
High Fidelity Approximation of Slow Simulators Using Machine Learning for
Real-time Simulation/Optimization

Sudip Regmi Larry M. Deschaine, PE Sharad R. Regmi, PE
Hinman Box 2999
Dartmouth College

Science Application International
Corporation/Chalmers

Science Applications
International Corporation

Hanover, NH 03755 Suite 200, 360 Bay Street 11251 Roger Bacon Drive
Sudip.Regmi@Dartmouth.edu Augusta, GA 30901 Reston , VA 20190

 Larry.M.Deschaine@alum.mit.edu Sharad.R.Regmi@saic.com

Keywords: Simulation, Machine Learning,
Optimization

Abstract

Simulation and optimization of industrial
processes is cost effective and profit productive. Often,
high fidelity models require extensive resources to
code and require long execution times. In this work, we
examine using machine learning techniques to replace
simulation models with high fidelity approximations.
We test linear genetic programming, linear regression,
and machine learning paradigms. The results show that
high fidelity approximations (R2 of 0.99) are possible
that execute in a fraction of the time required by the
original simulator. These solutions are coded into web
services so that a plant manager can input standard
information into a user friendly web page, but produce
results in a few milliseconds as opposed to hours. This
advantage allows for real-time dynamic planning and
optimization on the plant floor.

INTRODUCTION

We investigate four industrial strength machine
learning paradigms: Multiple Linear Regression,
Classification and Regression Trees, Multivariate
Adaptive Regression Splines, and Linear Genetic
Programming. The best model will be chosen from
among them on the basis of R-squared measure.

The purpose for doing this is to turn this chosen
model into a real time dynamic planning and
optimization system. Here, we use an industrial data
set, but the idea is extensible, without much change, to
many optimization process required elsewhere. In an
industrial plant, with these capabilities we can envision
a supervisor making instant decisions for inputs of
various goods for maximum profit according to the
parameters which the optimizer would deliver.

MACHINE LEARNING

Machine learning is the study of computer
algorithms that manipulate models improving them

automatically through generations of experience to
produce a single model highly effective in modeling
the data provided. Models are necessary in all fields.
Thus, at any time when a data set is available and the
relationships are unknown, this method will help us
to produce satisfying models. So, the method can be
used to meet the demands of many industrialized or
financial process. The machine learning methods we
use have no capability of distinguishing between the
physical meanings of each and every input variable.

So, the technique can be applied to any process
to optimize the output variable. The machine learning
functions calibrate themselves as they work and
produce a relationship between the given set of data
to produce models that have an impressive
correlation beyond the example data provided to it.
The model that we generate from the machine
learning process is then an effective tool to optimize
any number of inputs in the range of our needs. We
will show the flexibility we have in using these
optimizing models. As an example, we deployed the
model in a web-based, user-friendly interface.

MULTIPLE LINEAR REGRESSION

Multiple Linear Regression (MLR) can be
regarded as a basic machine learning technique. We
have used MLR in our analysis in this paper for two
reasons. One, it is a powerful statistical technique
which is capable of discovering the underlying
linearity in the data set, producing good results in
relationships like those that arise in physical sciences
and economics. Furthermore, MLR will form the
basic for comparison with other advanced methods
that we will describe later. All of the methods share
the statistical measure: R-squared.

MLR seeks to find a linear relationship between
the output and a given number of input variables. If Y
is the output and X1, X2 … XN are the input
variables, then multiple linear regression finds the
constants in the following relationship:

Y = C1(X1) + C2(X2) + … + CN (XN)

Simple Graph

R2 = 0.9246

-0.2
0

0.2
0.4
0.6
0.8

1
1.2

0 0.2 0.4 0.6 0.8 1 1.2

X

 Therefore the sum of squares of the differences
between the actual output and the predicted output is
minimized. This is the R-square correlation measure.
An R-square of at least 0.6 is considered to begin to
show a statistically valid relationship.

To illustrate the meaning of R2, a two-dimensional
example with R2 = 0.92 is shown in Figure 1.

 Y

Figure 1. Illustration of the R2 Measure of Fitness.

