi: 10.3233/HIS-2007-4304.

[208] S. Silva and E. Costa, “Resource-limited Genetic Programming: the dynamic ap-

270

http://dx.doi.org/10.1007/BFb0029754
http://dx.doi.org/10.1007/BFb0055930
http://dx.doi.org/10.1086/BBLv227n3p300
http://dx.doi.org/10.1086/BBLv227n3p300
http://dx.doi.org/10.1007/978-3-642-17310-3_6
http://dx.doi.org/10.1007/978-3-642-17310-3_6
http://dx.doi.org/10.1007/978-3-540-89332-5
http://dx.doi.org/10.1007/978-3-540-89332-5
http://dx.doi.org/10.1109/ICSMC.2007.4413828
http://dx.doi.org/10.1109/ICSMC.2007.4413828
http://dx.doi.org/10.1145/1569901.1570050
http://dx.doi.org/10.1007/978-1-4419-1626-6_11
http://dx.doi.org/10.1145/1276958.1277290
http://dx.doi.org/10.3233/HIS-2007-4304

References

proach,” in Proc. Genetic and Evolutionary Computation Conference, GECCO 2005.

ACM, 2005, pp. 1673–1680, doi: 10.1145/1068009.1068290.

[209] S. Skiena, The Algorithm Design Manual, 2nd ed. Springer, 2008.

[210] R. J. Smith and M. I. Heywood, “Scaling tangled program graphs to visual reinforce-

ment learning in vizdoom,” in Proc. European Conference on Genetic Programming,

EuroGP 2018, ser. LNCS, vol. 10781. Springer, 2018, pp. 135–150, doi: 10.1007/978-

3-319-77553-1˙9.

[211] D. Snyder, A. Goudarzi, and C. Teuscher, “Finding optimal random boolean networks

for reservoir computing,” in Proc. International Conference on Artificial Life, ALIFE

2012. MIT Press, 2012, pp. 259–266, doi: 10.7551/978-0-262-31050-5-ch035.

[212] L. Spector, “Autoconstructive evolution: Push, pushGP, and pushpop,” in Proc.

Genetic and Evolutionary Computation Conference, GECCO 2001. Morgan Kauf-

mann, 2001, pp. 137–146.

[213] L. Spector, H. Barnum, H. J. Bernstein, and N. Swamy, “Quantum computing ap-

plications of Genetic Programming,” Advances in Genetic Programming, vol. 3, pp.

135–160, 1999.

[214] L. Spector and J. Klein, “Machine invention of quantum computing circuits by means

of Genetic Programming,” Artificial Intelligence for Engineering Design, Analysis and

Manufacturing, vol. 22, no. 3, pp. 275–283, 2008.

[215] L. Spector, B. Martin, K. Harrington, and T. Helmuth, “Tag-based modules in genetic

programming,” in Proc. Genetic and Evolutionary Computation Conference, GECCO

2011. ACM, 2011, pp. 1419–1426, doi: 10.1145/2001576.2001767.

[216] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,” IEEE Computer,

vol. 27, no. 6, pp. 17–26, 1994, doi: 10.1109/2.294849.

[217] R. Stadelhofer, W. Banzhaf, and D. Suter, “Evolving blackbox quantum algorithms

using Genetic Programming,” Artificial Intelligence for Engineering Design, Analysis

and Manufacturing, vol. 22, no. 3, pp. 285–297, 2008.

[218] K. O. Stanley, “Compositional pattern producing networks: A novel abstraction of

development,” Genetic Programming and evolvable machines, vol. 8, no. 2, pp. 131–

162, 2007, doi: 10.1007/s10710-007-9028-8.

[219] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time neuroevolution in the

271

http://dx.doi.org/10.1145/1068009.1068290
http://dx.doi.org/10.1007/978-3-319-77553-1_9
http://dx.doi.org/10.1007/978-3-319-77553-1_9
http://dx.doi.org/10.7551/978-0-262-31050-5-ch035
http://dx.doi.org/10.1145/2001576.2001767
http://dx.doi.org/10.1109/2.294849
http://dx.doi.org/10.1007/s10710-007-9028-8

References

NERO video game,” IEEE Trans. Evolutionary Computation, vol. 9, no. 6, pp. 653–668,

2005, doi: 10.1109/TEVC.2005.856210.

