
Adegboye, Adesola, Kampouridis, Michael and Otero, Fernando E.B. (2021) 
Improving trend reversal estimation in forex markets under a directional 
changes paradigm with classification algorithms.  International Journal 
of Intelligent Systems . ISSN 0884-8173. 

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/89886/ The University of Kent's Academic Repository KAR 

The version of record is available from
https://doi.org/10.1002/int.22601

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
CC BY-NC-ND (Attribution-NonCommercial-NoDerivatives)

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. 
Cite as the published version. 

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type 
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title 
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date). 

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record 
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see 
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies). 

https://kar.kent.ac.uk/89886/
https://doi.org/10.1002/int.22601
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies


R E S E A RCH ART I C L E

Improving Trend Reversal Estimation in Forex
Markets Under a Directional Changes Paradigm
with Classi�cation Algorithms

Adesola Adegboye1 | Michael Kampouridis2 |
Fernando Otero1

1School of Computing, University of Kent,
UK
2School of Computer Science and
Electronic Engineering, University of Essex,
UK

Correspondence
M. Kampouridis, School of Computer
Science and Electronic Engineering,
University of Essex, Wivenhoe Park, CO4
3SQ, UK
Email: mkampo@essex.ac.uk

Funding information

The majority of forecasting methods use a physical time
scale for studying price �uctuations of �nancial markets.
Using physical time scales can make companies oblivious
to signi�cant activities in the market as the �ow of time is
discontinuous, which could translate to missed pro�table
opportunities or risk exposure. Directional Changes (DC)
has gained attention in the recent years by translating phys-
ical time series to event-based series. Under this frame-
work, trend reversals can be predicted by using the length
of events. Having this knowledge allows traders to take an
action before such reversals happen and thus increase their
pro�tability. In this paper, we investigate how classi�cation
algorithms can be incorporated in the process of predict-
ing trend reversals to create DC-based trading strategies.
The e�ect of the proposed trend reversal estimation is mea-
sured on 20 foreign exchange markets over a 10-month pe-
riod in a total of 1,000 datasets. We compare our results
across 16 algorithms, both DC and non-DC based, such
as technical analysis and buy-and-hold. Our �ndings show
that the introduction of classi�cation leads to return higher
pro�t and statistically outperform all other trading strate-
gies.
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1 | INTRODUCTION

Forecasting future behaviour of �nancial instruments is a major activity in �nancial markets [12]. A typical way of
studying price series is by sampling data on a physical time scale, e.g. daily closing prices, where prices are sampled
on daily intervals. However, this approach has a disadvantage: it disregards potentially important price movements
that happen in between those �xed points in time. For instance, if we were using daily closing prices, we wouldn’t
have been able to record the �ash crash which occurred across US stock indexes on the 6th of May 2010 from 2:32
pm EDT until 3:08 pm EDT, as prices rebounded shortly afterwards.

An alternative to sampling data in �xed time intervals is the so-called intrinsic time data sampling. In this approach,
data is sampled by the observance of signi�cant events in the market [26, 14, 33]. The rationale is to record key events
in the market representing signi�cant price movements (e.g. price changes by 2%), which would normally be missed
by traditional physical time methods. There have been documented di�erent intrinsic time sampling techniques, e.g.
perceptual important points [16, 17], turning point [34], zigzag [9, 27], and more recently directional changes (DC)
[19, 32].

Under the Directional Changes (DC) paradigm, a threshold ✓ is de�ned, which is used to detect signi�cant price
changes. The market is then summarised into upward and downward trends. Each of these trends consists of a
directional change (DC) event, which is usually followed by an overshoot (OS) event. Using di�erent threshold values
allows the detection of di�erent events and, as a consequence, the creation of di�erent trend summaries. Therefore,
the DC framework focuses on the size of a price change as time varies, while under physical time, the time interval is
�xed (e.g. daily closing prices).

While the theory behind DC tells us that a DC event is usually followed by an OS event, we have found from
preliminary experimental results that there can exist a high number of cases where a DC event is not followed by
an OS event; instead it is followed by a DC event in the opposite direction [2]. As a result, we can have datasets
with extremely low number of DC events with a corresponsing OS event, even as low as 14.77%—this is, of course,
threshold-dependent. Therefore, it cannot be assumed that every DC event will be followed by a corresponding OS
event.

In this work, we are interested in investigating this further by introducing a classi�cation step, which predicts
whether a DC event is be followed by anOS event. Having this knowledgewill allow us to have a better understanding
of market dynamics and increase trading pro�tability. To validate this, we apply a classi�cation step to three di�erent
DC-based trading algorithms and report how the trading performance is a�ected. Our goal is to demonstrate that
the introduction of the classi�cation step can signi�cantly improve the pro�tability of DC-based trading strategies
and also outperform other non-DC-based trading strategies, such as technical analysis and buy-and-hold. To achieve
this, we undertake rigorous experiments using data from 20 Forex currency pairs over 1,000 di�erent datasets; thus
making our results robust and generalisable.

The remainder of this paper is organized as follows. Section 2 presents a summary of directional changes and
relevant literature. Section 3 presents our methodology, detailing how we incorporated classi�cation algorithms in
the prediction of whether an OS event occurs or not. Section 4 presents the setup of our experiments, while Section
5 presents our results and analysis. Finally, Section 6 concludes this article and discusses future work.
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2 | DIRECTIONAL CHANGES

2.1 | Overview

A DC event is identi�ed by price changes de�ned by a user-speci�ed threshold value. DC events are divided into
upturn and downturn events. Once a DC event is con�rmed, an overshoot (OS) event usually follows; an OS event
�nishes once a DC event in the opposite direction is con�rmed. A DC trend, upward or downward, consists of the
combination of a DC and an OS event. Di�erent thresholds generate di�erent event series. Smaller thresholds create
higher number of DC events than larger thresholds, which produce fewer events.

Let us now look at Figure 1, where we present how we can summarise a physical-time price series into DC and
OS events. In this example, we summarise price movements with two di�erent thresholds, namely ✓ = 0.01% (lines
in red) and ✓ = 0.018% (lines in blue). Price changes below ✓ are not considered a signi�cant event. Price changes
above ✓ are considered signi�cant events, and divide the market into uptrends and downtrends. Solid lines represent
DC events, and dashed lines represent OS events. For example, under ✓ = 0.01%, between Points A and B we have
a downturn DC event followed by a downward OS event from Point B to C; when a trend reversal occurs, an upturn
DC event starts from Point C to D. Lastly, between Point D and E it is an upward OS event. The price point where a
DC trend begins or ends is called DC extreme point (DCE); under ✓ = 0.01%, Points A, C, and E are DC extreme points.

F IGURE 1 Directional changes for the GBP/JPY FX currency pair. The red lines represent events created by a
threshold ✓ = 0.01% , and the blue lines events created by a threshold ✓ = 0.018% . DC events are denoted by solid
lines, and OS events by dashed lines. Under ✓ = 0.01%, we summarise data as follows: Downturn DC event: Point
A 7! B ; Downward OS event: Point B 7! C ; Upturn DC event: Point C 7! D ; Upward OS event: Point D 7! E ;
Downturn DC event: Point E 7! F . Under ✓ = 0.018% , we summarise data as follows: Downturn DC event: Point
A 7! B

0 ; Downward OS event: Point B 0 7! C ; Upturn DC event: Point C 7! E ; Upward OS event: Point E 7! E
0 . DC

Extreme points (DCE): Points A, C, E, and E
0 . DC Con�rmation points (DCC): Points B, B 0 , D, E, and F.

Under ✓ = 0.018% (lines in blue), we obtain a di�erent set of events: from A to B0: a downturn event; from B0 to
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C: a downward OS; from C to E: an upturn DC event; lastly, from Point E to E0 we have an upward OS trend.

Note that we can only con�rm a DC event in hindsight, i.e., after there has been a price change of ✓. For instance,
under ✓ = 0.01% we would not know we are in an upward trend until we have reached Point D. This point is called a
DC Con�rmation point (DCC). Before Point D, one would consider that the market has been in a downward trend since
Point A. Similarly, we would not know the trend has reversed from upward to downward until we have reached the
DCC Point F. It is therefore crucial to be ablel to accurately predict when a trend reversal will take place.

Directional changes have o�ered traders new perspectives on price movements and have led to new research
directions, which were not possible under the physical time price summaries. In the following section, we brie�y
present some of the recent DC works.

2.2 | Review of recent DC literature

According to [29], scaling laws refers to empirical �ndings accepted as truth due to their consistency. [20] was the
�rst work deriving scaling laws using directional changes. Since then, several other works have discovered new scaling
laws. Some examples are [18], which discovered 17 new scaling laws; [19], which uncovered 12 additional laws; [5],
which added 4 more scaling laws; and [7], which further contributed 5 scaling laws. Furthermore, [32], presented 4
new DC indicators for pro�ling �nancial markets. Since then, more DC indicators have been introduced [31] and used
for pro�ling [15, 8].

