
HEAT TREATMENT PROCESS PARAMETER ESTIMATION  

USING HEURISTIC OPTIMIZATION ALGORITHMS  
 

 

Michael Kommenda(a,b), Bogdan Burlacu(a,b), Reinhard Holecek(c),  

Andreas Gebeshuber(c), Michael Affenzeller(a,b) 

 

 
(a) Heuristic and Evolutionary Algorithms Laboratory 

University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria 
(b) Institute for Formal Models and Verification, Johannes Kepler University,  

Altenberger Straße 69, 4040 Linz, Austria 
(c) Rübig GmbH & Co KG, Schafwiesenstrasse 56, 4600 Wels, Austria 

 

michael.kommenda@fh-hagenberg.at, bogdan.burlacu@fh-hagenberg.at, reinhard.holecek@rubig.com, 

andreas.gebeshuber@rubig.com, michael.affenzeller@fh-hagenberg.at 

 

 

 

ABSTRACT 

We present an approach for estimating control parame-

ters of a plasma nitriding process, so that materials with 

desired product qualities are created. We achieve this by 

solving the inverse optimization problem of finding the 

best combination of parameters using a real-vector opti-

mization algorithm, such that multiple regression models 

evaluated with a concrete parameter combination predict 

the desired product qualities simultaneously. 

The results obtained on real-world data of the nitriding 

process demonstrate the effectiveness of the presented 

methodology. Out of various regression and optimization 

algorithms, the combination of symbolic regression for 

creating prediction models and covariant matrix adapta-

tion evolution strategies for estimating the process pa-

rameters works particularly well. We discuss the influ-

ence of the concrete regression algorithm used to create 

the prediction models on the parameter estimations and 

the advantages, as well as the limitations and pitfalls of 

the methodology. 

 

Keywords: parameter estimation, symbolic regression, 

genetic programming, heuristic optimization 

 

 

1. INTRODUCTION 

Nitriding is a case-hardening technique where nitrogen is 

added to the surface of metal alloys to create a thin hard-

ened nitride layer. The increased surface hardness pro-

vides high resistance to wear and crack as well as im-

proved sliding and frictional properties and higher fa-

tigue strength values.  

The diffusion of nitrogen into the surface of the metal can 

take place in the presence of ammonia (NH3) using phos-

phate activation (salt bath and gas nitriding) or in the 

presence of plasma (highly ionized gas molecules), 

where nitrogen ions are accelerated to impinge on the 

metal surface. Plasma nitriding uses pure nitrogen or a 

mixture of hydrogen and nitrogen that is ionized in in-

tense electric fields, surrounding the surface to be nitrid-

ing with ionized gas molecules. 

 

The advantages of the plasma nitriding compared to salt 

bath or gas nitriding include: 

 Lower process temperature, resulting in very 

small dimensional deformations and distortions 

 Higher surface, case and core hardness  

 More precise compared to other methods 

 Decreased energy demand 

 Non-toxic and environmentally friendly, using 

H2 and N2, with no greenhouse gas emissions 

 

Typically, the treated metals have a predefined set of 

characteristics that should be reached by the nitriding 

process: 

 Nitriding hardness depth (NHD in mm) 

 Surface hardness (SH in HV) 

 Thickness of the compound layer (CLT in µm). 

 

 

The results of the nitriding process depend on the mate-

rial composition and the process control parameters, such 

as the temperature, process duration, gas concentrations 

and the parameters of the plasma ionization. These pro-

cess parameters have to be adjusted precisely to reach the 

desired material characteristics. The effect of process pa-

rameters on the nitriding results is well studied in the case 

of gas nitriding and allows a close control of the nitriding 

results (Mittemeijer 1997). However, such a control 

mechanism for process parameters to achieve the desired 

results is not available for plasma nitriding. 

In this paper, we present a robust and flexible data-driven 

heuristic optimization approach for finding the optimal 

control parameters of a plasma nitriding process. In a first 

step, we create prediction models for each target charac-

teristic based on the available data containing process pa-

rameters and material compositions. Then, we use the 

generated models to solve the inverse problem of finding 

combinations of process parameters such that the mate-

rial characteristics after nitriding reach predefined qual-

ity values. 
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Formally, the inverse optimization problem can be de-

fined as follows: given a (regression) model for each of 

the target characteristics, and a set of quality values to be 

achieved, is it possible to find the process parameter val-

ues so that for each model the desired output is achieved 

within a specified confidence bound? 