[220] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based encoding for

evolving large-scale neural networks,” Artificial life, vol. 15, no. 2, pp. 185–212, 2009,

doi: 10.1162/artl.2009.15.2.15202.

[221] K. O. Stanley and R. Miikkulainen, “Efficient reinforcement learning through evolv-

ing neural network topologies,” in Proc. Genetic and Evolutionary Computation

Conference, GECCO 2002. Morgan Kaufmann, 2002, pp. 569–577.

[222] ——, “Evolving neural networks through augmenting topologies,” Evolutionary

Computation, vol. 10, no. 2, pp. 99–127, 2002, doi: 10.1162/106365602320169811.

[223] K. O. Stanley, “Efficient evolution of neural networks through complexification,”

Ph.D. dissertation, The University of Texas at Austin, 2004. [Online]. Available:

http://nn.cs.utexas.edu/?stanley:phd2004

[224] S. Steinert, “The graph programming language GP,” Ph.D. dissertation, The

University of York, 2007. [Online]. Available: http://www.cs.york.ac.uk/ftpdir/

reports/2007/YCST/15/YCST-2007-15.pdf

[225] S. Stepney and J. A. Clark, “Searching for quantum programs and quantum protocols,”

J. Computational and Theoretical Nanoscience, vol. 5, no. 5, pp. 942–969, 2008, doi:

10.1166/jctn.2008.2535.

[226] M. Suganuma, S. Shirakawa, and T. Nagao, “A Genetic Programming approach to

designing convolutional neural network architectures,” in Proc. of the Genetic and

Evolutionary Computation Conference, GECCO 2017. ACM, 2017, pp. 497–504, doi:

10.1145/3071178.3071229.

[227] J. Swan, P. De Causmaecker, S. Martin, and E. Özcan, A Re-characterization of

Hyper-Heuristics. Springer, 2018, pp. 75–89, doi: 10.1007/978-3-319-58253-5˙5.

[228] J. Swan, K. Krawiec, and Z. A. Kocsis, “Stochastic synthesis of recursive functions

made easy with bananas, lenses, envelopes and barbed wire,” Genetic Programming

and Evolvable Machines, vol. 20, no. 3, pp. 327–350, 2019, doi: 10.1007/s10710-019-

09347-3.

[229] É. D. Taillard, L. M. Gambardella, M. Gendreau, and J. Potvin, “Adaptive memory

programming: A unified view of metaheuristics,” European J. Operational Research,

272

http://dx.doi.org/10.1109/TEVC.2005.856210
http://dx.doi.org/10.1162/artl.2009.15.2.15202
http://dx.doi.org/10.1162/106365602320169811
http://nn.cs.utexas.edu/?stanley:phd2004
http://www.cs.york.ac.uk/ftpdir/reports/2007/YCST/15/YCST-2007-15.pdf
http://www.cs.york.ac.uk/ftpdir/reports/2007/YCST/15/YCST-2007-15.pdf
http://dx.doi.org/10.1166/jctn.2008.2535
http://dx.doi.org/10.1166/jctn.2008.2535
http://dx.doi.org/10.1145/3071178.3071229
http://dx.doi.org/10.1145/3071178.3071229
http://dx.doi.org/10.1007/978-3-319-58253-5_5
http://dx.doi.org/10.1007/s10710-019-09347-3
http://dx.doi.org/10.1007/s10710-019-09347-3

References

vol. 135, no. 1, pp. 1–16, 2001, doi: 10.1016/S0377-2217(00)00268-X.

[230] J. Tanomaru and A. Azuma, “Automatic generation of Turing machines by a

genetic approach,” in Proc. The First International Workshop on Machine Learning,

Forecasting, and Optimization, MALFO96, 1996, pp. 173–184. [Online]. Available:

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/tanomaru 1996 tm.pdf

[231] A. Teller and M. Veloso, “Pado: Learning tree structured algorithms for orchestra-

tion into an object recognition system.” Carnegie-Mellon Univ Pittsburg PA Dept of

Computer Science, Tech. Rep., 1995.