Another body of DC work has focused on estimating trend reversal and trading. For example, [6, 5] combined
directional change with trend following and contrary trading technical indicators, and developed new trading strate-
gies. Furthermore, [11, 10] created a DC-based trading strategy, named ‘DBA’, and reported mean returns of around
14%. Directional changes have also been combined with machine learning algorithms, e.g. a neuro-fuzzy system [22];
genetic programming [21]; and decision trees [3]; but also with econometric models, like an F-GARCH [4].

2.3 | DC-OS event length relationships

One of the most interesting scaling laws is the one that describes the relationship between the duration (length) of
DC and OS events. More speci�cally, [19] found empirical evidence that the duration of an OS event is on average
twice the duration of its corresponding DC event (Equation 1). Such laws can be leveraged to traders and take trading
actions before the end of a trend is reached. Similar empirical observations were made in [24, 23]. However, they
proposed a more generic formulation, where the DC and OS length relationship was expressed as a linear function
with aM constant, whereM is the averageDC event length toOS event length ratio for the given datasets (Equation 2).
Lastly, [2] presented a genetic programming (GP) algorithm, which undertook a symbolic regression task, and evolved
linear and non-linear formulas (Equation 3). Using a GP allowed to search for the best function that describes the DC
and OS length relationship, without the need to make any assumptions about the form of this relationship.

OSl ⇡ 2 ⇥ DCl (1)

OSl = M ⇥ DCl ;M > 0 (2)
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OSl = f (DCl ) (3)

As we mentioned earlier, it is possible that not all DC events have a corresponding OS event; instead another DC
from the opposite direction could follow. Empirical observations in [2] showed that there could be datasets with as
little as 14.77% of DC events with a corresponding OS event. This is an important observation, because it indicates
that Equations 1–3 are meaningful only in those cases where a DC is followed by an OS. Let us use an example
to clarify this issue. Let us assume that an upward DC event lasts for 2 days, and then it is directly followed by a
downward DC event that lasts for 4 days. If we attempt to apply any of the above equations, say Equation 1, we
would be predicting that the �rst DC event would be followed by an OS event, of the same direction, which would
end 4 days later (since OSl ⇡ 2 ⇥ DCl ). A trader with the above expectation could thus wait until the end of the 4th
day of the OS event to take a sell action, where the price is expected to be at its highest point. However, as in this
case there has already been a directional change, the trader would end up selling at a much lower price, since we are
in a downward trend. In other words, OSl = 2⇥DCl is a OS length approximation that does not hold for all DC events.

To avoid such issues, we are proposing to introduce a classi�cation step before the prediction of trend reversal
by Equations 1–3. During this step, we will be predicting whether a DC event will be followed by a corresponding OS
event. Only when there is a corresponding OS event, we will be applying the above trend reversal equations.

3 | METHODOLOGY

Our aim is to be able to identify cases where a DC event is followed by an OS event. In order to achieve this, we will
be introducing a binary classi�cation step. The �rst class value will be that a DC is followed by an OS event (we call
this ↵DC ), and the second class value will be that the DC is not followed by an OS event (we call this �DC ). When the
classi�er predicts ↵DC , we apply Equations 1–3 to estimate the relationship between DC and OS lengths in order to
predict the trend reversal point (i.e., end of the OS event). On the other hand, when the classi�er predicts �DC , the
trend reversal point will be estimated as the end of the DC event. This process is summarised in Figure 2—to evaluate
its pro�tability, we embed the classi�cation step as part of a trading strategy.

The remainder of this section is organised as follows. Section 3.1 presents the length estimation task, where we
use Equations 1–3 to estimate the relationship between DC and OS lengths; Section 3.2 describes the classi�cation
step used to predict whether there is an OS even or not; and �nally, Section 3.3 presents the trading strategy.

3.1 | OS Length estimation technique

As we can observe in Figure 2, our framework consists of three main steps: classi�cation, OS length estimation, and
embedding this prediction into a trading strategy. However, if we were to implement the classi�cation step �rst, the
errors made in this step would be carried forward to the step of estimating OS length. For example, let us assume that
(1) a dataset consists of 10 DC events, 8 DC events are followed by an OS event and 2 DC events are not; and (2), a
classi�er predicts that all 10 DC events have a corresponding OS event. In this case, when we move to the OS length
estimation step and apply any of Equations 1–3, the information (data) from all 10 events will be used to construct
the OS length estimation models, incorrectly including the information from the 2 events that we already know that
are not followed by OS events.
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6 A. Adegboye et al.

Classi�cation
model

Dataset

Is ↵DC?
OSl estima-
tion model

(Equations 1 – 3)

Trend reversal point

Trading strategy

Apply
Classify

Yes
Estimate OSl

No
DCl

Em
bed

F IGURE 2 Proposed trend reversal estimation under directional changes. When a DC trend is predicted to be
followed by an OS event, then it will reverse at DCE, which is calculated by the sum of the DC and OS event lengths;
the OS length is estimated by one of Equations 1-3. When a DC trend is predicted not to have a corresponding OS
event, then the trend reversal point is going to be the DCC.

To avoid having this classi�cation error being carried forward, we have performed the length estimation task �rst,
before the classi�cation step, and under perfect foresight on the training data. Having perfect foresight allows us to
identify the DC events that are followed by an OS event and apply Equations 1–3 to that data only. As a result, we
eliminate the problem of classi�cation errors a�ecting the length estimation step. Equations 1–3 thus now exclude
noise (i.e., DC events without a corresponding OS event), and can focus on data that matters. Lastly, we should note
that because we perform the above task only on the training set, we avoid introducing bias when we eventually apply
the selected length estimation model to the (unseen) test data.

3.1.1 | OSl ⇡ 2 ⇥ DCl (Factor-2)

This approach is based on empirical observations in the Forex market, which led to the creation of several scaling
laws [19]. According to [19], the OS length is on average twice the length of its corresponding DC event. Therefore,
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A. Adegboye et al. 7

whenever we want to predict the OSl , we measure the relevant DCl and multiply by 2. Due to the fact that the
DC-OS length relationship is dependent on a factor of 2, we call this approach Factor-2.

We would like to once again note that the con�rmation of a trend change—upward to downward DC and vice-
versa—is only detected in hindsight, i.e., only when the corresponding DC event is con�rmed. Therefore, we use the
above formula to predict the length of the OS event, and thus anticipate when the current trend will end, only when
a DC event is con�rmed and classi�ed to have a corresponding OS event.

3.1.2 | OSl = m ⇥ DCl (Factor-M)

This equation expresses a linear relationship between DC andOS lengths, whereM is a constant denoting the average
DC/OS event length ratio for a given dataset. Because OSl ⇡ 2 ⇥ DCl is an approximation and does not take into
account the underlying dataset, this new formula o�ers a tailored estimation of the DC:OS event length ratio on a
given dataset. Since the factor that de�nes the relationship of DC-OS length is equal to an m constant, we call this
approach Factor-M. In this approach, the average length of each OS event in the training set is calculated. In addition,
there is a distinction between the average length of upwards and downwards OS events. This is because the DC:OS
ratio could be di�erent for the two types of trend.

For a detailed presentation of this approach, we refer the reader to [24].

3.1.3 | OSl = f (DCl ) (Reg-GP)

F IGURE 3 Sample GP trees

This approach uses a GP algorithm to evolve a (non-)linear symbolic regression model to represent the relation-
ship between DC and OS lengths. We call it Reg-GP. Contrary to standard linear regression techniques (e.g. linear
regression), where we �t coe�ents under a given model, symbolic regression allows us to determine both the func-
tional form of the model, as well as its coe�cients. This has the advantage that we do not need to make assumptions
about the relationship of DC and OS length. GP will thus create mathematical equations describing the relationship
between DC and OS length, without making any assumptions of their form. It is based on the Darwinian principle of
evolution, where it creates a population of un�t (usually random) programs (equations describing the DC-OS length
relationship in our case) and searches the space of mathematical expressions to �nd linear and non-linear models that
best �t the dataset. GP is considered one of the state-of-the-art methods for symbolic regression [28].

Table 1 presents the con�guration of the GP. Figure 3 presents two sample trees from the GP we have created.
The �rst tree represents the equation that calculates OS length as ( (DCl � 2.5) ⇥ 1.51) + (1.8 +DCl ) and the second
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8 A. Adegboye et al.

trees represents the equation ( ( 1.842.02 ) ⇥DCl ) + (cos(DCl )1.22) , where DCl in both equations is the length of DC event.

TABLE 1 GP algorithm con�guration

Con�guration Value

Function set +, -, /, *, sin, cos, pow, log, exp.

Terminal set DCl , ephemeral random constant.

Genetic operation elitism, subtree crossover, subtree mutation.

The �tness function of the GP is the RMSE between actual OS length (OSl ) and estimated OS length ( ˆOSl ).

" =

sÕN
i=1 (OSl � ˆOSl )2

n
(4)

where n is the sample size.

