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ABSTRACT
There are two common methods of evolving teams of ge-
netic programs. Research suggests Island approaches pro-
duce teams of strong individuals that cooperate poorly and
Team approaches produce teams of weak individuals that
cooperate strongly. Ideally, teams should be composed of
strong individuals that cooperate well. In this paper we
present a new class of algorithms called Orthogonal Evolu-
tion of Teams (OET) that overcomes the weaknesses of cur-
rent Island and Team approaches by applying evolutionary
pressure at both the level of teams and individuals during
selection and replacement. We present four novel algorithms
in this new class and compare their performance to Island
and Team approaches as well as multi-class Adaboost on a
number of classification problems.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

General Terms
Algorithms, Performance

Keywords
Genetic Programming, Performance Analysis

1. INTRODUCTION
Many real world problems are too complex to expect a

single genetic program to solve adequately. A single genetic
program will tend to find the general solution and overlook
specialized subdomains within the larger problem space and
thus to make errors on those subdomains. Therefore consid-
erable research has gone into evolving teams, or ensembles,
of genetic programs that use a cooperation mechanism, such
as voting, to produce an answer. This allows members to
specialize on distinct subdomains and reduce overall errors.
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The extent of cooperation is how correlated the errors, or
faults, of the team members are. If members have correlated
faults then they will answer the same test cases incorrectly
and little is gained by forming a team. If members have inde-
pendent faults, by evolving teams using the Island approach
for example, then forming a team increases performance be-
cause subgroups of the team can mask the faults of other
members. Ideally, members have inversely correlated faults
which means that members optimize their ability to mask
the faults of others by specializing in different subdomains
of the problem space. This can only occur if team members
are specifically designed, or evolved, to have this property.
Any approach that produces the members independently,
e.g. Island approaches or N-version programming [9, 6], can
at best be expected to produce independent faults.

Soule introduced a novel class of algorithms referred to as
Orthogonal Evolution of Teams (OET) that are designed to
apply direct pressure to both teams and their members [10].
Soule described this class of algorithms as orthogonal be-
cause they alternate between two orthogonal views of the
population: as a single population of teams of size N and as
a set of N independent populations of individuals. Research
on OET algorithms made it apparent that Island and Team
approaches only consider some of the possible ways of think-
ing about selection and replacement. Island approaches ap-
ply evolutionary pressure solely at the level of individuals
and Team approaches apply evolutionary pressure solely at
the level of teams. OET algorithms encompass additional
ways of applying evolutionary pressure during selection and
replacement that works on both levels.

In this paper we present a more thorough comparison of
algorithms to evolve teams, including Island and Team ap-
proaches, four variations of OET, and Adaboost. We used
six classification problems, five from the UCI machine learn-
ing repository [3] and the intertwined spirals problem, al-
though space only allows us to present detailed results from
two problems. Our results show that OET algorithms do
combine the strengths of Team and Island approaches. We
show that OET algorithms increase both member perfor-
mance and team cooperation which leads to higher overall
team performance. We show that OET gives precise control
over the amount of pressure to apply to teams and members
and finding the right balance is important for each prob-
lem. Finally, our results show that balancing team size and
population size is fundamental to optimizing performance.

2. BACKGROUND
Island approaches evolve independent populations to cre-
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ate members with independent faults. Traditionally, Island
approaches are used when individuals can perform reason-
ably well alone, e.g. classification problems where a single
classifier can perform well although a team of classifiers may
perform better. N-Version Genetic Programming (NVGP)
developed by Imamura et al. evolves N independent popu-
lations (islands) and when evolution halts one random indi-
vidual is drawn from each population to create a team of N
individuals [8]. Although NVGP produces some teams with
independent errors for a range of problems, the majority of
teams do not have independent faults. In general, it takes a
large number of random draws to form a team with indepen-
dent faults. This appears to invalidate the assumption often
made for Island approaches that independent evolutionary
runs will consistently generate solutions with independent
errors.

In Team approaches a single population of teams evolves,
where each team is a collection of N members. Typically,
Team approaches are used when the problem requires a
team, e.g. Serengeti world [11, 7] where N lions must work
together to capture a gazelle or in the robocup competition.
Studies of the Team approach strongly suggest that it avoids
correlated errors; each member evolves to have few errors on
a particular domain of the problem and the domain for each
member is different [12, 2]. Thus, the whole team has very
few unmasked errors. This is a reasonable result as all of the
selective pressure is on the team so there is direct pressure
to evolve members that mask each others’ errors. Unfortu-
nately, in Team based methods when the team members are
tested as isolated solutions they perform significantly worse
than evolved individuals, even though the team performs
better than those same individuals [13, 2]. Thus, the Team
approach produces highly fit teams consisting of relatively
poor individuals; whereas the Island approach creates a rea-
sonable team from highly fit individuals.