 

This workflow brings a couple of advantages: 

1. It exploits the interpolation abilities of the pre-

diction models so that estimates for unknown 

data can also be given. 

2. It allows us to assess the accuracy of the predic-

tion models (in terms of their estimation of 

product qualities). 

3. The results of the process parameter estimation 

can be further improved by using more accurate 

prediction models and/or providing more data 

for training the prediction models. 

 

The whole workflow for process parameter estimation 

was implemented in HeuristicLab (Wagner 2014), an 

open-source optimization environment that offers a wide 

selection of ready-to-use models and algorithms. Our ap-

proach for process parameter estimation supports an ar-

bitrary number of models, as well as any configuration of 

optimizer, optimization targets and optimization bounds. 

 

The remainder of the publication is organized as follows: 

In the next Section 2 we give a detailed description of the 

model generation step and discuss the obtained regres-

sion models. Section 3 describes in detail the process pa-

rameter estimation methodology, Section 4 discusses the 

obtained results, while Section 5 is dedicated to the con-

clusion and final remarks. 

 

2. REGRESSION MODEL GENERATION 

The regression models predicting the three target charac-

teristics NHD, SH, and CLT, which are necessary for 

solving the inverse optimization problem, were obtained 

using several data-based modeling algorithms on data ac-

quired from a real-world plasma nitriding process. The 

dataset contains information about the chemical compo-

sition of 14 different working materials, 5 different com-

binations of process parameters and the achieved plasma 

nitriding results. In total the dataset contains 70 samples 

and 18 different measurements for each sample. The 

samples have been divided into a training and test parti-

tion such that the distribution of materials and different 

process parameters is about the same, resulting in 45 

training and 25 test samples. 

In our experiments, we used genetic programming (GP) 

with offspring selection (Affenzeller et al. 2009) and 

constants optimization (Kommenda et al. 2013) to evolve 

symbolic regression models. The model length was re-

stricted to 25 tree nodes to improve the interpretability of 

the generated models. Additional experiments were car-

ried out with a fixed model structure, where the GP algo-

rithm was responsible only for finding the correct varia-

bles and constant values.  

Further on, the models obtained by GP were compared 

with other regression models obtained via linear regres-

sion (LR) (Seber 2012), support vector machines (SVM) 

(Cortes 1995), Gaussian processes (GPR) (Rasmussen 

2004) and random forest regression (RF) (Breiman 2001) 

in order to determine each algorithm’s performance, gen-

eralization ability and suitability for process parameter 

estimation. 

For every regression method we used recommended pa-

rameter settings and followed best practices such as grid 

search with crossvalidation where appropriate and multi-

ple repetitions for each method in order to account for 

stochastic effects. The specific parameter configurations 

for the optimization methods enumerated above are de-

scribed in Table 1. 

 

GP 1000 individuals, maximum tree length 25 

LR No parameters 

RF Grid search intervals:  

- Number of trees n between [26, 210] 

- Feature ratio m in the interval [0.4, 0.7] 

- Sample size ratio r between [0.05, 0.66] 

SVM - NU_SVR regression with an RBF kernel 

Grid search intervals: 

- Penalty factor C between [2-1, 212] 

- Kernel function parameter γ in [2-4, 2-1] 

- Regularization parameter  ν in [2-10, 1] 

GPR - Constant mean function 

- Isotropic squared exponential  

 covariance function 

Table 1: Modeling algorithm parameters 

 

The best models for each modeling algorithm and target 

characteristic were afterwards selected as follows: 

 The best genetic programming models were se-

lected according to the lowest mean absolute er-

ror and the lowest model complexity. 

 Linear regression creates only one model which 

was selected. 

 The best random forest models were selected 

out of multiple grid search runs according to the 

lowest out of bag error estimate. 

 The best support vector machine models were 

selected out of multiple grid search runs accord-

ing to the lowest cross validation error. 

 The best Gaussian process models were se-

lected from multiple runs according to the low-

est negative log likelihood. 