For a detailed presentation of the GP algorithm, we refer the reader to [2].

3.1.4 | OS length estimation outputs

As we have previously mentioned, di�erent DC thresholds generate di�erent DC summaries. We select the optimal
thresholds per dataset from a pool of thresholds. To do this, we �rst use each threshold to generate its own DC
summary. Then, we apply each one of Equations 1 –3 to each DC summary, and thus obtain di�erent OS length
estimation models, one for each equation and DC summary. Finally, we rank each model by RMSE. Note that the
process for each equation is independent from each other; thus each equation returns a di�erent OS length estimation
model and DC summary.

The above process returns 3 outputs: (i) the best OS length estimation model, (ii) the best threshold, and (iii) the
respective DC summary of that particular threshold. Figure 4 illustrates this process.

3.2 | Classi�cation Step

The next step is to predict whether a DC event is followed by an OS event (↵DC ) or not (�DC ). For this step, we use
Auto-Weka [30], which is an automatedmachine learning tool that searches in the space of 39 classi�cation algorithms
and their hyperparameters. We run Auto-Weka 10 times for each dataset andwe select the algorithmwith the highest
f-measure. To avoid bias, we apply ten-fold cross-validationto the training set; therefore we do not expose the testing
set to Auto-Weka. The above process allows us to obtain a tailored classi�er with tailored hyperparameters for each
dataset.

Classi�ers are trained on 6 DC-based attributes. These are: di�erence between the price of upturn/downturn
and DCC (DC con�rmation) points (A1); di�erence between the time of upturn/downturn and DCC points (A2); speed
of the prices change from the start of a trend and DCC point (A3); price at previous con�rmation points (A4); (boolean)
information on whether the immediate previous DC event has a corresponding OS event or not (A5); (boolean) indi-
cation on whether the start and end time of a DC event are equal (A6). Attributes A1 and A2 were introduced in [19],
while A3-A6 were �rst introduced in [1]. Table 2 summarises these attributes.
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Physical time series (Training)

DC time
series pool

DC event
series

OSl length
estimation
technique

Threshold
OSl estima-
tion model

Get

G
enerate

Apply

F IGURE 4 Proposed framework for obtaining an OS length estimation model, and selecting threshold and DC
events with high DC:OS event ratio.

Figure 5 summarises the classi�cation process. After obtaining the output of the OS length estimation process
presented in Figure 4, namely ’Best DC event series’, we use it to calculate the values of attributes A1-A6. Then, we
use Auto-Weka on the training set to obtain the best classi�cation model per dataset.

Each obtained classi�cation model will then make predictions in the (unseen) test set on whether a DC event is
followed by an OS event. If this is the case, we will then use an OS length estimation model (1–3), which we discussed
in Section 3.1, to predict the trend reversal point (i.e., the sum of DC andOS length). If the classi�cationmodel predicts
that there is no corresponding OS event, the end of the current DC event becomes the end of trend. This process
was also summarised in Figure 2.

3.3 | Trading Strategy

So far, we have used the classi�cation and OS trend estimation steps to predict the end of a trend. The last step of our
framework is to embed the trend reversal prediction into a trading strategy, so that we can test its e�ectiveness by
reporting �nancial metrics, such as return and risk perfomance. Next, we provide information of our trading strategy.

3.3.1 | Overview

Before we present the details of our prososed trading strategy, we should de�ne two important notions: opening
and closing a position. We open (close) a position when we sell (buy) the base currency (e.g., GBP) and buy (sell) the
quoted currency (e.g., JPY).

In order to open a position, there are two requirements: (i) there is not an already open position, and (ii) the
return from opening the position would be positive, after accounting for transaction costs. If the above requirements
hold, we open a position at the extreme point of an upward DC trend. Similarly, to close a position, there are two
requirements that need to hold: (i) there is an existing open position, and (ii) the return from closing the position would
be positive after accounting for transaction costs. If these conditions hold, we close the position at the extreme point
of a downward DC trend.
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10 A. Adegboye et al.

Attributes Name Description

A1 DCprice Price di�erence between the upturn/downturn point
and the directional change con�rmation point.

A2 DCtime Time di�erence between the upturn/downturn point
and the directional change con�rmation point.

A3 Si gma
0 Speed at which prices change from the start of a trend

to directional changes con�rmation point.

A4 DCt�1price Price at previous con�rmation points.

A5 DCt�1OS Indicates whether the immediate previous DC event
has a corresponding OS event or not.

A6 FlashEvent Indicates whether the DC event start time and end
time are equal or not.

TABLE 2 Classi�cation attributes

The extreme point in both of the above cases can be either at ↵DC or �DC , depending on the prediction of the
classi�cation model. When the above requirements are not met, no trading takes place. All transactions take place by
using our entire capital. Transaction cost value is 0.025% for each transaction. Algorithms 1 and 2 provide a detailed
overview of the opening and closing strategies.

Algorithm 1 Trading rule for selling base currency
Require: Sell rule
if DC is in upward trend && There is no open position then

if Is �DC && Return is not negative then Open a position at DCC point
else if Is ↵DC && DC trend does not reverse before estimated DCE point && Return is not negative thenOpen

a position at estimated DCE point
else Hold
end if

end if

3.3.2 | Trading strategy evaluation

Our trading strategy is evaluated by three metrics: return, maximum drawdown (MDD) and sharpe ratio. Return
(Equation 5) is calculated after accounting for transaction costs. MDD (Equation 6) measures the downside risk by
calculating the maximum observed loss from a peak price to a trough before a new peak is reached. Finally, the
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Best DC event series

Classif.
Algorithms

Direction changes attributes (Training dataset)
A1 A2 A3 A4 A5 A6 Class
0.555 10 2.433 N Y 2.466 ↵DC

0.575 20 2.543 Y Y 2.111 �DC

. . . . . . .

. . . . . . .
n n n n n n n

Classif.
model

Apply
Autoweka

Extractattributes

Get

F IGURE 5 Proposed framework for creating a classi�cation model to predict whether a DC event is followed by
an OS event (↵DC ) or not (�DC )

sharpe ratio (Equation 7) reports the risk-adjusted return, after accounting for the return by a risk-free asset (e.g. a
government bond at 0.25% rate).

R = (Q �T C ) ⇤ F X r at e (5)

where Q is the trading quantity,T C is the transaction cost, and F X r at e is the price that the trade takes place.

MDD =
Pt r ough � Ppeak

Ppeak
(6)

where Pt r ough is the price at the trough point, and Ppeak is the price at the peak point.

Shar peRat i o =
R � i

�r etur n
(7)

where R is the return, i is the value of the risk free asset, and �r etur n is the standard deviation of the return.
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Algorithm 2 Trading rule for buying base currency
Require: Buy rule
if DC trend is downward && There is an open position then

if Is �DC && Return is not negative then Close position at DCC point
else if Is ↵DC && DC trend does not reverse before estimated DCE point && Return is not negative then Close

position at estimated DCE point
else Hold
end if

end if

4 | EXPERIMENTAL SETUP

The datasets used in our experiments consist of high-frequency (10-minute interval) data for 16 FX currency pairs
from March 2016 to February 2017 and an additional 4 currency pairs from June 2013 to May 2014. These pairs are
presented in Table 3. Each month is considered as a separate physical-time set. We used the �rst twomonths for each
currency pair for parameter tuning, which resulted in 200 datasets (5 DC thresholds ⇥ 20 currency pairs ⇥ 2 months).
The remaining 10 months for each dataset were used for the main experiments, which resulted to 1000 datasets (5
DC thresholds ⇥ 20 currency pairs ⇥ 10 months). All datasets were using a 70:30 split between training and test sets.

Currency pairs Currency pairs

March 2016 to February 2017

AUD/JPY Australian $ / Japan. Yen EUR/NOK Euro / Norwegian Krona

AUD/NZD Australian $ / N. Zeal. $ GBP/AUD British Pound / Australian $

AUD/USD Australian $ / US $ NZD/USD New Zealand $ / US $

CAD/JPY Canadian $ / Japan. Yen USD/CAD US $ / Canadian $

EUR/AUD Euro / Australian $ USD/NOK US $ / Norwegian Krona

EUR/GBP Euro / British Pound USD/JPY US $ / Japan. Yen

EUR/CAD Euro / Canadian $ USD/SGD US $ / Singaporean Dollar

EUR/CSK Euro / Czech Krona USD/ZAR US $ / South African Rand

June 2013 to May 2014

EUR/USD Euro / US $ GBP/CHF British Pound / Swiss Franc

EUR/JPY Euro / Japan. Yen GBP/ USD British Pound / US $

TABLE 3 FX currency pairs used in our experiments.

