
A New Crossover Technique for Cartesian Genetic
Programming

Genetic Programming Track

Janet Clegg
Intelligent Systems Group,
Department of Electronics

University of York, Heslington
York, YO10 5DD, UK

jc@ohm.york.ac.uk

James Alfred Walker
Intelligent Systems Group,
Department of Electronics

University of York, Heslington
York, YO10 5DD, UK

jaw500@ohm.york.ac.uk

Julian Francis Miller
Intelligent Systems Group,
Department of Electronics

University of York, Heslington
York, YO10 5DD, UK

jfm7@ohm.york.ac.uk

ABSTRACT
Genetic Programming was first introduced by Koza using
tree representation together with a crossover technique
in which random sub-branches of the parents’ trees are
swapped to create the offspring. Later Miller and Thomson
introduced Cartesian Genetic Programming, which uses
directed graphs as a representation to replace the tree
structures originally introduced by Koza. Cartesian Genetic
Programming has been shown to perform better than the
traditional Genetic Programming; but it does not use cross-
over to create offspring, it is implemented using mutation
only. In this paper a new crossover method in Genetic
Programming is introduced. The new technique is based
on an adaptation of the Cartesian Genetic Programming
representation and is tested on two simple regression prob-
lems. It is shown that by implementing the new crossover
technique, convergence is faster than that of using mutation
only in the Cartesian Genetic Programming method.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; I.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods and Search

General Terms
Algorithms, Design, Performance

Keywords
Cartesian Genetic Programming, optimization, crossover
techniques

1. INTRODUCTION
Koza [6, 7] introduced Genetic Programming (GP) in

1992. He used tree structures as the representation of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

the members of the population and suggested a crossover
technique in which random sub-branches of the parent tree
structures are swapped to produce the offspring. This sub-
tree crossover was, at the time, thought to be the dominant
operator within the optimization process: responsible for
exploiting existing genetic material in searching for better
solutions. However, it has since been found [1, 8, 9]
that this sub-tree crossover technique does not always
perform well. Angeline [1] compared the performance of
sub-tree crossover with a crossover technique which simply
mutated the sub-branches of the trees. It was found
that the difference between the performances of sub-tree
crossover and that of simply mutating the sub-branches was
statistically insignificant. This result implied that, in some
cases, sub-tree crossover was no better than some simple
mutation of the sub-branches. Luke and Spector [8, 9] also
compared sub-tree crossover with a simple mutation of the
branches of the trees over a range of problems. They also
concluded that sub-tree crossover performed little better
than a simple mutation of the branches. Due to findings
like these, some people now implement their GP’s without
using crossover at all, i.e. using mutation only.

By contrast, in Genetic Algorithms (GAs) mutation is
considered to be a background operator and of secondary
importance to the crossover operator. GAs have been
extremely successful when applied to many real life complex
optimisation problems [3, 2, 4]. Although mutation is
an important genetic operator in the GA, the crossover
operator contributes a great deal to its performance. Much
work has been done in analysing the effects of crossover and
mutation on the performance of a GA [5, 15, 17]. In [5],
Jong presents experimental results illustrating the power
of crossover and in [14] Schaffer compares mutation and
crossover in a GA and concludes that mutation alone is
not always sufficient. The inspiration for the work in this
paper has been to find a new crossover technique in Genetic
Programming which can contribute to the performance of
the GP as much as crossover operators contribute to the
performance of a GA.

Recently, Miller and Thomson [11, 12] introduced a new
form of GP called Cartesian Genetic Programming (CGP),
which uses directed graphs to represent programs rather
than the more traditional representation of programs as
trees. The CGP is implemented with mutation only and
has not, up to the present time, used a crossover technique.
Even so, it has been shown that the CGP performs better

1580

than the traditional GP. The work described in this paper
is based on this CGP representation.

