
Automatic Generation of Benchmarks for Plagiarism
Detection Tools using Grammatical Evolution

Manuel Cebrián, Manuel Alfonseca and Alfonso Ortega∗
Universidad Autónoma de Madrid

28049 Madrid, Spain
manuel.cebrian@uam.es, manuel.alfonseca@uam.es, alfonso.ortega@uam.es

Categories and Subject Descriptors: J.1: Education;
I.2.2: Program synthesis, Program modification

General Terms: Human factor, Design, Reliability

Keywords: Source Code Plagiarism Detection Tool Assess-
ment, Grammatical Evolution.

1. EXTENDED ABSTRACT
Source code plagiarism detection is a mayor problem in

universities worldwide. Although several plagiarism detec-
tion tools (PDT) have been deployed, e.g. MOSS [1], JPlag
[2] and AC[3], little has been done to assess their quality, be-
cause determining the real authorship of a submission corpus
is practically impossible for graders.

In this article we present a technique which, fed with a
programming assignment, makes use of Grammatical Evo-
lution (GE) techniques [4] to generate a submission corpus
made of 40 APL2 functions, each one being a different solu-
tion to the proposed assignment. This corpus consists of two
subsets. The first, 30 submissions, is ‘original’, containing
solutions to the assignment coded ‘from scratch’. The sec-
ond (14 submissions) is made of plagiarisms, built from one
or two solutions taken from the original subset. The whole
submission corpus will serve as a benchmark to compare the
quality of PDTs.

The 30 original solutions are generated by running a hill-
climbing optimization with 30 different random seeds. The
operator used by hill-climbing is mutation with elision. The
optimization consists of finding the shortest program that
best fits some mathematical function (the assignment).

We apply three different techniques to generate the pla-
giarisms. The original solutions are plagiarized using mu-
tation with elongation to generate 6 new solutions. This
mimics when a single source is changed by adding and re-
placing a few fragments. The second and third techniques
simulate plagiarisms from two sources by means of recom-
bination. The second technique generates 4 new solutions
through the genotypic recombination of several couples of
originals. The third technique mixes other couples by using
phenotypic recombination. The whole process is depicted in
Fig. 1.

We have generated four benchmarks for four different as-

∗Work supported by grant TSI2005-08255-C07-06 of the
Spanish Ministry of Education and Science.

Copyright is held by the author/owner(s).
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
ACM 978-1-59593-697-4/07/0007.

Figure 1: Graphical scheme of the whole process.

signments and fed them to AC, obtaining a remarkable con-
clusion: AC flagged the overwhelming majority of plagia-
risms generated with our algorithm as suspicious, while the
original set remained unflagged. This was done by detecting
similarities in trash code, i.e. erroneous or spurious code. In
human detection of plagiarism in real corpora, trash code
plays a similar major role: there is a stronger evidence of
plagiarism when both submissions share the same trash code
than when they share the correct code, because there are
many less correct solutions than inaccurate ones. Thus, the
probability that two students randomly chose the same in-
accurate solution is almost zero.

In conclusion, we have experimental evidence that GE
operators are good to simulate the way in which students
plagiarize a solution. Design and implementation details, as
well as the experimental results can be found in the extended
version of this article [5].

2. REFERENCES
[1] A. Aiken et al. Moss: A system for detecting software

plagiarism. University of California–Berkeley, 2005.

[2] L. Prechelt. et al. Jplag: Finding Plagiarisms among a set of
Programs. Universitat Karlsruhe, 2000.

[3] M. Freire et al. AC: An Integrated Source Code Plagiarism
Detection Environment. arXiv:cs.IT/0703136, 2007.

[4] M. O’Neill et al. Grammatical Evolution: Evolutionary
Automatic Programming in an Arbitrary Language. Kluwer
Academic Publishers, 2003.

[5] M. Cebrian et al. arXiv:cs.NE/0703134, 2007.

2253