As each threshold produces a di�erent DC summary, we will be evaluating 5 di�erent DC thresholds for all
datasets (both tuning and non-tuning). These thresholds are the best thresholds dynamically selected during the
OS length estimation step (see Section 3.1). When reporting results in Section 5, we will be presenting the mean
performance of each algorithm, over the 5 DC thresholds.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



A. Adegboye et al. 13

4.1 | Parameter tuning

There are two tasks that require parameter tuning: the classi�cation task, and the OS length estimation task. As
we have already mentioned, the classi�cation task uses Auto-Weka to search in the space of algorithms and their
hyperparameters. The only parameter that we needed to tune was Auto-Weka’s execution time. Higher execution
times allow Auto-Weka to consider more algorithms and more hyperparameter settings. We considered �ve di�erent
execution times: 15, 30, 45, 60, and 75 minutes. After experiments in a training and validation set, we chose the 60
minute duration based on average f-measure results.

With regards to the OS length estimation task, the only necessary tuning was for the GP algorithm (Equation
3). We used the I/F-Race package [25], which implements a racing method to select the best con�guration of an
optimisation algorithm. We present the selected GP parameters in Table 4.

Parameter

Population 500

Generation 37

Tournament size 3

Crossover probability0.98

Mutation probability 0.02

Maximum depth 3

Elitism 0.10

TABLE 4 GP parameters

4.2 | Trading experimental setup

As we have already mentioned, after completing the classi�cation and OS length estimation tasks, we can use Equa-
tions 1–3 to predict when a DC trend is going to end. We embed these equations into the trading strategy we
presented in Section 3.3.

Our goal is to investigate if the introduction of the classi�cation step is bene�cial to the trading performance.
Thus, we will be comparing each DC algorithm to a version with and without classi�cation. In addition, we will be also
experimenting with non-DC algorithms, to investigate how the DC performance compares to other state-of-the-art
trading algorithms.

We present below all algorithms used in our experiments.

4.2.1 | DC-related benchmarks

(C+) Factor-2
Originally presented in [19], this DC trend reversal approach says that on average the OS event length is twice the
DC event length. In this strategy, Equation 1 replaces the classi�cation and regression steps of our methodology.
Thus, the trend reversal point is the point where the OS event length is twice the DC length. Factor-2 is the approach
without classi�cation, and C+Factor-2 is the same approach with classi�cation.
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(C+) Factor-M
This is a DC trend reversal approach originally presented in [24], where the DC-OS relationship is expressed by a linear
function. The constant M is tailored to each dataset and describes the above linear relationship. In this strategy,we
use Equation 2 instead of the classi�cation and regression steps of our methodology. Thus, the trend reversal point is
tailored to each dataset. Factor-M is the approach without classi�cation, and C+Factor-M is the same approach with
classi�cation.

(C+) Reg-GP
This is a DC trend reversal approach presented in [2], where equations are created by a symbolic regression GP. In
this trading strategy, we embed Equation 3. Reg-GP is the approach without classi�cation, and C+Reg-GP is the same
approach with classi�cation.

p-trading
We obtain the training set probability p of a DC event being followed by an OS event. At the directional change
con�rmation (DCC) point, we decide with this p probability whether a DC trend has a corresponding OS event; if true,
we apply any of the above 3 OS length estimation models to estimate OS event length (i.e. predict trend reversal point
which is our estimated directional change extreme point). If false, the DCC point is the estimated extreme point and
we apply the trading strategy and see if a trade at that point can be pro�table. Themotivation behind this scenario is to
demonstrate that the introduction of the classi�cation step is advantageous and outperforms the informed decision
of having or not having an OS event, based on a probability that is tailored to the training set. As there are three
di�erent OS length estimation models, there are as a result three variations of the tailored trading benchmark:

• p+Factor-2
• p+Factor-M
• p+Reg-GP

Trade at DCC point
In this scenario, we will always trade as soon as a directional change has been con�rmed, i.e., at the DC con�rmation
point (DCC). The motivation behind this scenario is to investigate the trading pro�tability if we were not to take into
account the OS events at all and instead only focus on the DC events. Provided that our proposed classi�cation
algorithms outperform this scenario, it would again demonstrate that the introduction of the classi�cation step is
advantageous and better than not having classi�cation and the knowledge of the OS length.

As there are three di�erent OS length estimation models, there are as a result three variations of the random
trading benchmark:

• DCC+Factor-2
• DCC+Factor-M
• DCC+Reg-GP

4.2.2 | Non-DC benchmarks

Technical analysis trading strategy
We also use three popular technical indicators to make trading decisions. These indicators are:
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• Relative Strength Index (RSI)
• Exponential Movement Average indicator (EMA)
• Moving Average Convergence Divergence (MACD)

Buy-and-hold
Buy and hold is a well-known benchmark for trading algorithms. In the �rst month of the non-tuning dataset, we buy
the quoted currency; after the end of the 10-month period, we sell in exchange for the base currency.

5 | RESULT AND ANALYSIS

In this section we present the results of our experimental work. We �rst present the regression results in Section 5.1,
and then we present the trading results in Section 5.2.

We would like to remind the reader that the goal of our work is twofold: (i) Demonstrate that the introduction
of the classi�cation step can signi�cantly improve the pro�tability of DC-based strategies, and (ii) Demonstrate that
DC-based strategies, which use a classi�cation step to predict whether a DC event is followed by an OS event, are
able to be pro�table and outperform other DC and non-DC-based trading strategies.

5.1 | Regression result

Table 5 presents the average RMSE result of the OS length estimation step over the 5 DC thresholds and the 10
months of data per currency pair for GP-Reg, Factor-M, and Factor-2. For each of these three algorithms, we present
the RMSE for two variations: (1) with the classi�cation step and (2) without the classi�cation step. For the variation
that includes the classi�cation step (denoted with pre�x C+), we estimate the OS event length only in DC trends that
have been classi�ed as ↵DC . RMSE is calculated regardless of the prediction of the classi�cation (i.e., being correct
or incorrect). In cases where the classi�cation algorithm incorrectly predicts that there is an OS event, the length
returned by the OS estimation algorithm is compared to length zero (0). When the classi�cation algorithm incorrectly
predicts that there is not an OS event, the length of the OS event is compared to length zero (0). In other words, in
both cases, the incorrect predictions (FP, FN) from the classi�cation step are accounted for the RMSE.

From Table 5 we can observe that C+Reg-GP has the lowest average RMSE (18.6170) across all six algorithms.
C+Reg-GP also has 11 cases (out of the 20 currency pairs) that returned the lowest RMSE per currency pair, Reg-
GP had 4 such cases, C+Factor-M 3 cases, and C+Factor-2 2 cases. More importantly, we can observe that the
average RMSE for each algorithm with the classi�cation step has returned a lower average RMSE when compared to
its respective variation without classi�cation: C+Reg-GP (18.6550) vs Reg-GP (20.3216), C+Factor-M (20.5592) vs
Factor-M (34.4474), and C+Factor-2 (21.3247) vs Factor-2 (25.7951). It is also worth noting that the classi�cation
accuracy (presented in brackets) is quite high, usually ranging between 70% and 85%. As we have hypothesised, the
high accuracy appears to have played an important role in reducing the average RMSE for all three algorithms (Reg-GP,
Factor-M, and Factor-2).

An interesting observation is that while the EUR/CSK pair has relatively low classi�cation accuracy across all
variants (55-58%), their average RMSE still outperforms the variants without the classi�cation step. We further looked
into this and found that the EUR/CSK currency pair has the lowest number of DC events (55 in the training set, 18
in the test set), while the average number of DC events for all other currency pairs is 194 in training and 60 in test.
In addition, the length of DC events (i.e. number of physical time data points making up a single event) is the highest
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for EUR/CSK (46 in training, 32 in test), compared to an average of 12 in both training and test for all other currency
pairs. This means that EUR/CSK experiences a smaller number of DC events, followed by long OS events. When the
algorithms are run without the classi�cation step, every DC event is assumed to be followed by an OS event. Given
that the DC events are long for EUR/CSK, as a consequence, the OS events are long, as well. Therefore, every time
that an OS length estimation algorithm (Reg-GP, Factor-M, Factor-2) makes a prediction when there is no OS event,
this results in a larger RMSE. The classi�cation step, although it has a lower accuracy (55-58%), signi�cantly reduces
the RMSE simply by reducing the number of times that the OS estimation algorithm is used when there is no OS event.
In this case, the classi�cation step should not be evaluated only on the merits of classi�cation accuracy, but on the
actual e�ect it has on the regression error.

To further understand the above results, we have performed the Friedman non-parametric statistical test, under
the null hypothesis that all algorithms come from the same continuous distribution. We present these results in Table
6. The �rst column presents the average rank of each algorithm. The second column presents the adjusted p-value
of the test when that algorithms average rank is compared to the average rank of the control algorithm (i.e. algorithm
with the best rank). The adjusted p-value is calculated with the Hommel post-hoc test. As we can observe, C+Reg-
GP ranks �rst and statistically outperforms all other algorithms at the ↵ = 0.05 level. More importantly, C+Reg-GP
outranks Reg-GP, C+Factor-2 outranks Factor-2, and C+Factor-M outranks Factor-M.