In [10] Soule introduced a new class of algorithms called
Orthogonal Evolution of Teams (OET). OET is a class of
cooperative, co-evolutionary algorithms that evolves ensem-
ble members with distinct areas of specialization. Only one
algorithm from this class was studied; it was compared to
Island and Team approaches where the test problems were
simple, yet illustrative. In that work performance was not
compared to boosting techniques.

Using the expected failure rate model [1] it was shown
that Team approaches create teams with very high levels
of cooperation, where members have inversely correlated
faults [10]. Unfortunately the members have relatively poor
fitnesses [14] so the results were not better than other meth-
ods. In contrast it was confirmed that Island approaches
tend to create teams with relatively fit members, but they
do not cooperate as well [8]. It was also shown that Or-
thogonal Evolution of Teams (OET) overcomes these weak-
nesses [10]. The OET algorithm combined the advantages
of both the Island and Team approaches, generating highly
successful team members that cooperated well within their
team, leading to robust solutions that cover an entire prob-
lem domain with few gaps or errors, if any.

One of the most successful attempts at developing ensem-
ble based classifiers is the Adaboost algorithm, developed by
Freund and Schapire [5, 4]. It builds an ensemble by training
each member to focus on the test cases that have not been
classified correctly yet. A weight is assigned to each training
case and they are initially all equal. After the first classifier

in the ensemble is trained, the weights are re-adjusted so
the cases missed have a higher weight for the next classifier.
This process continues until the ensemble is complete.

Adaboost was shown to guarantee an increase in fitness
with an increase in team size, assuming the training algo-
rithm produced individual classifiers which could classify
correctly at least 50% of the time [5]. For a two class prob-
lem, this means the training algorithm only has to do slightly
better than random guessing. However, for a multi-class
problem, this level of accuracy becomes more unrealistic as
the number of classes increases. To address this problem,
Zhu et al. developed multi-class Adaboost [15]. The al-
gorithm is a modified version of the Adaboost which only
requires classifiers to perform better than random guessing,
no matter the number of classes.

However, one limitation of boosting techniques, includ-
ing Adaboost, is that they require that the training process
be divided into distinct cases that can be assigned specific
weights and that members can be trained individually (as
in the Island approach). Thus, boosting cannot be used to
evolve teams for Serengeti world or robocup. These types of
problems, where there are not distinct training cases and the
problem is only solvable by a team, have been the traditional
domain of the Team approaches described above.

3. ALGORITHMS
There are four combinations for doing selection and re-

placement when applying pressure at the level of teams and
individuals. First there is team selection with team replace-
ment (TT) which defines current Team approaches. Second
there is individual selection with individual replacement (II)
which defines current Island approaches. In addition, it is
possible to mix them; individual selection with team replace-
ment (IT) which we define as OET1, and team selection with
individual replacement (TI) which we define as OET2, both
of which are described in detail below.

In OET1 selection is done on individuals and replacement
is done on teams. Offspring are created by making an empty
team and adding highly fit individuals one at a time by
treating the single population of N -sized teams as N inde-
pendent populations of individuals and doing tournament
selection within each population. Therefore, the first team
member is chosen from the population that represents all of
the first members from each team; the second team member
is chosen from the population that represents all of the sec-
ond members from each team and this continues until the
new team is filled. Two teams are constructed in this way
and they undergo crossover and mutation. The offspring are
evaluated as teams and replacement is done by comparing
team fitness, so poor teams are selected for replacement. A
member must have high fitness to be selected for a parent
team and a team in the population must have a high fitness
to avoid being selected for replacement.

Conversely, in OET2 selection is done on teams and re-
placement is done on individuals. Two highly fit teams are
selected to be parents by tournament selection and they un-
dergo crossover and mutation to produce two new offspring
teams. Replacement is done by comparing the fitness of
individual team members in the offspring to the fitness of
individual team members in the population. This is done
by treating the population of N -sized teams as N indepen-
dent populations of individuals where poor individuals are
selected for replacement by individuals in the new offspring.
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A team must have high fitness to be selected as a parent,
meaning its members are cooperating well, and a team mem-
ber must have a high fitness to avoid being selected for re-
placement.