[232] ——, “Pado: A new learning architecture for object recognition,” Symbolic visual

learning, pp. 81–116, 1996.

[233] Tina Yu, “Structure abstraction and genetic programming,” in Proc. IEEE Congress

on Evolutionary Computation, CEC 1999, vol. 1. IEEE, 1999, pp. 652–659, doi:

10.1109/CEC.1999.781995.

[234] P. Torrini, R. Heckel, and I. Ráth, “Stochastic simulation of graph transformation

systems,” in Proc. Fundamental Approaches to Software Engineering, FASE 2010, ser.

LNCS, vol. 6013. Springer, 2010, pp. 154–157, doi: 10.1007/978-3-642-12029-9˙11.

[235] Y. Tsoy and V. Spitsyn, “Using genetic algorithm with adaptive mutation mechanism

for neural networks design and training,” in Proce. 9th Russian-Korean International

Symposium on Science and Technology, KORUS 2005. IEEE, 2005, pp. 709–714, doi:

10.1109/KORUS.2005.1507882.

[236] A. Turner, “Evolving artificial neural networks using Cartesian Genetic Programming,”

Ph.D. dissertation, University of York, 2015. [Online]. Available: http://etheses.

whiterose.ac.uk/12035/1/thesis.pdf

[237] A. Turner and J. Miller, “Cartesian Genetic Programming: Why no bloat?” in Proc.

European Conference on Genetic Programming, EuroGP 2014, ser. LNCS, vol. 8599.

Springer, 2014, pp. 222–233.

[238] A. J. Turner and J. F. Miller, “Cartesian Genetic Programming encoded artifi-

cial neural networks: a comparison using three benchmarks,” in Proc. Genetic and

Evolutionary Computation Conference, GECCO 2013. ACM, 2013, pp. 1005–1012,

doi: 10.1145/2463372.2463484.

[239] ——, “The importance of topology evolution in neuroevolution: A case study us-

273

http://dx.doi.org/10.1016/S0377-2217(00)00268-X
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/tanomaru_1996_tm.pdf
http://dx.doi.org/10.1109/CEC.1999.781995
http://dx.doi.org/10.1109/CEC.1999.781995
http://dx.doi.org/10.1007/978-3-642-12029-9_11
http://dx.doi.org/10.1109/KORUS.2005.1507882
http://dx.doi.org/10.1109/KORUS.2005.1507882
http://etheses.whiterose.ac.uk/12035/1/thesis.pdf
http://etheses.whiterose.ac.uk/12035/1/thesis.pdf
http://dx.doi.org/10.1145/2463372.2463484

References

ing Cartesian Genetic Programming of artificial neural networks,” in Research and

Development in Intelligent Systems XXX, SGAI 2013. Springer, 2013, pp. 213–226,

doi: 10.1007/978-3-319-02621-3˙15.

[240] ——, “Cartesian Genetic Programming: Why no bloat?” in Proc. European Conference

on Genetic Programming, EuroGP 2014, ser. LNCS, vol. 8599. Springer, 2014, pp.

222–233, doi: 10.1007/978-3-662-44303-3˙19.

[241] ——, “Recurrent Cartesian Genetic Programming,” in Proc. Parallel Problem Solving

from Nature, PPSN 2014, ser. LNCS, vol. 8672. Springer, 2014, pp. 476–486, doi:

10.1007/978-3-319-10762-2˙47.

[242] ——, “Recurrent Cartesian Genetic Programming applied to famous mathematical

sequences,” in Proc. Seventh York Doctoral Symposium on Computer Science &

Electronics, YDS 2014, 2014, pp. 37–46.

[243] ——, “Introducing a cross platform open source Cartesian Genetic Programming li-

brary,” Genetic Programming and Evolvable Machines, vol. 16, no. 1, pp. 83–91, 2015,

doi: 10.1007/s10710-014-9233-1.

[244] ——, “Neutral genetic drift: an investigation using Cartesian Genetic Programming,”

Genetic Programming and Evolvable Machines, vol. 16, no. 4, pp. 531–558, 2015, doi:

10.1007/s10710-015-9244-6.