To sum up: (i) introducing the the classi�cation step (C+Reg-GP, C+Factor-M, C+Factor-2) to existing DC-based
algorithms (Reg-GP, Factor-M, Factor-2) has reduced the average predictive error, and (ii) the DC algorithms that are
using the classi�cation step outrank their respective algorithm without classi�cation. Our interest now shifts to the
trading step in order to investigate whether the introduction of classi�cation step also leads to an increase in trading
pro�t margins (in addition to reduced OS length estimation error, as we have just seen in Section 5.1).

5.2 | Trading result

5.2.1 | Comparison against DC-based and technical analysis algorithms

Table 7 presents the average returns per currency pair.. When value 0.00 is reported, it means that the trading strategy
took a hold action throughout the 10-month period. The best value for each row (currency pair) is shown in boldface.
Best value among the di�erent variants of the same algorithm (Reg-GP, Factor-M, Factor-2) is underlined, i.e. for
AUD/NZDC+Reg-GPhas the best return across all algorithms, aswell as among the Reg-GP algorithmvariants, namely
C+Reg-GP, Reg-GP, p+Reg-GP, DCC+Reg-GP.

In terms of average results, C+Reg-GP has the highest return (0.2247) across all algorithms. Furthermore, all
versions that have introduced the classi�cation step have the highest average return for their respective group (C+Reg-
GP: 0.2247, C+Factor-M: 0.0684, C+Factor-2: 0.1186). It is also important to note that these three versions show a
strong positive average return, whereas all other algorithms experience negative average returns, with the exception
only of Factor-2, which shows marginally positive average returns of 0.0260. It is also worth highlighting that Forex
market is open 24 hours a day in di�erent parts of the globe and at any point in time, there is at least one market open
and has overlapping open markets for few hours. Thus, an average return of the scale of 0.2247% (C+Reg-GP) after
discounting’ transaction cost will have a signi�cant cumulative e�ect in the long run.

Having a closer look at the individual currency pairs, we can observe that C+Reg-GP outranks Reg-GP, p+Reg-
GP, and DCC+Reg-GP in 14 out of the 17 pairs (the remaining 3 pairs have 0.00 return, thus no trading took place).
Similarly, for the second group of DC algorithms, C+Factor-M ranks �rst with 13 cases. Lastly, C+Factor-2 had the
highest return in 10 currency pairs.
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TABLE 5 Average RMSE values for each OS length estimator algorithm measured over 1000 datasets consisting
of 5 di�erent dynamically generated thresholds tailored to each DC dataset, 20 currency pairs, and 10 months of
10-minute interval data for each currency pair. In brackets we also report the classi�cation accuracy, for reference
(for C+Reg-GP, C+Factor-M, C+Factor-2). The Best value for each row (currency pair) is shown in boldface.

Algorithms C+Reg-GP Reg-GP C+Factor-M Factor-M C+Factor-2 Factor-2

AUD/JPY 15.5670 (0.851) 15.6270 17.1570 (0.778) 25.5270 18.4720 (0.782) 22.2690

AUD/NZD 27.368 (0.805) 24.3320 27.4110 (0.806) 51.2420 31.9260 (0.761) 41.5920

AUD/USD 11.5800 (0.829) 12.8140 12.7200 (0.768) 16.0950 11.8270 (0.745) 14.0600

CAD/JPY 11.8430 (0.820) 18.7850 14.6860 (0.779) 39.9700 16.8800 (0.764) 27.2510

EUR/AUD 21.1710 (0.821) 20.5690 20.2010 (0.799) 25.7280 14.7520 (0.751) 19.7490

EUR/CAD 16.2050 (0.839) 17.7190 21.0950 (0.784) 23.1830 22.6420 (0.750) 24.8670

EUR/CSK 41.9900 (0.557) 52.9490 46.0270 (0.581) 188.6080 63.0420 (0.565) 83.8450

EUR/GBP 24.1730 (0.825) 22.6350 25.5870 (0.766) 31.4300 17.2120 (0.752) 18.7900

EUR/JPY 19.9650 (0.821) 21.1170 23.4540 (0.758) 28.1620 23.1640 (0.748) 25.2040

EUR/NOK 13.7170 (0.818) 13.7620 20.4120 (0.727) 27.2010 19.5710 (0.728) 22.4990

EUR/USD 28.2600 (0.806) 31.0610 26.8990 (0.786) 38.5320 27.6690 (0.762) 30.0380

GBP/AUD 15.1380 (0.837) 14.7190 19.2820 (0.832) 21.6700 14.8810 (0.780) 17.9100

GBP/CHF 15.9610 (0.831) 17.2040 17.5260 (0.784) 19.3580 21.4210 (0.769) 23.6690

GBP/USD 19.2040 (0.851) 24.8890 17.8250 (0.790) 21.2230 25.3210 (0.746) 27.7780

NZD/USD 10.2300 (0.848) 10.5880 11.0920 (0.772) 14.7310 13.1350 (0.773) 15.8960

USD/CAD 26.9340 (0.797) 26.8180 27.1330 (0.766) 34.6540 27.5190 (0.739) 29.3150

USD/JPY 13.7040 (0.850) 14.5430 15.9860 (0.774) 17.9980 16.0310 (0.777) 18.3260

USD/NOK 7.7180 (0.887) 7.3570 9.96900 (0.813) 14.1280 8.1830 (0.792) 10.7640

USD/SGD 26.9320 (0.780) 34.1480 31.9440 (0.799) 41.7120 27.4980 (0.720) 34.3600

USD/ZAR 5.4400 (0.877) 4.7960 4.7770 (0.807) 7.7960 5.3470 (0.813) 7.7200

Average RMSE 18.8175 (0.816) 20.5687 20.7382(0.773) 34.9169 21.4748 (0.749) 25.9807

To support our �ndings, we applied Friedman’s non-parametric statistical test. The null hypothesis is that the algo-
rithms come from the same continuous distribution. The result of the statistical test presented in Table 8 shows that all
three DC versions with the classi�cation step (i.e. C+Reg-GP, C+Factor-M, C+Factor-2) rank the highest, and outper-
form all other variants without the classi�cation step. In addition, C+Reg-GP ranks �rst and statistically outperforms
all algorithms, apart from C+Factor-M and C+Factor-2, at the 5% signi�cance level.

Even though C+Reg-GP recorded higher returns than other trading strategies, it is important to also take into
account the risk taken to achieve it. For this reason, we also present results of MDD (maximum drawdown) and
Sharpe ratio. We did not record risk measures for currency pair AUD/JPY, CAD/JPY and USD/JPY, as no trading took
place in these markets.

Table 9 presents the MDD result. In terms of overall average MDD, C+Reg-GP has the lowest (best) average
value of 0.1259. In terms of individual currency pairs and performance of each group of algorithm, we can observe
that C+Reg-GP returned the lowest MDD value in 13 out of the 17 cases, when compared to Reg-GP, p+Reg-GP,
and DCC+Reg-GP. So once again, the introduction of the classi�cation step has been bene�cial. What is interesting,
however, is the results for the other two sets of algorithms, Factor-M and Factor-2. It appears there’s a trade-o� here
between higher return and risk, as in both cases, it is actually the variant without the classi�cation step that ranks �rst
in their respective group (both Factor-M and Factor-2 rank �rst in 15 out of the 17 currency pairs). The classi�cation

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



18 A. Adegboye et al.

TABLE 6 Statistical test results of OS length estimation according to the non-parametric Friedman test with the
Hommel post-hoc test. Signi�cant di�erences at the ↵ = 0.05 level are shown in boldface.

Algorithm Average Rank AdjustpHomm

C+Reg-GP (c) 1.90 -

Reg-GP 2.50 0.3105

C+Factor-M 2.95 0.1518

C+Factor-2 3.15 0.1038

Factor-2 4.90 1.5835E-6

Factor-M 5.60 1.9985E-9

variants ranked second in both groups.
In addition, Table 10 presents the Friedman test for Table 9. The null hypothesis is again that the algorithms

come from the same continuous distribution. As we can observe, the best ranking algorithm is one that includes a
classi�cation step, C+Reg-GP, and it statistically outranks 9 other algorithms at the 5% signi�cance level.

Figure 6 illustrates the Sharpe ratio of the trading strategies. The time period is presented in the x-axis, and the
sharpe ratio in the y-axis. The pairs where there are no values are the ones where no trading took place. As we can
observe, C+Reg-GP consistently reports positive sharpe ratio, whereas the other strategies have a mixture of both
positive and negative values. There are 34 risk-adjusted return summaries, excluding the 6 periods where no trading
took place. Out of the 34, C+Reg-GP had positive Sharpe ratio in 28; Meanwhile, Reg-GP, p+Reg-GP, DCC+Reg-GP,
C+Factor-M, Factor-M, p+Factor-M, DCC+Factor-M, C+Factor-2, Factor-2, p+Factor-2, DCC+Factor-2, EMA, MACD
and RSI had 11, 15, 8, 22, 7, 19, 13, 21, 17, 14, 13, 8, 4 and 11 respectively. Out the 28 positive Sharpe ratio results,
6 where above 0.5, 18 were above 0.2 and less that 0.5; the rest were below 0.2.1 Table 11, which presents the
Friedman test for the result presented in Figure 6, con�rms our �ndings, as C+Reg-GP ranks �rst and statistically
outperforms all other trading strategies at the 5% level. In addition, C+Factor-M and C+Factor-2 rank second and
third, respectively, which again demonstrates that the introduction of the classi�cation step is bene�cial to the DC
algorithms.