Both of these approaches (OET1 and OET2) create evo-
lutionary pressure for team members to perform well and
for their teams to perform well. However, these four basic
algorithms do not have to be used in isolation during the en-
tire evolutionary run. There are many possible combination
algorithms that can be created by alternating the use of the
four basic algorithms, for example, using one algorithm dur-
ing even iterations and using another algorithm during odd
iterations. We present two such examples, one that alter-
nates between Island (II) and Team (TT) and a second that
alternates between OET1 (IT) and Team (TT). In the for-
mer there is equal pressure on individuals and teams (II/TT)
and in the later there is more pressure on teams (IT/TT).
Algorithms created in this way can more precisely tune the
amount of pressure that can be applied to improving indi-
vidual performance versus improving team cooperation. We
found that the optimal amount of pressure for teams and in-
dividuals is problem dependent so this freedom is important
to optimizing performance.

4. METHODS

4.1 Parameters
A simple steady state population model is used in our

genetic program. The parameters are summarized in Ta-
ble 1. We ran three sets of experiments with 90000, 180000,
and 270000 evaluations each. An evaluation is defined as
the evaluation of a single function tree, not an entire team.
Thus, evaluating a team of N members uses N evaluations.

We tested team sizes of 2, 3, 4, and 5. For each set of
parameters 30 trials were performed and each trial ran for
150 iterations. In order to keep the number of evaluations
fixed, the population size had to vary. It is equal to the
number of evaluations divided by the product of team size
and iterations. All of the algorithms undergo crossover and
mutation populationsize/2 times each iteration because two
offspring are made each iteration.

4.2 Teams and Voting
A team is a collection of function trees. Each member in

a team produces a vote by generating a single real valued
output that is mapped to a particular classification. The
vote that a member makes is weighted, where the weight of
the vote is equal to the member’s fitness (between 0 and 1).
The final classification of the ensemble is the classification
with the most weight.

A portion of the real number line is partitioned into equal-
sized ‘buckets’, one for each possible classification. If the
value a member produces falls inside one of the buckets,
that becomes its vote. If the value falls outside any of the
buckets, its vote is treated as a classification of “I don’t
know” (IDK). Therefore, the fitness function of a member
depends on the number of correct classifications, incorrect
classifications, and IDK classifications. The member fitness
function is:

Fitnessmem =

(
Vcorrect

Vcorrect + Vwrong + Vidk ∗ Pidk

)
(1)

Vcorrect is the number of votes that are correct classifica-

tions. Vwrong is the number of votes that are incorrect
classifications. Vidk is the number of IDK classifications,
and Pidk is a real value in the interval [0, 1]. If this value is
0, then voting IDK is not penalized because the IDK term
becomes 0. If the value is 1, then voting IDK is the same as
voting incorrectly, and if it is anywhere in between, casting
an IDK vote still reduces fitness, but not as much as voting
incorrectly. A value less than 1 encourages members to not
vote if their vote will hurt the team fitness. A value greater
than 0 discourages members from picking a small number
of test cases, voting perfectly on them and never trying to
classify anything else (by voting IDK many times). How-
ever, the team always needs to make a final classification so
in the rare case that all of the team members vote IDK, the
majority class is returned as the team’s classification. Oth-
erwise, the classification the team makes is the classification
that received the largest weighted sum of votes. The team
fitness function is:

Fitnessteam =

(
Ccorrect

Ccorrect + Cwrong

)
(2)

Ccorrect is the number of classifications that are correct and
Cwrong is the number of incorrect classifications.

In addition to recording team and member fitnesses us-
ing the fitness functions just described, we also recorded the
percent of the classifications that each team member an-
swered correctly. This data is what is used in the tables
that compare the average member performance in all of the
algorithms.

4.3 Experiments
We ran our experiments on a total of six classification

problems, five from the UCI machine learning repository
(the data sets are E.coli, Heart Disease, Yeast, Wine, and
Iris) and also intertwined spirals. Due to space limitations
we are only including data from E.coli and Heart Disease.
We chose classification problems because they are easy to
analyze and allow direct comparison to Island and boost-
ing techniques. It also allows us to measure member per-
formance in order to compare how this varies among the
different algorithms.

4.3.1 E.coli Data Set
This classification problem uses the E.coli data set from

the UCI machine learning repository [3]. The goal is to pre-
dict the cellular localization sites of proteins found in E.coli.
There are 336 classification instances, each composed of 7
predictive attributes and a name. There are 8 different clas-
sifications which represent the localization sites of the pro-
teins. Each class is represented unevenly, the largest group
comprising 143 of the instances and the smallest two groups
with 2 instances each.