This paper introduces a new method for crossover in
Genetic Programming which improves the performance of
the GP by speeding up its convergence considerably. The
new technique has been developed based on the Cartesian
Genetic Programming representation described above. The
CGP representation is modified in order to enable the new
crossover technique to be applied. Crossover when applied
to a CGP using the traditional representation hinders its
performance rather than improves it, and this has been
the motivation for introducing the new representation here.
The new method of crossover has been tested on two
simple regression problems and the results show that it
successfully speeds up the convergence of the CGP for these
problems. Section 2 of this paper describes the traditional
CGP method and Section 3 shows how crossover techniques
fail when the CGP is in its traditional integer representation.
Section 4 introduces the new representation and crossover
and Section 5 describes the regression problems which the
new crossover is tested on. Section 6 reports the results of
using the new technique on these regression problems and
finally Section 7 discusses conclusions and future work.

2. CARTESIAN GENETIC
PROGRAMMING (CGP)

Cartesian Genetic Programming is a form of Genetic
Programming (GP) invented by Miller and Thomson [12],
for the purpose of evolving digital circuits. However,
unlike the conventional tree-based GP [6], CGP represents a
program as a directed graph (that for feed-forward functions
is acyclic). The benefit of this type of representation is that
it allows the implicit re-use of nodes in the directed graph.
CGP is also similar to another technique called Parallel
Distributed GP, which was independently developed by Poli
[13]. Originally CGP used a program topology defined by a
rectangular grid of nodes with a user defined number of rows
and columns. However, later work on CGP showed that it
was more effective when the number of rows is chosen to be
one [19]. This one-dimensional topology is used throughout
the work we report in this paper.

In CGP, the genotype is a fixed length representation and
consists of a list of integers which encode the function and
connections of each node in the directed graph. However, the
number of nodes in the program (phenotype) can vary but
is bounded, as not all of the nodes encoded in the genotype
have to be connected. This allows areas of the genotype to
be inactive and have no influence on the phenotype, leading
to a neutral effect on genotype fitness called neutrality. This
unique type of neutrality has been investigated in detail and
found to be extremely beneficial to the evolutionary process
on the problems studied [12, 19, 16].

Each node is encoded by a number of genes. The first
gene encodes the node function, whilst the remaining genes
encode where the node takes its inputs from. The nodes take
their inputs in a feed forward manner from either the output
of a previous node or from the program inputs (terminals).
Also, the number of inputs that a node has is dictated by the
arity of its function. The program inputs are labelled from
0 to n − 1, where n is the number of program inputs. The
nodes encoded in the genotype are also labelled sequentially
from n to n+m−1, where m is the user-defined bound for the

4
6

Output A
x

0

1

1
3

+

-

*

÷

*

+

*

÷

2

5

7

8

9

0 1 1

3 9

3 4 13 3 1

5

1 2 3

4

2 2 4

6 8

2 2 7

oA

80 6 1

7

2 0 0

2

Figure 1: A CGP genotype and corresponding
phenotype for the function x6 − 2x4 + x2. The
underlined genes in the genotype encode the
function of each node, the remaining genes encode
the node inputs. The function lookup table is:
+(0), -(1), *(2), ÷(3). The index labels are shown
underneath each program input and node. The
inactive areas of the genotype and phenotype are
shown in grey dashes.

number of nodes. If the problem requires k program outputs,
then k integers are added to the end of the genotype, each
encoding a node output in the graph where the program
output is taken from. These k integers are initially set as
the outputs of the last k nodes in the genotype. Figure
1 shows a CGP genotype and corresponding phenotype for
the function x6 − 2x4 + x2 and Figure 2 shows the decoding
procedure.

3. ATTEMPTS AT CROSSOVER IN CGP
This section of the paper reports on some attempts at

crossover when the CGP representation is in its original form
(as described in the previous section). Four variations of
crossover have been tested, but all four failed to improve
the convergence of the CGP. Compared to running the
CGP with mutation only, the addition of these crossover
techniques actually hindered its performance. It is for this
reason most people use the CGP without crossover (i.e.
using mutation only). Results of two of the four crossover
techniques are given here and these results emphasise the
need for the new representation and crossover introduced
later in the paper.