1A negative value represents a negative return; a value between 0.2–0.3 is in line with the general market; a value between 0.5–1 represents
a market-beating performance; a value greater than 1 represents superb performance.
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TABLE 7 Average return of trading strategies under 10-minute interval out-of-sample data, 20 di�erent currency pairs, and 10 calendar months. 5 DC
datasets were generated using 5 dynamically generated thresholds tailored to each DC dataset. The best value for each row (currency pair) is shown in boldface.
Best value among the di�erent variants of the same algorithm (Reg-GP, Factor-M, Factor-2) is underlined.
Dataset C+Reg-GP Reg-GP p+Reg-GP DCC+Reg-GP C+Factor-M Factor-M p+Factor-M DCC+Factor-M C+Factor-2 Factor-2 p+Factor-2 DCC+Factor-2 RSI EMA MACD

AUD/JPY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

AUD/NZD 0.2600 -0.0890 0.0709 0.0110 0.0747 -0.0626 0.1084 0.0223 0.0328 -0.0122 0.0616 0.0248 0.0558 0.0017 0.0047

AUD/USD 0.2727 -0.4636 -0.2061 -0.2223 -0.0037 -0.3270 -0.1749 -0.2933 -0.0223 -0.1321 -0.2752 -0.4222 0.0464 -0.1452 -0.1473

CAD/JPY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

EUR/AUD 0.1861 -0.0391 -0.0868 -0.1626 0.0139 -0.1244 -0.0974 -0.0197 0.1434 0.0547 0.0926 -0.1400 -0.0596 0.0566 -0.0916

EUR/CAD 0.1922 -0.2428 -0.2218 -0.1332 0.0784 -0.0194 0.0621 -0.2208 0.0810 -0.1512 -0.1225 -0.0871 -0.0127 -0.2260 -0.3459

EUR/CSK 0.0336 0.0102 0.0191 0.0455 0.0381 0.0355 0.0264 0.0643 0.0139 0.0046 0.0146 0.0548 -0.1382 -0.2327 -0.2812

EUR/GBP 0.1040 -0.0865 -0.0350 0.0218 0.0682 -0.0609 0.0625 -0.1136 0.1105 0.0317 0.0792 -0.0595 -0.0275 -0.1347 -0.2398

EUR/JPY 0.0202 -0.0623 -0.0036 -0.0486 0.0112 -0.0197 0.0218 0.0007 -0.0287 -0.0156 0.0161 -0.0145 -0.0222 0.0154 0.0135

EUR/NOK 0.3509 -0.0428 -0.1281 0.0048 0.1703 -0.1475 -0.0895 0.0955 -0.0300 -0.0691 0.1651 0.0693 -0.0429 -0.1181 -0.2333

EUR/USD -0.0006 0.0202 -0.0688 -0.2548 -0.0894 -0.1049 -0.1939 -0.1396 -0.0779 0.0318 -0.0416 -0.1367 -0.1057 -0.4923 -0.4094

GBP/AUD 0.3542 0.2956 -0.1312 -0.0526 0.1012 -0.2473 0.0719 0.0035 0.0990 0.4061 -0.2356 0.0387 -0.1595 -0.3021 -0.0606

GBP/CHF 0.2022 -0.1160 -0.0536 -0.1384 -0.0209 -0.0866 -0.1372 -0.1590 0.0514 -0.0283 -0.1698 -0.2131 0.0355 -0.2677 -0.3305

GBP/USD -0.0590 -0.0478 -0.1415 -0.4172 -0.1226 -0.2035 -0.2336 -0.3485 -0.0050 -0.0466 -0.1524 -0.3188 0.0080 -0.0755 -0.3612

NZD/USD 0.2803 -0.4779 -0.0115 0.0738 -0.1234 -0.1586 -0.0155 -0.0886 0.1294 -0.1738 -0.1421 -0.2045 0.1238 -0.2339 -0.3662

USD/CAD 0.0443 0.0109 -0.3405 -0.3064 -0.0293 -0.2238 -0.2230 -0.2475 -0.0465 0.0224 -0.3631 -0.1372 -0.2991 -0.3056 -0.5711

USD/JPY 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

USD/NOK 0.4612 -0.0208 -0.2210 -0.0662 0.1419 -0.4332 -0.1482 0.0011 0.3929 -0.0188 -0.1846 0.0995 -0.1440 -0.0754 -0.1541

USD/SGD 0.0303 0.0272 -0.0516 -0.1478 0.1108 -0.0233 0.0229 -0.0028 0.0712 0.1299 -0.0222 0.0348 -0.0574 -0.0436 -0.2949

USD/ZAR 1.7625 0.8403 -0.0913 0.6432 0.9516 0.6954 0.3467 0.6417 1.4571 0.4870 0.7265 0.8492 0.0439 0.3436 0.1100

Average 0.2247 -0.0242 -0.0851 -0.0575 0.0686 -0.0756 -0.0295 -0.0402 0.1186 0.0260 -0.0277 -0.0281 -0.0378 -0.1118 -0.1879
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TABLE 8 Statistical test results of average returns according to the non-parametric Friedman test with the
Hommel post-hoc test. 10-minute interval out-of-sample date. Signi�cant di�erences between the control
algorithm (denoted with (c) and the algorithms represented by a row at the ↵ = 5% level are shown in boldface
indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

C+Reg-GP (c) 2.8571 -

C+Factor-M 4.7619 0.1675

C+Factor-2 4.8095 0.1675

Factor-2 6.6190 0.0192

p+Factor-M 7.7142 0.0017

p+Factor-2 7.8095 0.0017

RSI 8.1904 6.6827E-4

DCC+Factor-2 8.1904 6.6827E-4

DCC+Factor-M 8.5238 2.9701E-4

Reg-GP 8.5714 2.7736E-4

p+Reg-GP 9.4762 1.6190E-5

DCC+Reg-GP 9.6190 9.6100E-6

Factor-M 10.0952 1.8805E-6

EMA 10.6190 2.4251E-7

MACD 12.1429 2.4059E-10
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TABLE 9 %Average maximum drawdown result for trading strategies compared. 10-minute interval out-of-sample data. 20 di�erent currency pairs and 10
calendar months each representing the physical dataset. 5 DC dataset were generated using 5 dynamically generated thresholds tailored to each DC dataset.
Best (lowest) value for each row (currency pair) is shown in boldface. Best value among the di�erent variants of the same algorithm (GP, M, O) is underlined.
Dataset C+Reg-GP Reg-GP p+Reg-GP DCC+Reg-GP C+Factor-M Factor-M p+Factor-M DCC+Factor-M C+Factor-2 Factor-2 p+Factor-2 DCC+Factor-2 RSI EMA MACD