CART

Classification and Regression Trees (CART) is
one the methods that we have used in this analysis.
CART software, available from Salford Systems,
makes use of decision trees in order to discover the
relationships that exist in our data. CART performs the
analysis in two major steps:

• Draws out an overgrown decision tree, and
• Prunes back on the branches of this huge tree,

sacrificing little accuracy while getting rid of
subtrees that contribute the least to its
accuracy.

Maximal Tree

After a training data is fed to the system, it works
by going through this data and creating numerous

splitting points in each of the variables. At each node
of the tree which the system grows, it uses splitting
decisions to classify the data into either the right
child or the left child. Then, regarding each of its
children as the root of a new tree, it finds the
maximal tree through recursion. This brute force
method will produce a huge decision tree and will
uncover any relationship that might exist between the
predictor variables and the output. In the next step,
the program prunes back the tree to find the optimal
one.

Optimal Tree

After making this overgrown and complicated
tree, the algorithm works backward pruning all the
subtrees that contribute least to the accuracy of the
model. In effect, it will create a sizeable tree that will
model our data well. In regression, each of the
terminal nodes of the tree is assigned a mean value
and all records that make up the leaves are then given
this value as output. Though this method of
classifying data (splitting them and giving them
values) is a simple process, it is not feasible to
perform this without the help of a computer program.
Thus, CART software is particularly helpful. Its
strength is its simplicity in modeling the
automatically. As we will see later, it has a very high
degree of accuracy to boast.

Through this exhaustive search process, not only
is the model ready but it also tells us how each of the
variables contribute to the output variable.

Figure 2 is an example of a complex regression
tree. Each of the terminal nodes represents a data
value; each record is classified into one of the
terminal node through the decisions made at the non-
terminal nodes that lead from the root to that leaf. It
was generated by CART.

Figure 2. Tree Generated by the CART Algorithm.

MARS
Multivariate Adaptive Regression Splines

(MARS), is a machine learning technique that the
Salford System created for data-modeling and data-
mining purposes. MARS has a Graphic User Interface-
(GUI) and is easy and quick to develop good models
for data with complicated relationships inferred.

Similar to the methodology of CART, the MARS
method also uses a similar, two-step process to
generate the model:

1. Generate a large number of basis functions.
2. Prune many of these basis functions without

the loss of accuracy to the model.

Basis Functions

The multidimensional data is first scanned through
in a brute force manner to find several short intervals
where linear regression lines are used to fit the data,
these are written as basis functions. The choice of the
interval is through brute force and linear regression
lines are then used to model the data in between these
variables.

Pruning

After having created numerous of these regression
splines the method then prunes back on these interval
dissection and smoothes them out either by creating
larger intervals or finding a compromise for the two
endpoints in the data.

Testing

For testing the model that the software system has
generated, we generally have two options given to us.
We could either specify the file separately as a test
input file or we can specify a certain portion of the file
for testing. These two methods of testing will ensure
that the model that we get will be one that is genuine
and isn’t just over fitting our data.

LINEAR GENETIC PROGRAMMING

Linear Genetic Programming (LGP) is the
controlled evolution of computer models (e.g.,
programs, instruction) that have the ability to predict
the output given the various input using simple
mathematical relationships among them (Deschaine
2001, Francone 2003, RMLT 2003). Inspired from
nature the methods extensively use genetic crossover,
mutations and fitness-based selections to come up with
the best model among billions of available ones. The
strength of LGP lies in evolution and the sheer number
of programs developed by the fast machine-code level
algorithm and evolutionary processes. It comes up with
the one that is the most suitable for our purpose.

The basic idea of LGP is the evolution of models
that are progressively adaptive at each successive
generation to the data provided. LGP, unlike the
methods of CART and MARS, can be continued
infinitely. The user must decide what accuracy is
suitable. The three major steps in this process are:

1. Create an initial randomized pool of
executable programs.

2. Measure of the fitness of some of these
programs to map the provided data
accurately. “Winners” and “losers” are
selected at this stage from this fitness test.