4.3.2 Heart Disease Data Set - Cleveland
This classification problem uses the Cleveland Heart Dis-

ease data set found on the UCI machine learning reposi-
tory [3]. The goal is to predict the presence of heart dis-
ease using 13 predictive attributes. There are five classes of
heart disease and the scale ranges from 0, which represents
no heart disease, to 4, which represents severe heart dis-
ease. Previous studies have only made a binary distinction
for the presence of heart disease while we used all 5 classes
to distinguish the performance of the algorithms.
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Problems E.coli Heart Disease
Training Cases random 50%
Testing Cases random 50%
Member Fitness Vcorrect / (Vcorrect + Vwrong + Vidk * Pidk)
Team Fitness Ccorrect / (Ccorrect + Cwrong)
Function Set +, -, *, /, IFLTE
Terminal Set 7 attributes and CONST 13 attributes and CONST
Evaluations 90000, 180000, 270000
Team Sizes 2, 3, 4, 5
Iterations 150
Population Size evaluations / (team size * iterations)
Bucket Size 2.0
Mutation Amount abs of random normal (mean 2.0 and stdev 2.0)
Selection 3 member tournament
Initial Population ramped half and half
Number of trials 30

Table 1: Summary of the evolutionary algorithm parameters.

5. RESULTS

5.1 E.coli
Table 2 shows average team training fitness and Table 3

shows average team testing fitness. In general, Island per-
formed slightly worse than Team and both were outper-
formed by all of the OET algorithms. OET1 and OET1/Team
did particularly well. Although some performance differ-
ences are within the standard deviations, the trend across
all parameter combinations is significant and shows that the
OET algorithms have the best performance. In both tables
the best performance for each algorithm is emphasized.

Unsurprisingly, the best results were achieved with the
maximum number of evaluations. However, there appears to
be a tradeoff between population size and team size. When
looking at the results for the Island algorithm, ensembles
of size 2 did the best with 90000 evaluations, ensembles of
size 3 did the best with 180000 evaluations and ensembles
of size 4 did the best with 270000 evaluations. This sug-
gests that there is a critical population size necessary to
achieve optimum results and once that level is reached addi-
tional evaluations can be used to make the team size larger.
The OET algorithms also showed that larger ensembles per-
form better as long as the population size is large enough
to support them. Team ensembles performed the best with
ensembles of size 2 in all cases showing that it did better
with the largest population size possible.

5.1.1 Member Fitness versus Cooperation
The most interesting results come from comparing average

member training fitness in Table 4 and average member test-
ing fitness in Table 5 across all the algorithms. As expected
the individuals comprising Island ensembles had relatively
high fitness while the individuals comprising Team ensem-
bles had relatively low fitness. Since the overall ensemble
performances were very similar, this confirms that individ-
uals in Team ensembles must be cooperating significantly
better than individuals in Island ensembles.

All of the OET algorithms had average member fitnesses
that are better than those in Team ensembles. Since OET1,
Island/Team and OET1/Team each had average member
fitnesses that were lower than Island, but their teams out-

performed Island, this shows that the OET algorithms lead
to more cooperation than in the Island algorithm.

Interestingly, OET2 produced average member fitness bet-
ter than those in Island ensembles. We were surprised by
this last finding because in Island ensembles all of the evolu-
tionary pressure is placed on individuals. This suggests that
selection for replacement is more important than selection
to be a parent because in OET2 the pressure on individuals
comes during the replacement phase. Possibly this is be-
cause most offspring will be less fit than their parents are
due to the destructive effects of crossover.

5.1.2 Boosting Results
The average team training and average team testing per-

formance for Adaboost is shown in Table 6. Note that the
team sizes are quite small for boosting (in order to make
direct comparisons). For teams of size 4 and 5 the training
fitness is clearly better than any of the other algorithms.
However, the testing performance of Adaboost is equivalent
to the OET algorithms. Not surprisingly Adaboost does
better with the larger teams, but the OET algorithms do
better with smaller teams. Thus if team size is a considera-
tion OET may be preferable. Adaboost also shows a larger
difference between training and testing fitness which sug-
gests over fitting. This could be a problem with noisy data
sets.