[245] ——, “Recurrent Cartesian Genetic Programming of artificial neural networks,”

Genetic Programming and Evolvable Machines, vol. 18, no. 2, pp. 185–212, 2017, doi:

10.1007/s10710-016-9276-6.

[246] L. Vanneschi, M. Castelli, and S. Silva, “A survey of semantic methods in Genetic

Programming,” Genetic Programming and Evolvable Machines, vol. 15, no. 2, pp. 195–

214, Jun 2014, doi: 10.1007/s10710-013-9210-0.

[247] L. Vanneschi, Y. Pirola, G. Mauri, M. Tomassini, P. Collard, and S. Verel, “A study

of the neutrality of boolean function landscapes in Genetic Programming,” Theoretical

Computer Science, vol. 425, pp. 34 – 57, 2012, doi: 10.1016/j.tcs.2011.03.011.

[248] A. Vargha and H. D. Delaney, “A critique and improvement of the CL common language

effect size statistics of McGraw and Wong,” J. Educational and Behavioral Statistics,

vol. 25, no. 2, pp. 101–132, 2000.

[249] Z. Vasicek, “Cartesian GP in optimization of combinational circuits with hundreds of in-

274

http://dx.doi.org/10.1007/978-3-319-02621-3_15
http://dx.doi.org/10.1007/978-3-662-44303-3_19
http://dx.doi.org/10.1007/978-3-319-10762-2_47
http://dx.doi.org/10.1007/978-3-319-10762-2_47
http://dx.doi.org/10.1007/s10710-014-9233-1
http://dx.doi.org/10.1007/s10710-015-9244-6
http://dx.doi.org/10.1007/s10710-015-9244-6
http://dx.doi.org/10.1007/s10710-016-9276-6
http://dx.doi.org/10.1007/s10710-016-9276-6
http://dx.doi.org/10.1007/s10710-013-9210-0
http://dx.doi.org/10.1016/j.tcs.2011.03.011

References

puts and thousands of gates,” in Proc. European Conference on Genetic Programming,

EuroGP 2015, ser. LNCS, vol. 9025. Springer, 2015, pp. 139–150, doi: 10.1007/978-3-

319-16501-1˙12.

[250] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate digital circuits

design,” IEEE Trans. Evolutionary Computation, vol. 19, no. 3, pp. 432–444, 2014,

doi: 10.1109/TEVC.2014.2336175.

[251] V. K. Vassilev and J. F. Miller, “The advantages of landscape neutrality in digital circuit

evolution,” in Proc. 3rd International Conference on Evolvable Systems, ICES 2000,

ser. LNCS, vol. 1801. Springer, 2000, pp. 252–263, doi: 10.1007/3-540-46406-9˙25.

[252] M. D. Vose and A. H. Wright, “The simple genetic algorithm and the walsh trans-

form: Part i, theory,” Evolutionary Computation, vol. 6, no. 3, pp. 253–273, 1998, doi:

10.1162/evco.1998.6.3.253.

[253] J. A. Walker and J. F. Miller, “The automatic acquisition, evolution and reuse of

modules in Cartesian Genetic Programming,” IEEE Trans. Evolutionary Computation,

vol. 12, no. 4, pp. 397–417, 2008, doi: 10.1109/TEVC.2007.903549.

[254] J. Walker and J. Miller, “Evolution and acquisition of modules in Cartesian Genetic

Programming,” Proc. European Conference on Genetic Programming, EuroGP 2004,

vol. 3003, pp. 187–197, 2004, doi: 10.1007/978-3-540-24650-3˙17.

[255] E. A. Wan, “Time series prediction by using a connectionist network with internal delay

lines,” in Time Series Prediction, vol. 15. Addison-Wesley, 1993, pp. 195–195.

[256] D. Whitley, S. Rana, and R. B. Heckendorn, “The island model genetic

algorithm: On separability, population size and convergence,” CIT. J. computing

and information technology, vol. 7, no. 1, pp. 33–47, 1999. [Online]. Available:

http://cit.fer.hr/index.php/CIT/article/view/2919/1783

[257] L. D. Whitley, T. Starkweather, and C. Bogart, “Genetic algorithms and neural net-

works: optimizing connections and connectivity,” Parallel Computing, vol. 14, no. 3,

pp. 347–361, 1990, doi: 10.1016/0167-8191(90)90086-O.