The crossover methods have been tested on a very simple
regression problem given by the equation x2 + 2x + 1. A
sample of twenty data points are taken from the interval
[0,1], and the cost function is defined as the sum of the
squared differences between the population member’s values
and the true function values at each of the data points. A
population size of 30 has been used with 28 offspring created
at each generation. Tournament selection has been chosen
to select the parents and a mutation rate of 20% has been
used. The maximum number of nodes has been set at 5.
For each crossover technique the CGP has been run 1000
times and the average convergence over these 1000 runs is
recorded at each generation.

The first crossover technique is based on the single point
crossover in a binary GA; we treat the nodes in the CGP
representation the same as the binary digits in the binary
GA. A random node is chosen in the CGP genotype and
the offspring are created by swapping the parents nodes at
this point (i.e. the first offspring will take all nodes from

1581

2 0 0

2

0 1 1

3 9

3 4 13 3 1

5

1 2 3

4

0 6 1

7

2 2 4

6

2 0 0

2

0 1 1

3

8

2 2 7

9

3 4 13 3 1

5

1 2 3

4

0 6 1

7

2 2 4

6

oA

8

8

2 2 7

oA

8

0 1 1

3 9

3 4 13 3 1

5

1 2 3

4

2 2 4

6 8

2 2 7

oA

80 6 1

7

2 0 0

2

0 1 1

3 9

3 4 13 3 1

5

1 2 3

4

2 2 4

6 8

2 2 7

oA

80 6 1

7

2 0 0

2

0 1 1

3 9

3 4 13 3 1

5

1 2 3

4

2 2 4

6 8

2 2 7

oA

80 6 1

7

2 0 0

2

0 1 1

3 9

3 4 13 3 1

5

1 2 3

4

2 2 4

6 8

2 2 7

oA

80 6 1

7

2 0 0

2

a)

b)

c)

d)

e)

f)

Figure 2: The decoding procedure of a CGP
genotype for the function x6 − 2x4 +x2. a) Output A
(oA) connects to the output of node 8, move to node
8. b) Node 8 connects to the output of nodes 2 and
7, move to nodes 2 and 7. c) Nodes 2 and 7 connect
to the output of node 6 and program inputs 0 and 1,
move to node 6. d) Node 6 connects to the output
of nodes 2 and 4, move to node 4, as node 2 has
already been decoded. e) Nodes 4 connects to the
output of nodes 2 and 3, move to node 3. f) Node
3 connects to program input 1. When the recursive
process has finished, the genotype is fully decoded.

parent one to the left of this node and all nodes from parent
two to the right of this node). Figure 3 displays the average
convergence for the two cases; (a) mutation only with a rate
of 20% (b) 50% crossover with mutation at 20%. It can be
seen that the addition of crossover slows the convergence of
the CGP rather than improving it.

The second crossover technique involves picking a random
node in the CGP genotype and the offspring are created by
swapping this single node in the parents. Figure 4 displays
the detrimental effect of this crossover technique. Two other
crossover techniques were tried with similar results to those
in Figures 3 and 4. It seems that swapping the integers (in
whatever manner) in the CGP representation disrupts the
performance of the CGP. This has been the motivation for
the introduction of the real-valued representation and new
crossover technique described in this paper.

4. INTRODUCING THE NEW METHOD
The proposed crossover method for CGP is heavily in-

spired by the real-valued crossover operator found in real-
valued GAs. Normally the CGP genotype consists of a list
of integers to encode the directed graph (as described in
Section 2). However, to incorporate this type of crossover
operator into CGP requires a modification to the CGP rep-
resentation itself. The modified representation introduces
a new level of encoding into the CGP genotype, which
represents the directed graph as a fixed length list of real-
valued numbers. Each real-valued number corresponds to
a single gene in the CGP genotype (as is the case with the
standard CGP representation) and its value lies in the range
[0, 1]. Each node in CGP is still represented by a number of
genes and the purpose of each gene still remains as it would

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

C
os

t f
un

ct
io

n

Generation number

Mutation only
With crossover

Figure 3: Average convergence of CGP with and
without the first crossover technique

0

1

2

3

4

5

0 10 20 30 40 50 60

C
os

t f
un

ct
io

n

Generation number

Mutation only
With crossover

Figure 4: Average convergence of CGP with and
without the second crossover technique