 

The accuracy of the selected prediction models is stated 

in Table 2, where for every target characteristic the mean 

absolute error for the test and training partition is re-

ported. The performance of the different modeling meth-

ods varies strongly on the training partition (values inside 

parenthesis), but with the exception of the linear regres-

sion most methods perform similarly on the test partition. 

This could be explained by the limited amount of data 

present and we expect that with a larger data basis the 

modeling accuracies will increase.  
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 NHD SH CLT 

GP 0.030 (0.026) 47.65 (51.37) 1.296 (0.772) 

LR 0.042 (0.033) 54.42 (42.68) 1.865 (1.140) 

RF 0.039 (0.015) 53.36 (17.03) 1.176 (0.627) 

SVM 0.031 (0.011) 54.83 (8.370) 1.101 (0.518) 

GPR 0.029 (0.014) 52.74 (12.46) 1.208 (0.363) 

Table 2: Test and training (inside parenthesis) mean ab-

solute error of the obtained models for each of the target 

characteristics. 

 

 

3. PROCESS PARAMETER ESTIMATION 

Process parameter estimation is made possible through 

the interaction of the generated regression models from 

the previous section with several other components in-

cluding the dataset, the evaluation function and the opti-

mizer that performs the actual search for real-valued pa-

rameter combinations. 

 

Models

Evaluation Function
Dataset

(materials, targets)

OPTIMIZER
(CMA-ES)

Process Parameters

 

Figure 1: Process Parameter Optimization Flowchart 

 

Figure 1 illustrates the interplay between the individual 

components when process parameter estimation is per-

formed. The optimization algorithm generates multiple 

combinations of process parameters within predefined 

bounds for each parameter. Every parameter combina-

tion is evaluated by the aforementioned prediction mod-

els including data about the processed material. The de-

viations between the predicted and desired qualities are 

passed back to the optimization algorithm, which uses 

that information to generate new parameter combina-

tions. The optimization algorithm minimizes the devia-

tions by the iterative generation of new process parame-

ter combinations. The procedure is outlined in pseudo-

code in Algorithm 1. 

This general workflow is independent of the concrete 

data-based modeling algorithm for generating the predic-

tion and the optimization algorithm for tuning the pro-

cess parameters to reach the desired product qualities. 

However, we observed that some algorithms are better 

suited than others for generating the prediction models.  

 
 

For example, random forest regression generates highly 

accurate prediction models, but those models are difficult 

to use for process parameter optimization as their re-

sponse can contain instabilities, which makes it harder 

for the optimization algorithm to find good process pa-

rameter settings. In contrast to random forest regression, 

symbolic regression by genetic programming produces 

more stable prediction models, especially when the com-

plexity of the models is rather low, and hence it is easier 

for the optimization algorithm to generate appropriate 

process parameter settings. 

In our experiments three target characteristics (NHD, 

SH, and CLT) should be obtained by the nitriding process 

through the estimation of five process parameters: the 

process duration, temperature, average plasma power, 

relative amount of nitrogen, and the applied pressure. We 

used the covariant matrix adaptation evolution strategy – 

CMA-ES (Hansen 2003) as a real-valued optimization 

algorithm for generating the estimates for the process pa-

rameters.  

The objective function to be minimized by the CMA-ES 

was defined such that each deviation between the desired 

target value 𝑇𝑖  and estimated 𝐸𝑖 had an equal influence 

on the final objective value. This was achieved by scaling 

the values by the variance of the target characteristic 

𝑉𝑎𝑟𝑇𝑖 over all samples and aggregating the deviations 

into a single error measure:  

 

𝒇(𝑬, 𝑻) =∑
(𝑻𝒊 − 𝑬𝒊)

𝟐

𝑽𝒂𝒓𝑻𝒊

𝑵

𝒊=𝟏

 

Equation 1: Aggregated error measure 

 

As shown in Figure 1, the evaluation function is arguably 

the most important component in our optimization ap-

proach. In this publication, the aggregated error measure 

f(E,T) will be used to evaluate the models and investigate 

their influence on the process parameter estimation. 
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4. RESULTS 

In this section we analyze the influence of the prediction 

models on the accuracy of the process parameter estima-

tion. We kept the CMA-ES real-valued optimizer (alt-

hough using other real-valued optimization algorithms is 

possible as well) for generating the process parameter es-

timations while exchanging the prediction models for 

evaluating the process parameters according to the objec-

tive function discussed in the previous section and given 

by Equation 1. 