[258] A. P. Wieland, “Evolving controls for unstable systems,” in Connectionist Models.

Elsevier, 1991, pp. 91–102.

[259] ——, “Evolving neural network controllers for unstable systems,” in Seattle

International Joint Conference on Neural Networks, IJCNN 91, vol. 2. IEEE, 1991,

275

http://dx.doi.org/10.1007/978-3-319-16501-1_12
http://dx.doi.org/10.1007/978-3-319-16501-1_12
http://dx.doi.org/10.1109/TEVC.2014.2336175
http://dx.doi.org/10.1007/3-540-46406-9_25
http://dx.doi.org/10.1162/evco.1998.6.3.253
http://dx.doi.org/10.1162/evco.1998.6.3.253
http://dx.doi.org/10.1109/TEVC.2007.903549
http://dx.doi.org/10.1007/978-3-540-24650-3_17
http://cit.fer.hr/index.php/CIT/article/view/2919/1783
http://dx.doi.org/10.1016/0167-8191(90)90086-O

References

pp. 667–673, doi: 10.1109/IJCNN.1991.155416.

[260] D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber, “Solving deep memory

POMDPs with recurrent policy gradients,” in Proc. Artificial Neural Networks, ICANN

2007, ser. LNCS, vol. 4668. Springer, 2007, pp. 697–706, doi: 10.1007/978-3-540-74690-

4˙71.

[261] M. L. Wong, W. Lam, and K. S. Leung, “Using evolutionary programming and mini-

mum description length principle for data mining of Bayesian networks,” IEEE Trans.

Pattern Analysis and Machine Intelligence, vol. 21, no. 2, pp. 174–178, 1999, doi:

10.1109/34.748825.

[262] M. L. Wong and K. S. Leung, “Learning recursive functions from noisy exam-

ples using generic Genetic Programming,” in Proc. First Annual Conference on

Genetic Programming. MIT Press, 1996, pp. 238–246.

[263] J. R. Woodward and J. Swan, “The automatic generation of mutation operators

for genetic algorithms,” in Proc. Genetic and Evolutionary Computation Conference

(GECCO 12). ACM, 2012, pp. 67–74, doi: 10.1145/2330784.2330796.

[264] X. Yao and Y. Liu, “A new evolutionary system for evolving artificial neural networks,”

IEEE Trans. neural networks, vol. 8, no. 3, pp. 694–713, 1997, doi: 10.1109/72.572107.

[265] S. Yoshida, S. Maruyama, H. Nozaki, and K. Shirasu, “Horizontal gene transfer by

the parasitic plant Striga hermonthica,” Science, vol. 328, no. 5982, p. 1128, 2010, doi:

10.1126/science.1187145.

[266] T. Yu and J. Miller, “Finding needles in haystacks is not hard with neutrality,” in Proc.

European Conference on Genetic Programming, EuroGP 2002, ser. LNCS, vol. 2278.

Springer, 2002, pp. 13–25, doi: 10.1007/3-540-45984-7˙2.

[267] J. Zhang, “Evolution by gene duplication: an update,” Trends in ecology & evolution,

vol. 18, no. 6, pp. 292–298, 2003, doi: 10.1016/S0169-5347(03)00033-8.

[268] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto

evolutionary algorithm,” TIK-report, 2001, doi: 10.3929/ethz-a-004284029.

276

http://dx.doi.org/10.1109/IJCNN.1991.155416
http://dx.doi.org/10.1007/978-3-540-74690-4_71
http://dx.doi.org/10.1007/978-3-540-74690-4_71
http://dx.doi.org/10.1109/34.748825
http://dx.doi.org/10.1109/34.748825
http://dx.doi.org/10.1145/2330784.2330796
http://dx.doi.org/10.1109/72.572107
http://dx.doi.org/10.1126/science.1187145
http://dx.doi.org/10.1126/science.1187145
http://dx.doi.org/10.1007/3-540-45984-7_2
http://dx.doi.org/10.1016/S0169-5347(03)00033-8
http://dx.doi.org/10.3929/ethz-a-004284029