5.2 Heart Disease
Table 7 shows average team training fitness and Table 8

shows average team testing fitness. This data set shows the
same trends as the E.coli problem. The Island and Team
algorithms perform very similarly while the OET algorithms
outperform them both. In this case OET2 does particularly
well.

Average individual training fitness can be seen in Table 9
and average individual testing fitness can be seen in Ta-
ble 10. Again the results are similar to the previous prob-
lem. The Island algorithm produces relatively high fit in-
dividuals while the Team algorithm shows relatively poor
individuals. All the OET algorithms produce member more
fit than members in the Team algorithm and OET2 produces
members more fit than those found in Island ensembles.
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5.3 Other Problems
Space limitations prevented us from showing data from

the other problems (Yeast, Iris, Wine, and Intertwined Spi-
rals). It should be noted that some classification problems
such as Iris and Wine are simply too easy to show a large
performance difference between the algorithms. However,
on problems that are more difficult the general trends are
similar to the E.coli and Heart disease problems.

6. CONCLUSION
This research has shown that current Island and Team

approaches to evolving ensembles are lacking. Team algo-
rithms do not directly apply pressure on team members to
increase their fitness, which leads to relatively poor mem-
ber performance. Island approaches do not directly apply
pressure on team members to cooperate, leading to sub-
optimal team performance. OET algorithms apply direct
evolutionary pressure to both members and teams leading to
increased overall performance. OET algorithms produce en-
sembles with member fitness near that of Island approaches
that cooperate at levels near Team approaches. We also
provided several example algorithms from this class and a
framework for creating additional algorithms by combining
the four basic algorithms (Island, Team, OET1, OET2).

Our results show that the ideal balance between team and
individual pressure depends on the problem since
OET1/Team performed the best on the E.coli problem and
OET2 performed the best on the Heart Disease problem.
Thus, one significant advantage of the OET algorithms is
that it is possible to more closely control the desired fitness
of individuals and the level of cooperation within ensem-
bles. Clearly, applying pressure at both levels is advanta-
geous, but if in a given problem cooperation is more impor-
tant then it is possible to use algorithms that apply more
team pressure, such as alternating between OET1 and Team.
Conversely, if a problem favors individual performance, e.g.
there are fewer distinct subdomains to identify, then it is
possible to choose an algorithm that places more pressure
on member performance.

Adaboost does not allow this same level of control. How-
ever, Adaboost did produce the best training results and
was on par with OET on the testing results. The results
also show that boosting techniques work better with big-
ger teams. The most significant drawback to boosting tech-
niques (which was not fully explored here) is that they re-
quire the problem be separable into independent training
cases. This applies to classification problems, but not, for
example, controlling robot teams. The OET1 and OET2 al-
gorithms can be applied to non-separable problems as long
as a fitness can be given to team members, even if the team
must be evaluated as a whole. Future work will involve com-
paring Team, OET1, and OET2 algorithms on team oriented
problems.

It was also shown that, for a fixed number of evaluations,
using larger ensembles is not always optimal, particularly if
it causes the population size to become too small. This was
clearly the case for the Island algorithm on the E.coli prob-
lem - with fewer total evaluations smaller teams and larger
populations performed better than larger teams and smaller
populations. Thus, in using any approach to evolve teams
it is important to optimize the balance between population
and team size.
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Evals Team Pop Island Team OET1 OET2 Island/ OET1/
Size Size Team Team

90000 2 300 0.724 (0.079) 0.771 (0.063) 0.784 (0.076) 0.778 (0.064) 0.797 (0.065) 0.819 (0.068)
90000 3 200 0.715 (0.075) 0.757 (0.077) 0.788 (0.051) 0.771 (0.076) 0.785 (0.066) 0.788 (0.081)
90000 4 150 0.708 (0.063) 0.728 (0.066) 0.765 (0.065) 0.768 (0.065) 0.776 (0.069) 0.736 (0.066)
90000 5 120 0.760 (0.072) 0.706 (0.070) 0.746 (0.066) 0.768 (0.060) 0.773 (0.070) 0.734 (0.070)
180000 2 600 0.720 (0.081) 0.813 (0.067) 0.829 (0.058) 0.800 (0.065) 0.808 (0.054) 0.835 (0.045)
180000 3 400 0.768 (0.082) 0.781 (0.070) 0.827 (0.053) 0.836 (0.047) 0.810 (0.060) 0.840 (0.058)
180000 4 300 0.777 (0.075) 0.782 (0.074) 0.815 (0.049) 0.827 (0.073) 0.805 (0.055) 0.820 (0.056)
180000 5 240 0.762 (0.077) 0.730 (0.066) 0.788 (0.065) 0.829 (0.053) 0.812 (0.049) 0.783 (0.081)
270000 2 900 0.745 (0.093) 0.826 (0.063) 0.842 (0.048) 0.843 (0.048) 0.814 (0.064) 0.850 (0.049)
270000 3 600 0.758 (0.088) 0.821 (0.064) 0.859 (0.036) 0.832 (0.056) 0.813 (0.070) 0.858 (0.062)
270000 4 450 0.807 (0.068) 0.805 (0.070) 0.846 (0.041) 0.848 (0.048) 0.838 (0.064) 0.861 (0.060)
270000 5 360 0.798 (0.059) 0.776 (0.076) 0.831 (0.062) 0.837 (0.057) 0.819 (0.066) 0.829 (0.072)