The CMA-ES was set to run for a maximum of 200 gen-

erations with a population of 20 individuals, yielding 

4000 different process parameter combinations. The al-

gorithm converged in all cases within a third of a second. 

Although the CMA-ES was able to find parameter com-

binations that minimized the target for each of the used 

models, variations due to the scaling of the model targets 

and the aggregated error measure were present. 

The accuracy of the estimated process parameters was 

evaluated on the test partition of the dataset, which has 

not been used for model training nor selection. A number 

of 20 repetitions of the CMA-ES algorithm have been 

performed to account for the stochasticity of the algo-

rithm and the presence of multiple local optima. Multiple 

parameter combinations achieve target characteristics 

equally well, especially when estimating several process 

parameters simultaneously. Table 3 shows the average 

absolute deviation of the estimated parameter to the orig-

inal ones on the training partition and Table 4 shows the 

same for the test partition. 

 

 GP LR RF SVM GPR 

Duration 5.45 3.75 5.75 2.60 2.66 

Temp. 41.72 32.18 31.57 23.14 26.47 

Plasma 

power 
16.53 15.52 25.14 16.06 9.69 

N2  0.15 0.16 0.12 0.11 0.11 

Pressure 0.52 0.41 0.53 0.26 0.24 

Table 3: Average mean absolute error of the predicted 

process parameters on the training data. 

 

 GP LR RF SVM GPR 

Duration 4.65 2.91 6.53 4.60 4.18 

Temp. 42.05 42.18 35.42 33.55 36.75 

Plasma 

power 
22.14 15.64 24.96 13.50 14.43 

N2  0.19 0.16 0.16 0.17 0.22 

Pressure 0.27 0.26 0.62 0.32 0.27 

Table 4: Average mean absolute error of the predicted 

process parameters on the test data. 

 

With the exception of GP and LR, the models perform 

significantly better on the training partition compared to 

the test partition. The difference between the training and 

test qualities of regression models means that some mod-

els are slightly overfit on the training set and may exhibit 

poor interpolation capabilities on new data. Therefore, 

confidence margins must also be taken into account when 

evaluating the models, along with their error on the test 

set. 

Confidence margins were calculated by counting how 

many times the estimated process parameter values were 

within 10% of the target value. To account for the differ-

ent value ranges of each process parameter, the deviation 

was scaled by the range of the parameter and a hit was 

reported if the scaled deviation is below 10%. Tables 5 

and 6 show the 10% hits for each type of models calcu-

lated on the training and test partitions. 

 

 GP LR RF SVM GPR 

Duration 28 25 46 34 32 

Temp. 26 21 46 30 24 

Plasma 

power 
34 36 41 32 40 

N2 36 23 43 32 30 

Pressure 20 25 38 35 34 

Table 5: 10% confidence hits on the training data. 

 

 GP LR RF SVM GPR 

Duration 15 15 23 12 13 

Temp. 14 9 23 6 10 

Plasma 

power 
16 17 19 19 17 

N2 17 11 18 12 9 

Pressure 14 17 17 11 16 

Table 6: 10% confidence hits on the test data. 

 

As duration and temperature have the greatest influence 

on the nitriding outcome, their errors and confidence 

margins constitute the main criteria for choosing the 

most suitable models. From this perspective, GP and RF 

distinguish themselves and will be considered further.  

We notice that on the test data RF produces the most con-

fidence hits for both temperature and process duration, 

with GP on the second place. This result is mainly ex-

plained by the large variance of the RF estimation results. 

The average and standard deviations for the estimations 

of the process duration and temperature is visible Figures 

2 and 3 for GP and in Figure 4 and 5 for RF respectively, 

where the amplitude of the candlesticks represents the 

standard deviation of the estimations at the given data 

row. Therefore, the models produced by GP are more sta-

ble and more suitable for the optimization of process pa-

rameters. 

 

 
Figure 2: Process duration estimations using GP models 

on the test data. 
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Figure 3: Temperature estimations using GP models on 

the test data. 