3. Modify the winning programs by mutation
and crossover (techniques inspired by
nature) to produce a new generation of
candidate programs which replace those that
are deemed “losers” in Step 2. The
“winners” from Step 2 together with their
offspring are then mixed into the population
pool to repeat Step 2.

Ultimately, this process, illustrated in Figure 3,
produces a whole population fit for modeling our
data. Each successive generation will introduce new
programs that will perform the task better on the
basis of natural selection.

Figure 3: Linear Genetic Programming.

A pool of random
programs is generated.

On the basis of fitness to
the given data, “winners”
and “losers” are chosen.

Search operators are
applied on the winners to
produce new offspring

Losers are replaced by
the new generation in the
population pool.

The process is repeated with the
new population.

Major Controllable Search Parameters of
Genetic Programming

The three major search operators that are
employed by Discipulus™ and the ones that we will
discuss here are:

• Mutation Rate
• Crossover Rate
• Reproduction Rate
These three are the major methods in which the

LGP algorithm will generate the new offspring that
will be capable of producing better results.

Each program that is selected as a “winner” in the
run of a LGP algorithm is either mutated, reproduced,
or program instructions are exchanged with the other
winner to create an entirely new program which is put
back into the pool. We can vary the rate at which each
of these search operators are applied by varying the
mutation rate, the reproduction rate, and the cross over
rate. These are generally kept at high, and the multiple
run option in Discipulus™ software usually takes care
of varying each of the parameters and to produce better
and better results.

DATA SET

The data set, developed as described in
(Deschaine, et. Al, 2002), held 7547 records. With six
different variables predicting the output, this was one
vertical column of data, and thus we expected that the
models that we obtain from the learning methods that
are given above will be very accurate. Among the 7547
data, 4967 or 66% of the available data records had
zero as its output. The output variable, rapid at first,
slows to increase to a little beyond one.

The output variable with just the record number in
an ascending order is graphed in Figure 4. Thus, we
can see the output is nonzero for only 34% of the
available data. This presents us with a challenge in
modeling the data. However, we will see that the
machine learning technique does well in modeling this
data and is able to predict the output accurately
throughout the range of the data.

Figure 4. Sorted Depiction of the Output from the
Physical Simulator.

Now we will present the resulting accuracy of

the models that we obtained from the various
methods. We will follow this order:

1. Multiple Linear Regression,
2. Classification and Regression Trees.
3. Multivariate Adaptive Regression Splines,

and
4. Linear Genetic Programming.
The data is always divided into thirds. For all

methods sans LGP, two-thirds of the set is allocated
for training, while the rest is used in testing the model
after the methods have completed. However, for
LGP, which we modeled using the software
Discipulus™, we divided data into three equal parts:
the training set, the validation set, and the testing set.

The testing set is always the blind data set for
each of the methods and is the best measure of the
models produced. With Discipulus™, we also
analyzed in two parts: first using the zeros and then
without the zeros. Using the zeros produced a
better result. Therefore, for the rest of the analysis
we only focus on the whole data set. Table 1
summarizes the analysis and the accuracy of the
models. The models themselves are available either
in the software or exportable as computer programs.

Table 1. Summary of Analysis and Model Accuracy

Methods Used

FITNESS [R2]

With Zeros

Without Zeros
Training 0.99077 0.97844

Validation 0.99061 0.97928
Linear Genetic Programming Applied 0.98863 0.97264

Training 0.4900873402
Multiple Linear Regression Testing 0.49563209

Training 0.977
Classification and Regression Trees Testing 0.937435855

Training 0.983
Multivariate Adaptive Regression Splines Testing 0.922904196

 f[0]/=1.530829906463623f; Table 1 shows the fitness of the models that were
developed. Most of the machine learning methods also
provide extra information in that they tell which
variables are the most important ones.

 f[0]=Math.sqrt(f[0]);
 f[0]/=v[2];
 f[1]+=f[0];

 f[0]+=v[3];
THE BEST MODEL f[0]+=v[3];

 f[0]=Math.sqrt(f[0]); The best model is chosen on the basis of the R2 for
the testing set of data. The best model from each
method is shown below in the Table 2.

 f[0]+=f[0];
 f[0]*=f[0];
 f[0]-=f[1];
 f[0]*=v[2]; Table 2. Best Model Analysis

(Note: The entire model is not shown here.)