Table 2: Average team training fitness on the E.coli problem (150 iterations).

Evals Team Pop Island Team OET1 OET2 Island/ OET1/
Size Size Team Team

90000 2 300 0.639 (0.060) 0.694 (0.077) 0.701 (0.061) 0.690 (0.054) 0.697 (0.063) 0.721 (0.064)
90000 3 200 0.639 (0.051) 0.685 (0.070) 0.696 (0.062) 0.697 (0.062) 0.699 (0.056) 0.693 (0.051)
90000 4 150 0.646 (0.037) 0.669 (0.070) 0.696 (0.055) 0.692 (0.063) 0.697 (0.051) 0.681 (0.056)
90000 5 120 0.689 (0.071) 0.665 (0.056) 0.683 (0.059) 0.684 (0.059) 0.703 (0.063) 0.661 (0.079)
180000 2 600 0.630 (0.054) 0.722 (0.057) 0.729 (0.057) 0.690 (0.060) 0.703 (0.058) 0.726 (0.061)
180000 3 400 0.672 (0.061) 0.680 (0.075) 0.724 (0.059) 0.719 (0.065) 0.704 (0.064) 0.707 (0.076)
180000 4 300 0.701 (0.067) 0.676 (0.081) 0.723 (0.065) 0.723 (0.068) 0.714 (0.058) 0.717 (0.072)
180000 5 240 0.682 (0.069) 0.676 (0.065) 0.715 (0.068) 0.722 (0.064) 0.718 (0.054) 0.706 (0.066)
270000 2 900 0.648 (0.059) 0.713 (0.073) 0.734 (0.050) 0.718 (0.063) 0.712 (0.051) 0.730 (0.064)
270000 3 600 0.659 (0.065) 0.725 (0.072) 0.744 (0.046) 0.726 (0.061) 0.707 (0.072) 0.744 (0.046)
270000 4 450 0.704 (0.051) 0.722 (0.066) 0.744 (0.056) 0.730 (0.056) 0.724 (0.057) 0.733 (0.066)
270000 5 360 0.699 (0.063) 0.686 (0.076) 0.729 (0.054) 0.735 (0.056) 0.704 (0.065) 0.729 (0.071)

Table 3: Average team testing fitness on the E.coli problem (150 iterations).

Evals Team Size Pop Size Island Team OET1 OET2 Island/Team OET1/Team
90000 2 300 0.6598 0.4641 0.5555 0.6889 0.6650 0.5460
90000 3 200 0.6359 0.3876 0.5531 0.6561 0.6090 0.5325
90000 4 150 0.6213 0.2659 0.5229 0.6355 0.6078 0.4030
90000 5 120 0.6415 0.2253 0.4716 0.6282 0.5781 0.3794
180000 2 600 0.6616 0.5020 0.6258 0.7050 0.6778 0.6045
180000 3 400 0.6645 0.3248 0.5828 0.6863 0.5959 0.5303
180000 4 300 0.6546 0.2873 0.5483 0.6711 0.5980 0.5321
180000 5 240 0.6421 0.2332 0.5305 0.6534 0.5947 0.4468
270000 2 900 0.6857 0.4894 0.6490 0.7393 0.6813 0.6013
270000 3 600 0.6590 0.3732 0.6297 0.6932 0.6424 0.5915
270000 4 450 0.6659 0.3032 0.5853 0.6751 0.6260 0.5253
270000 5 360 0.6530 0.2356 0.5368 0.6672 0.6233 0.4732