AUD/NZD 0.1230 0.1506 0.1713 0.3185 0.2699 0.1588 0.2896 0.6500 0.3270 0.2059 0.3368 0.4763 0.0712 0.1704 0.1586

AUD/USD 0.1595 0.3123 0.5710 0.6917 0.5750 0.1484 0.6657 0.7631 0.4846 0.2754 0.7167 0.8327 0.1617 0.1183 0.1705

EUR/AUD 0.1058 0.1545 0.4086 0.6214 0.3006 0.0768 0.4332 0.9292 0.2599 0.2062 0.3246 0.5396 0.1036 0.1199 0.1732

EUR/CAD 0.1353 0.2577 0.4772 0.4494 0.2334 0.2033 0.3325 0.7941 0.2191 0.3079 0.3928 0.3773 0.0797 0.1230 0.1484

EUR/CSK 0.0057 0.0080 0.0218 0.0253 0.0133 0.0128 0.0189 0.1117 0.0171 0.0024 0.0254 0.0224 0.1863 0.0356 0.0386

EUR/GBP 0.1005 0.0778 0.1460 0.2789 0.1891 0.1375 0.2513 0.4845 0.2120 0.0864 0.2000 0.3884 0.0716 0.2415 0.1957

EUR/JPY 0.0106 0.0383 0.0112 0.0255 0.0091 0.0084 0.0157 0.0509 0.0372 0.0519 0.0100 0.0210 0.0144 0.0041 0.0012

EUR/NOK 0.1331 0.1476 0.2844 0.3871 0.2699 0.2560 0.4492 0.4974 0.4232 0.1516 0.2737 0.4209 0.0897 0.1140 0.1013

EUR/USD 0.1555 0.0688 0.2059 0.4034 0.2383 0.1262 0.3368 0.8276 0.2400 0.0828 0.2137 0.3925 0.1905 0.2240 0.2231

GBP/AUD 0.1912 0.2391 0.6403 0.6260 0.4910 0.2009 0.6226 0.8899 0.5337 0.1773 0.7777 0.9015 0.2832 0.2077 0.2158

GBP/CHF 0.0956 0.1064 0.1897 0.3278 0.3558 0.0493 0.4552 0.6282 0.2836 0.1908 0.3821 0.5696 0.0165 0.1629 0.2002

GBP/USD 0.1323 0.1797 0.2095 0.3867 0.3054 0.1222 0.3887 0.9857 0.2815 0.1617 0.3774 0.5990 0.1125 0.1224 0.2697

NZD/USD 0.2892 0.3242 0.4777 0.6830 0.5831 0.2664 0.6115 0.9989 0.4226 0.4036 0.7056 0.7510 0.0000 0.2701 0.2627

USD/CAD 0.1678 0.1615 0.5727 0.5389 0.2835 0.3403 0.6001 0.6407 0.3781 0.2393 0.5912 0.5521 0.3334 0.3230 0.1673

USD/NOK 0.1406 0.1747 0.7049 0.7367 0.4890 0.5694 0.6361 0.5926 0.3772 0.1716 0.7149 0.6544 0.1732 0.2351 0.0994

USD/SGD 0.0770 0.0741 0.1891 0.3058 0.1128 0.0689 0.1463 0.7689 0.1332 0.0358 0.2067 0.2644 0.1521 0.1269 0.0792

USD/ZAR 0.1168 0.1453 1.2417 1.2160 0.8950 0.2811 1.1893 0.8155 0.6761 0.3312 0.9046 1.0415 0.1494 0.3573 0.7089

Average MDD 0.1259 0.1542 0.3837 0.4719 0.3302 0.1780 0.4378 0.6723 0.3121 0.1813 0.4208 0.5179 0.1288 0.1739 0.1890
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TABLE 10 Statistical test results of maximum drawdown of DC based trading strategies according to the
non-parametric Friedman test with the Hommel post-hoc test. 10-minute interval out-of-sample data. Signi�cant
di�erences between the control algorithm (denoted with (c) and the algorithms represented by a row at the ↵ = 5%
level are shown in boldface indicating that the adjusted p value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

C+Reg-GP (c) 3.1111 -

Factor-M 4.0556 0.5264

RSI 4.4111 0.5264

Reg-GP 4.6111 0.5264

EMA 5.2778 0.5264

Factor-2 5.3333 0.5264

MACD 4.3889 0.5061

C+Factor-M 8.1111 0.0056

C+Factor-2 8.8889 8.5002E-4

p+Reg-GP 9.6111 1.1688E-4

p+Factor-M 11.2778 9.8595E-7

p+Factor-2 11.0556 4.7220E-7

DCC+Reg-GP 12.2222 1.1813E-8

DCC+Factor-2 12.7778 1.1566E-9

DCC+Factor-M 14.1667 1.6862E-12
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F IGURE 6 Average Sharpe ratio for all currency pairs.
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TABLE 11 Statistical test results of risk-adjusted returns according to the non-parametric Friedman test with the
Hommel post-hoc test. 10-minute interval out-of-sample date. Signi�cant di�erences between the control
algorithm (denoted with (c) and the algorithms represented by a row at the ↵ = 5% level are shown in boldface
indicating that the adjusted p-value is lower than 0.05.

Trading strategies Average Rank AdjustpHomm

C+Reg-GP (c) 3.0857 -

C+Factor-2 5.3143 0.0371

C+Factor-M 5.4286 0.0371

p+Factor-M 6.4857 0.0044

Factor-2 6.7714 0.0023

p+Reg-GP 7.2857 4.2690E-4

p+Factor-2 7.3143 3.8193E-5

Reg-GP 8.5143 2.6705E-6

DCC+Factor-M 8.6286 1.5260E-6

DCC+Factor-2 8.8571 6.0421E-7

DCC+Reg-GP 9.3143 5.6671E-8

RSI 9.6000 1.2147E-8

Factor-M 10.0571 8.3711E-10

EMA 10.9000 3.4833E-12

MACD 12.4429 2.9136E-17

5.2.2 | Comparison with Buy-and-hold

In terms of returns and risk, since C+Reg-GP was found to be the best algorithm in comparison to other DC and tech-
nical analysis algorithms, we now shift our focus to comparing it to the well-known buy-and-hold (BandH) benchmark,
and in the following section, we will look at a sample of best GP models. Under BandH, we buy on the �rst day of the
�rst month and sell on the last day of the tenth month.

Table 12 compares the mean returns of C+Reg-GP and the BandH strategy. C+Reg-GP outperforms BandH in 12
currency pairs with an overal average return of 0.225% against a negative average return of -0.128% under BandH. In
addition, C+Reg-GP’s variance is 0.153 and BandH’s is 0.515. This indicates that C+Reg-GP is not only more pro�table,
but also less risky than BandH. These results were also con�rmed by a Komolorov-Smirnov statistical test with a p-
value of 7.2529e-04.

5.2.3 | C+Reg-GP: distribution of returns

To further understand the performance of C+Reg-GP, we also look into its returns in more detail. Figure 7a presents
the distribution of returns across 50 individual GP runs for all 20 currency pairs and the 5 di�erent thresholds. Our
goal is here to get insights into the overall performance of the algorithm across all datasets. We have also �tted the
distribution of returns with a generalised Student-t distribution, to accommodate for extreme values that the normal
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TABLE 12 % Comparison of C+REG-GP and buy-and-hold in terms of average return.

Trading strategies C+Reg-GP Buy-and-hold

AUD/JPY 0.000 -6.278

AUD/NZD 0.260 -0.516

AUD/USD 0.273 -5.728

CAD/JPY 0.000 -4.109

EUR/AUD 0.186 -2.672

EUR/CAD 0.192 18.555

EUR/CSK 0.034 7.770

EUR/GBP 0.104 -0.292

EUR/JPY 0.020 -6.211

EUR/NOK 0.351 2.046

EUR/USD -0.001 8.801

GBP/AUD 0.354 3.936

GBP/CHF 0.202 -2.395

GBP/USD -0.059 8.464

NZD/USD 0.280 -6.443

USD/CAD 0.044 2.345

USD/JPY 0.000 -9.430

USD/NOK 0.461 -6.102

USD/SGD 0.030 0.207

USD/ZAR 1.762 -4.505

Mean 0.225 -0.128

distribution cannot. It should also be noted that we did not plot the cases that the algorithm chose not to trade, as
these cases did not yield any return. As we can observe from the �gure, the mean of the returns is positive (0.3224);
the median is also positive at 0.1606. The returns are positively skewed, with a value of 1.9249. There is also a
signi�cantly high kurtosis of 11.7598, which indicates that it produces more outliers than the normal distribution.
The range of the returns is [-3.1413, 7.1294], and the standard deviation is 0.9628. In addition, from the distribution
data, we have generated the empirical CDF of the returns in Figure 7b, and as we can observe, the algorithm achieves
positive returns at a probability of about 65%.

To get more insights into the algorithm’s performance for each currency pair, we also present the distribution of
returns for each pair in Figure 8. The trading algorithm did not recommend any trading at all across all 50 GP runs for
AUD/JPY, CAD/JPY, and USD/JPY, thus these plots are empty. This, in our opinion, is an important result, as C+Reg-
GP is able to identify cases that are going to be extremely damaging in terms of pro�tability, and hence recommend to
hold and not take any action at all. It is also very interesting that the algorithmwas able to consistently do this for all 50
GP runs for the three aforementioned currency pairs. For the remaining datasets, C+Reg-GP is by and large yielding
positive returns. We are presenting the mean, standard deviation, skewness and kurtosis for each currency pair in
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F IGURE 7 (7a) Distribution of returns for the C+Reg-GP algorithm across 50 GP runs, 20 currency pairs, and 5
di�erent DC thresholds. The distribution has been �t with a generalised Student-t distribution. (7b) Empirical CDF
for the returns of C+Reg-GP algorithm across 50 GP runs, 20 currency pairs, and 5 di�erent DC thresholds.

(a) (b)

Table 13. With the exception of EUR/USD and GBP/USD, all other pairs are experiencing positive mean returns. Also,
returns are mainly positively skewed, with the exception of EUR/GBP, EUR/USD, and USD/NOK. Lastly, the kurtosis
for the majority of currency pairs is around 3, indicating that the tails of the distribution experiences extreme outliers
on par with the normal distribution. Overall, we consider these as quite positive results, as they demonstrate that
C+Reg-GP has a high potential of yielding positive returns across a variety of datasets.

TABLE 13 Summary statistics for all currency pair results for the C+Reg-GP algorithm. The trading algorithm did
not recommend any trading for AUD/JPY, CAD/JPY, and USD/JPY, thus for these currency pairs a NaN value is
shown in their respective statistics.