Method Used
R2 of the Best Model

Obtained
Linear
Regression
(with zeros) 0.489445672
Discipulus
(with zeros) 0.99077
Discipulus
(without zeros) 0.97844
CART Analysis
(with zeros) 0.937435855
MARS
Analysis
(with zeros) 0.922904196

Web-based Deployment

For ease of model usage, data was converted into
a Java™ web-based model. It was then possible to
use this model as a service from the web and
parameterize the output variable.

Note in Figure 5, we can type input directly into
the variable fields that are presented or we can input
a whole file, which has formatted input present. In
either case, the output generated is in a tabular form.

The chosen model was the model generated using

LGP. This model was then converted into Java™ code
using the facility provided by the Discipulus™
software.

Excerpt from the model code is given below:

f[0] is the output and the f[i] are the inputs:
double DiscipulusJavaFunction(double [] v)
{
 double [] f=new double[8];
 double tmp = 0; boolean cflag = false; Figure 5: Input Screen for the Kodak Data Model f[0]=f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; Instantly with the web-based deployment, the

result is displayed, as seen in Figure 6.
 f[0]+=v[3]; f[2]+=f[0];
 f[0]*=f[0];
 f[0]/=v[1];

Figure 6: Output Generated by the Kodak Data Model.

Note: The output can easily be copied from this file into spreadsheet programs like OpenOffice™, StarOffice™,
and MS Excel™.

CONCLUSION

The above model smoothly executes in
milliseconds when the value of the inputs were
increased and decreased by 25% of the range values
used to develop the LGP model. The initial idea was to
link an optimization algorithm to the LGP-derived
JavaTM code for real-time optimization of plant
processes. The JavaTM code executes so quickly that
simple enumeration provides a suite of optimal
operational conditions in seconds. The solution and
tool developed around it requires no more skill than is
available from personnel who use any common internet
browsers, such as Mozilla™ or MSExplorer™.

In the example, we have used the model only to
display the output given the variables in a file or a
single set of records, but this process could be extended
to optimize a certain variable to within a given range.

Using these fast executing models, we can get
quick approximation to complex processes if we have a
data set available to train one of the machine learning
techniques. The model most suitable for our purpose
could then be used in the above mentioned fashion, for
increased productivity.

REFERENCES

Deschaine, L. M., and Francone, F. D., Design

Optimization Integrating the Outer Approximation

Method with Process Simulators and Linear
Genetic Programming, Joint Conference on
Information Science, Research Triangle Park,
NC, ISBN 0-9707890-1-7, pages 618-621,
March, 2002.

Deschaine, L. M., Patel, J. J., Guthrie, R. G.,
Grumski, J. T., and Ades, M. J., Using Linear
Genetic Programming to Develop a C/C++
Simulation Model of a Waste Incinerator. The
Society for Modeling and Simulation
International: Advanced Simulation Technology
Conference, Seattle, WA, USA. ISBN: 1-56555-
238-5, pages 41-48, April 2001.

Francone, F. D., and Deschaine, L.M., Extending the
Boundaries of Design Optimization by
Integrating Fast Optimization Techniques with
Machine-Code-Based Linear Genetic
Programming, Information Sciences Journal,
Elsevier Press, Amsterdam, The Netherlands In-
press: November, 2003.

Register Machine Learning Technologies, Discipulus

users guide version 3.0. See
http://www.aimlearning.com for more details.

Salford Systems. Product Manual Overview for
CART and MARS. See http://www.salford-
systems.com .

http://www.aimlearning.com /
http://www.salford-systems.com/
http://www.salford-systems.com/

	Optimization
	Abstract
	MACHINE LEARNING
	MULTIPLE LINEAR REGRESSION
	Y
	CART

	Testing
	LINEAR GENETIC PROGRAMMING
	DATA SET
	Methods Used