Table 4: Average member training fitness on the E.coli problem (150 iterations).
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Evals Team Size Pop Size Island Team OET1 OET2 Island/Team OET1/Team
90000 2 300 0.5815 0.4285 0.5129 0.6140 0.5967 0.5009
90000 3 200 0.5646 0.3653 0.5091 0.5956 0.5551 0.5009
90000 4 150 0.5614 0.2516 0.4897 0.5807 0.5516 0.3850
90000 5 120 0.5754 0.2172 0.4530 0.5708 0.5313 0.3623
180000 2 600 0.5803 0.4547 0.5610 0.6198 0.6015 0.5531
180000 3 400 0.5791 0.3044 0.5382 0.6079 0.5384 0.4858
180000 4 300 0.5814 0.2696 0.5115 0.5998 0.5388 0.4975
180000 5 240 0.5733 0.2262 0.4988 0.5846 0.5420 0.4176
270000 2 900 0.5922 0.4406 0.5851 0.6421 0.6026 0.5369
270000 3 600 0.5712 0.3452 0.5734 0.6160 0.5728 0.5506
270000 4 450 0.5871 0.2839 0.5393 0.6012 0.5586 0.4859
270000 5 360 0.5779 0.2213 0.5008 0.5942 0.5550 0.4424

Table 5: Average member testing fitness on the E.coli problem (150 iterations).

Evals Iterations Team Size Pop Size Avg Training Avg Testing
90000 150 2 300 0.7024 0.5902
90000 150 3 200 0.8013 0.6708
90000 150 4 150 0.8611 0.6949
90000 150 5 120 0.8844 0.7259
180000 150 2 600 0.7431 0.6276
180000 150 3 400 0.8419 0.6996
180000 150 4 300 0.8903 0.7108
180000 150 5 240 0.9058 0.7393
270000 150 2 900 0.7229 0.5845
270000 150 3 600 0.8725 0.6998
270000 150 4 450 0.9010 0.7295
270000 150 5 360 0.9228 0.7476

Table 6: Adaboost results on the E.coli problem (also averaged over 30 trials).

Evals Team Pop Island Team OET1 OET2 Island/ OET1/
Size Size Team Team

90000 2 300 0.656 (0.044) 0.700 (0.030) 0.722 (0.033) 0.724 (0.034) 0.718 (0.032) 0.725 (0.035)
90000 3 200 0.670 (0.039) 0.696 (0.022) 0.728 (0.025) 0.736 (0.027) 0.707 (0.029) 0.728 (0.033)
90000 4 150 0.690 (0.040) 0.707 (0.026) 0.719 (0.030) 0.756 (0.030) 0.727 (0.029) 0.729 (0.030)
90000 5 120 0.693 (0.040) 0.698 (0.027) 0.723 (0.031) 0.754 (0.029) 0.717 (0.023) 0.724 (0.026)
180000 2 600 0.667 (0.038) 0.726 (0.031) 0.738 (0.033) 0.763 (0.035) 0.725 (0.043) 0.741 (0.036)
180000 3 400 0.687 (0.035) 0.724 (0.038) 0.744 (0.027) 0.771 (0.033) 0.744 (0.028) 0.746 (0.030)
180000 4 300 0.704 (0.046) 0.723 (0.030) 0.748 (0.030) 0.770 (0.034) 0.753 (0.022) 0.750 (0.030)
180000 5 240 0.729 (0.037) 0.717 (0.026) 0.741 (0.030) 0.785 (0.026) 0.748 (0.024) 0.742 (0.024)
270000 2 900 0.666 (0.039) 0.733 (0.036) 0.751 (0.028) 0.770 (0.039) 0.749 (0.028) 0.755 (0.030)
270000 3 600 0.714 (0.041) 0.730 (0.037) 0.751 (0.033) 0.789 (0.027) 0.754 (0.031) 0.756 (0.034)
270000 4 450 0.734 (0.036) 0.734 (0.029) 0.751 (0.028) 0.782 (0.027) 0.765 (0.029) 0.765 (0.035)
270000 5 360 0.738 (0.034) 0.731 (0.027) 0.760 (0.033) 0.796 (0.033) 0.767 (0.026) 0.764 (0.026)

Table 7: Average team training fitness on the Heart Disease problem (150 iterations).
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Evals Team Pop Island Team OET1 OET2 Island/ OET1/
Size Size Team Team