	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Acknowledgements
	Declaration
	Introduction
	Motivation
	Thesis Aims
	Thesis Contributions
	Thesis Outline

	Context
	Introduction
	Graph Programming
	Graphs and Graph Transformation
	Double-Pushout Approach
	GP 2
	Probabilistic Approaches to Graph Transformation

	Evolutionary Computation
	Genetic Algorithms
	Evolution Strategies
	Genetic Programming
	Neuroevolution

	Graphs in Evolutionary Computation
	Cartesian Genetic Programming
	Parallel Distributed Genetic Programming
	Neuroevolution of Augmenting Topologies
	Other Graph-Based Evolutionary Algorithms

	Conclusions and Directions for Research

	Probabilistic Graph Programming
	Introduction
	Probabilistic Graph Programming
	Syntax and Semantics
	Existence of a Markov Chain
	Implementation of P-GP 2

	Example Probabilistic Graph Programs
	Probabilistic Vertex Colouring
	Karger's Minimum Cut Algorithm
	G(n, p) model for Random Graphs
	D(n, M) model for Directed Random Graphs

	Related Work
	Conclusions and Future Work

	Function Graphs
	Introduction
	Intuition and Example Function Graphs
	1-Bit Adder: Multiple Outputs and Intronic Material
	Newton's Law of Gravitation: Ordered Edges
	Fibonacci Sequence: Recurrent Edges and Stateful Programs
	A Simple Neural Network: Weighted Edges and Biased Nodes

	Semantics of Function Graphs
	Definition of Function Graphs
	Behaviour of Function Graphs

	Conclusions and Future Work

	Evolving Graphs by Graph Programming
	Introduction
	Initialisation
	Mutation
	Edge Mutation
	Node Mutation
	Binomial Mutation

	1 + Evolutionary Algorithm
	Example: Learning an XOR Gate
	Related Work
	Cartesian Genetic Programming
	Comparison with Cartesian Genetic Programming

	Conclusions and Future Work

	Benchmarking EGGP
	Introduction
	Statistical Comparison throughout this Thesis
	Digital Circuit Experiments
	Digital Circuit Results
	Digital Circuit Discussion
	Symbolic Regression Experiments
	Symbolic Regression Results
	General Discussion
	Conclusions and Future Work

	Evolving Recurrent Graphs by Graph Programming
	Introduction
	Initialisation
	Mutation
	Non-Recurrent Edge Mutation
	Recurrent Edge Mutation

	Comparison with Recurrent Cartesian Genetic Programming
	Digital Counter Experiments
	Digital Counter Results
	Mathematical Sequence Experiments
	Mathematical Sequence Results
	Generalising n-bit Parity Check Experiments
	Generalising n-bit Parity Check Results
	Conclusions and Future Work

	Evolving Graphs with Semantic Neutral Drift
	Introduction
	Neutrality in Genetic Programming
	Semantic Neutral Drift
	The Concept
	Designing Semantic Neutral Drift
	Variations on our approach

	Digital Circuit Experiments
	Digital Circuit Results
	Analysis
	Neutral Drift or Neutral Growth?
	DMN and ID in Combination
	{AND, OR, NOT}: A Harder Function Set?

	Conclusions and Future Work

	Evolving Graphs with Horizontal Gene Transfer
	Introduction
	Depth Control
	Horizontal Gene Transfer in Evolving Graphs by Graph Programming
	Active-Neutral Transfer
	The Evolutionary Algorithm

	Symbolic Regression Experiments
	Experimental Settings
	Implementation

	Symbolic Regression Results
	Building EGGP_HGT: H_1, H_2, H_3, H_4
	EGGP_HGT vs. TGP & CGP: H_4, H_6

	Neuroevolution Experiments
	Pole Balancing Benchmarks
	Representation and Genetic Operators
	Experimental Settings

	Neuroevolution Results
	Conclusions and Future Work

	Conclusions and Future Work
	Overall Conclusions
	Future Work
	New Domains
	Evolving Hierarchical Graphs
	Meta-Learning of Landscapes

	References