 

 
Figure 4: Process duration estimations using RF models 

on the test data. 

 

 
Figure 5: Temperature estimations using RF models on 

the test data. 

 

Furthermore, the estimation quality of process parame-

ters depends on the number of parameters allowed as in-

puts to the models. As interdependencies exist between 

the parameters, more parameters will determine an in-

creased number of local optima and consequently more 

variance of their values. We illustrate one such interde-

pendency between two antagonistic process parameters: 

duration and temperature. From the physical standpoint, 

a higher temperature allows the nitriding process to com-

plete in less time. Conversely, a lower temperature means 

that the process will require more time to achieve the de-

sired results.  

This relationship should be reflected in the results of our 

process parameter estimation. To illustrate this, we used 

the error between the original and the estimated values 

for duration and temperature. Using the GP models, we 

notice in Figure 6 that when one of the parameters has a 

lower value – therefore a negative normal error with re-

spect to the target value, the optimizer compensates by 

increasing the value of the other. This means that alt-

hough the estimated values are not entirely accurate on 

the test data, the optimizer together with the GP models 

manage to obtain physically valid results, correctly re-

flecting the inverse physical relationship between dura-

tion and temperature. This relationship was not so easily 

noticeable for the models generated by RF and shown in 

Figure 7. Therefore, GP models are more suitable for 

process parameter estimations from both a pure data-

mining perspective and from a physical modeling per-

spective. 

 

 
Figure 6: Duration-temperature relationship estimated 

using GP models 

 

 

 
Figure 7: Duration-temperature relationship estimated 

using RF models 
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5. CONCLUSION 

In plasma nitriding, the goal is to obtain desired material 

characteristics such as surface hardness, nitriding hard-

ness depth or thickness of the compound layer by tuning 

the process parameters for each treated material. 

In this paper, a two-step optimization approach was pre-

sented for finding the optimal control parameters of a 

plasma nitriding process. In a first step, regression mod-

els were generated for each of the target characteristics 

using a number of different data-based modeling algo-

rithms on data acquired from the process. These models 

were then used to solve the inverse optimization problem 

of finding optimal process parameter combinations that 

would lead to predefined target values for the material 

characteristics.  

The second step of the methodology involved a separate 

optimization algorithm used to minimize an objective 

function that aggregated each model’s predictions into a 

unified error measure. To ensure that each model con-

tributes equally to the objective function, for each model 

the predicted values were scaled according to the vari-

ance of the target characteristic. 

We performed several experiments to validate the meth-

odology, where we tested GP regression models against 

models obtained using linear regression, support vector 

machines, random forests and Gaussian processes. Our 

models and objective function were incorporated into a 

CMA-ES optimizer which was used to estimate process 

parameters on a separate test dataset.  

Experimental results have shown that the variance of the 

estimated values increases with the number of process 

parameters used as inputs for the regression models. This 

fact is explained by the increased number of local optima 

which the optimizer has to overcome when larger com-

binations of process parameters are estimated. In our ex-

periments we used combinations of five process parame-

ters with the CMA-ES optimizer. 

The results concerning two of the most important process 

parameters, duration and temperature, confirm the fact 

that GP models with a simpler structure were better 

suited for solving the inverse optimization problem. Alt-

hough on average, other models such as RF, SVM and 

GPR produced better results on the training data, these 

models proved less effective for the estimation of process 

parameters on the test data, as shown by the large vari-

ance of the estimated values in the case of RF, or the 

lower number of estimations within the 10% confidence 

interval in the case of LR, SVM and GPR. 

Furthermore, the feasibility of the estimated process pa-

rameter combinations was analyzed from a physical per-

spective. The generated GP models correctly reflected 

the inverse physical relationship between duration and 

temperature, which was not as obvious in the case of the 

other models. 

In conclusion, our process parameter optimization ap-

proach works reasonably well on real-world data ac-

quired from the chemical process itself. Our optimization 

setup is flexible as it allows any type of regression model 

or even regression ensembles to be used for the parame-

ter estimation part, in conjunction with any real-vector 

optimizer such as the CMA-ES. Future research direc-

tions involve further development of this approach by 

testing other optimizers and other combinations of re-

gression models.  
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