90000 2 300 0.522 (0.040) 0.551 (0.027) 0.555 (0.027) 0.550 (0.027) 0.552 (0.031) 0.555 (0.029)
90000 3 200 0.530 (0.035) 0.554 (0.029) 0.555 (0.026) 0.557 (0.028) 0.557 (0.029) 0.562 (0.031)
90000 4 150 0.537 (0.031) 0.555 (0.026) 0.565 (0.025) 0.559 (0.028) 0.558 (0.031) 0.556 (0.030)
90000 5 120 0.541 (0.030) 0.560 (0.036) 0.568 (0.030) 0.562 (0.026) 0.555 (0.027) 0.565 (0.026)
180000 2 600 0.507 (0.034) 0.551 (0.031) 0.552 (0.039) 0.551 (0.026) 0.548 (0.037) 0.554 (0.028)
180000 3 400 0.529 (0.033) 0.548 (0.034) 0.562 (0.032) 0.563 (0.031) 0.558 (0.034) 0.562 (0.032)
180000 4 300 0.532 (0.034) 0.555 (0.029) 0.563 (0.026) 0.557 (0.032) 0.556 (0.035) 0.566 (0.027)
180000 5 240 0.547 (0.030) 0.556 (0.030) 0.566 (0.025) 0.565 (0.029) 0.556 (0.036) 0.558 (0.024)
270000 2 900 0.510 (0.043) 0.557 (0.031) 0.558 (0.035) 0.552 (0.031) 0.553 (0.034) 0.553 (0.028)
270000 3 600 0.528 (0.033) 0.560 (0.024) 0.559 (0.025) 0.562 (0.030) 0.555 (0.035) 0.566 (0.028)
270000 4 450 0.532 (0.035) 0.555 (0.036) 0.564 (0.031) 0.557 (0.026) 0.554 (0.034) 0.566 (0.029)
270000 5 360 0.542 (0.033) 0.566 (0.025) 0.564 (0.029) 0.568 (0.023) 0.557 (0.030) 0.563 (0.029)

Table 8: Average team testing fitness on the Heart Disease problem (150 iterations).

Evals Team Size Pop Size Island Team OET1 OET2 Island/Team OET1/Team
90000 2 300 0.5874 0.4847 0.5815 0.6257 0.6201 0.5782
90000 3 200 0.5707 0.4628 0.5624 0.5970 0.5796 0.5648
90000 4 150 0.5640 0.3676 0.5438 0.5880 0.5579 0.5301
90000 5 120 0.5625 0.3161 0.5305 0.5780 0.5380 0.5045
180000 2 600 0.5926 0.5171 0.6112 0.6557 0.6137 0.5980
180000 3 400 0.5831 0.4461 0.5765 0.6213 0.5843 0.5679
180000 4 300 0.5765 0.4070 0.5585 0.5937 0.5763 0.5476
180000 5 240 0.5738 0.3396 0.5497 0.5827 0.5631 0.5188
270000 2 900 0.5970 0.4570 0.6349 0.6627 0.6155 0.6094
270000 3 600 0.5989 0.4650 0.5858 0.6347 0.5972 0.5840
270000 4 450 0.5903 0.4089 0.5570 0.6016 0.5742 0.5516
270000 5 360 0.5819 0.3577 0.5523 0.5991 0.5720 0.5313

Table 9: Average member training fitness on the Heart Disease problem (150 iterations).

Evals Team Size Pop Size Island Team OET1 OET2 Island/Team OET1/Team
90000 2 300 0.4795 0.4169 0.4791 0.5044 0.5038 0.4793
90000 3 200 0.4745 0.4154 0.4774 0.4902 0.4876 0.4970
90000 4 150 0.4697 0.3292 0.4792 0.4903 0.4706 0.4666
90000 5 120 0.4729 0.2918 0.4709 0.4868 0.4628 0.4543
180000 2 600 0.4700 0.4323 0.4978 0.5098 0.4935 0.4957
180000 3 400 0.4727 0.3888 0.4836 0.4993 0.4770 0.4868
180000 4 300 0.4676 0.3646 0.4801 0.4839 0.4753 0.4802
180000 5 240 0.4686 0.3034 0.4783 0.4803 0.4717 0.4607
270000 2 900 0.4712 0.3746 0.5077 0.5106 0.4873 0.4897
270000 3 600 0.4732 0.4082 0.4855 0.4954 0.4828 0.4939
270000 4 450 0.4738 0.3654 0.4748 0.4861 0.4680 0.4770
270000 5 360 0.4727 0.3225 0.4755 0.4894 0.4707 0.4628

Table 10: Average member testing fitness on the Heart Disease problem (150 iterations).
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