Currency pair AUD/JPY AUD/NZD AUD/USD CAD/JPY EUR/AUD EUR/CAD EUR/CSK EUR/GBP EUR/JPY EUR/NOK

Mean NaN 0.3 0.29 NaN 0.23 0.23 0.07 0.13 0.17 0.37

Stand. Dev. NaN 0.76 0.97 NaN 0.49 0.7 0.14 0.39 0.18 0.73

Skewness NaN 0.25 0.75 NaN 1.14 0.36 0.6 -0.02 0.6 0.86

Kurtosis NaN 3.33 4.93 NaN 4.71 3.7 3.67 2.28 1.88 3.84

Currency pair EUR/USD GBP/AUD GBP/CHF GBP/USD NZD/USD USD/CAD USD/JPY USD/NOK USD/SGD USD/ZAR

Mean -0.0009 0.37 0.23 -0.06 0.33 0.06 NaN 0.47 0.04 1.77

Stand. Dev. 0.42 0.85 0.61 0.42 1.0 0.73 NaN 0.92 0.52 2.08

Skewness -0.21 0.62 0.75 0.93 0.71 0.17 NaN -0.45 0.79 0.17

Kurtosis 4.09 3.73 3.75 7.11 3.68 3.34 NaN 7.7 2.96 3.17

5.2.4 | A sample of best GP models

For completeness, we present a sample of the best trees (in terms of pro�tability) that C+Reg-GP evolved in their
equation format. OSl is the OS length and DCl is DC length.
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F IGURE 8 Distribution of returns for the C+Reg-GP algorithm. The returns are presented separately for each
currency pair, and are over 50 GP runs and 5 DC thresholds. All distributions have been �t with a generalised
Student-t distribution. The trading algorithm did not recommend any trading at all for AUD/JPY, CAD/JPY, and
USD/JPY, thus their respective plots are empty.

OSl = log(a + DCb
l )

where a= 1609.55 and b = 5.023.
(8)

OSl = log( (DCl ⇥ a)b )

where a= 4.117 and b = 5.764.
(9)

OSl = cos(a ⇥ cos(DCl )) +
b

exp (cos(DCl )
where a = 292.160 and b= 4.569

(10)
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OSl = exp(exp(sin(sin(DCl )))) + (a ⇥ (b + log(DCl )))

where a = 1.750 and b = 1.957.
(11)

Most equations have di�erent structures. The �rst and second equations are using the logarithmic function, the
third consists of the cosine and the exponential function, and the fourth equation has three components, namely the
exponential, sine, and logarithm. What we can conclude from these equations for the DC and OS length relationship
is that (i) it is non-linear, and (ii) it is dataset dependent. The latter is an important observation, as it indicates that we
need to be evolving tailored equations for di�erent datasets to understand the DC-OS relationship, and thus predict
trend reversal.

TABLE 14 Average computational times per run for C+Reg-GP, Reg-GP , p+Reg-GP, DCC+Reg-GP, C+Factor-M,
Factor-M, p+Factor-M, DCC+Factor-M, O+Reg-GP, Factor-2, p+Factor-2, DCC+Factor-2, RSI, EMA, MACD. BH
takes less than 1 second to execute because we buy quoted currency at the start of trading period and sell quoted
currency at the end of trading period.

Trading strategies C+Reg-GP Reg-GP p+Reg-GP DCC+Reg-GP

Classi�cation ⇠ 65 mins – – –

Estimation ⇠ 5.45 mins ⇠ 6.20 mins ⇠ 5.25 mins –

Trading ⇠ 3 sec ⇠ 3 sec ⇠ 3 sec ⇠ 3 sec

Trading strategies C+Factor-M Factor-M p+Factor-M DCC+Factor-M

Classi�cation ⇠ 65 mins – – –

Estimation ⇠ 30 secs ⇠ 30 secs ⇠ 30 secs –

Trading ⇠ 3 sec ⇠ 3 sec ⇠ 3 sec ⇠ 3 sec

Trading strategies C+Factor-2 Factor-2 p+Factor-2 DCC+Factor-2

Classi�cation ⇠ 65 mins – – –

Estimation ⇠ 20 secs ⇠ 20 secs ⇠ 20 secs –

Trading ⇠ 3 sec ⇠ 3 sec ⇠ 3 sec ⇠ 3 sec

Trading strategies EMA MACD RSI –

Classi�cation – – – –

Estimation – – – –

Trading ⇠ 3 sec ⇠ 3 sec ⇠ 3 sec ⇠ 3 sec

5.2.5 | Computational times

Table 14 presents the average computational times for all algorithms. We can observe that di�erent algorithms can
have signi�cantly di�erent computational times, which is not surprising. An algorithm such as C+Reg-GP includes
the classi�cation step, which consisted of Auto-WEKA running for 60 minutes in order to �nd the best classi�cation
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model per dataset, and also optimise its hyperparameters;2 it also includes a GP, which requires some time to evolve
a good solution, since multiple individuals and generations are involved.

To make things clearer, we are presenting the computational times for each task in our framework: classi�cation,
(OS length) estimation, and trading. Not all algorithms use the classi�cation step, but the ones that do use it need
about 65 minutes to complete this task. The estimation task is 5-6 minutes for algorithms that use a GP, and 20-30
seconds for the other algorithms. With regards to the trading step, all algorithms need around 3 seconds.

It should be noted that learning on the training set usually happens o�-line, thus a 65-70minute duration does not
consist a problem. Once training is complete, the best model is applied in real time to the (unseen) test set, which only
takes 3 seconds. We believe that the signi�cant improvements we have observed in returns and risk justify the slower
execution time. Lastly, the overhead of including a classi�cation step can be reduced by parallelising the AutoWeka
process. It has actually been shown in the literature (e.g, [13]) that parallelisation can reduce computational times
signi�cantly.

5.3 | Summary

Our �ndings can be summarised as follows:
Adding a classi�cation step to a DC algorithm has a positive e�ect in predicting the trend reversal under directional

changes. As we observed in Table 6, the very positive classi�cation results have led to signi�cantly reduced RMSE,
ranking each algorithm that uses a classi�er higher than its respective variant without classi�cation. In addition, C+GP
ranked �rst and statistically outperformed all other DC-based trend reversal algorithms.

Introducing a classi�cation step to a DC algorithm leads to higher returns during trading. As we observed in Tables
7 and 8, all algorithms that used a classi�er (C+Reg-GP, C+Factor-M, C+Factor-2) outperformed other variants with-
out a classi�er. Furthermore, C+Reg-GP ranked �rst among 15 trading algorithms and statistically outperformed 12
algorithms, with the only exception of the two other algorithms that were using a classi�er.

Introducing a classi�cation step to a DC algorithm leads to less risky strategies. As we saw in the Sharpe ratio results,
all the variants with the classi�er ranked in the �rst 3 places (Table 11). This could perhaps be attributed to the fact
that the Sharpe ratio is a metric that includes both returns and risk. On the other hand, the MDD results presented a
mixed picture, with C+Reg-GP ranking �rst across all algorithms, but Factor-M and Factor-2 ranking higher than their
variants with a classi�er.

There is no generalised formula for predicting trend reversal under directional changes. Each dataset has its own
characteristics and requires tailored trend reversal equations.

C+Reg-GP is an e�ective trading algorithm. It not only outperformed other DC-based algorithms but also 3 di�erent
technical indicators, as well as buy-and-hold. This was the case not only for average returns but also for MDD and
Sharpe ratio (risk metrics).

6 | CONCLUSION

To conclude, this paper presented an extensive investigation over of total 1,000 datasets from 20 di�erent Forex
currency pairs to demonstrate that the introduction of a classi�cation step in DC-based price summaries, where we

2The time taken in the classi�cation phase of C+Reg-GP, C+Factor-M, and C+Factor-2, went above the allotted time of 60 minutes due to CPU
time slicing, as other processes were running on the hardware simultaneously. With the availability of dedicated hardware with su�cient
CPU cores, a large speed-up could be obtained by switching the classi�cation phase from serial mode to parallel mode and also reducing the
execution time. For example, using 60 core hardware and reducing executing time to around 2 minute.
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predict whether aDC event is going to be followed by anOS event, leads to improved returns and risk results in trading.
We compared our results across three DC algorithms, where we run experiments for two versions per algorithm, one
with a classi�er, and one without a classi�er. We also benchmarked our results to technical analysis and buy and hold.
Our results con�rmed that the use of classi�cation leads to improved trend reversal prediction and thus pro�table
and low-risk trading strategies. We also found that one of the DC algorithms (C+GP+TS) consistently outperforms all
other algorithms in all metrics that took place in our investigation.

As future work, we would like to create multi-threshold DC trading strategies. In those strategies, all thresholds
will contribute towards the decision-making process of taking trading actions. This would have the advantage of
combining the ’knowledge’ of multiple thresholds, which could outperform the performance of individual thresholds’
trading strategies. Additional research could take place in creating tailored classi�cation algorithms, rather than using
Auto-Weka.
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