1582

0.2 0.39 0.65

3

9

0.84 0.5 0.2

0.77 0.76 0.27

5

0.41 0.61 0.92

4

0.71 0.45 0.78

6 8

0.54 0.37 0.94

oA

0.880.2 0.92 0.23

7

0.74 0.03 0.4

2

0 1 1

3 9

3 4 13 3 1

5

1 2 3

4

2 2 4

6 8

2 2 7

oA

80 6 1

7

2 0 0

2

Decode

Figure 5: The decoding process between the real-
valued and integer-based genotypes. The underlined
genes encode the functions and the remaining genes
encode the node inputs. The function genes are
decoded using Equation 1 whilst the input genes are
decoded using Equation 2.

in the standard CGP genotype; the first real valued gene
encodes the function of the node whilst the remaining real-
valued genes encode the inputs of the node. An example
of the new representation is shown in Figure 5, which also
shows the decoding process to the standard CGP genotype.

The decoding process from the real-valued genotype to
the integer-based genotype is achieved by a combination of
Equation 1, if a gene, say genei, encodes the function of a
node and Equation 2, if genei encodes the input of a node.

floor(genei ∗ functotal) (1)

floor(genei ∗ nodetermj) (2)

In Equations 1 and 2, i is defined as 0 <= i < genetotal,
where genetotal is the number of genes in the genotype,
functotal is the number of functions, nodetermj is the node
or terminal number, where j is defined as 0 <= j <=
nodetermtotal and nodetermtotal is the number of nodes in
the genotype and the number of terminals.

This decoding procedure is a many-to-one mapping be-
tween each value in the real-valued genotype and each value
in the integer-based genotype. Therefore each integer value
is actually represented by a range of values in the real-valued
representation. This is summarised in Equation 3, which
shows the real-valued range for each function, funck, and
Equation 4, which shows the real-valued range for each node
input, inputj .

funck ∈ [
funck

functotal
,
funck + 1

functotal
] (3)

inputj ∈ [
nodetermj

nodetermtotal
,
nodetermj + 1

nodetermtotal
] (4)

In Equations 3, funck, is the kth function in the function
set and functotal is the total number of functions in the
function set. Whilst in Equation 4, inputj is the node’s
input connection to the jth terminal.

By introducing the new representation, each individual in
the population can be thought of as a particular value of a
function of n variables, where n = genetotal ∗ nodetotal +
outputtotal, genetotal is the number of genes, nodetotal is

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000

C
os

t f
un

ct
io

n

Generation number

Integer representation
New representation

Figure 6: Comparison of the integer CGP with the
real-valued CGP without crossover

the number of nodes in the genotype, and outputtotal is the
number of outputs.

f(x1, x2, . . . , xn) (5)

The optimization then becomes that of finding the values
of these n variables which produce an optimal result.

Crossover is performed as in a floating point Genetic
Algorithm. Two parents, p1 and p2 are chosen and crossover
is performed using Equation 6 to produce two offspring, o1

and o2. A uniformly generated random number, ri, is chosen
for each offspring, oi where 0 < ri < 1 and 0 <= i < 2.

oi = (1 − ri) ∗ p1 + ri ∗ p2 (6)

The mutation operator for the real-valued representation
is based on the mutation operator normally found in CGP,
the only difference is that it changes the value of a gene to
a uniformly generated random real-valued number from the
region [0, 1].

Without crossover, the new real-valued representation
does not change the behaviour of the CGP very much at
all. This can be seen in Figure 6 which displays the average
convergence of the CGP over 1000 runs using mutation
only for the two CGP representations; the original integer
representation and the new real-valued representation. This
test has been performed on the first regression problem
described in the next section on experimental results.

Using the new crossover method described in this section
means that, mathematically, the problem has become that
of simply optimising a function of real-valued variables.
Instead of randomly changing the input to some complex
composite function (as in the case of tree crossover) to
attempt to achieve a better solution, the values of the genes
are free to slide continuously around the problem space
searching for the best solution.

5. EXPERIMENT DETAILS
The new method has been tested on two of the regression

problems investigated by Koza, and their equations are given
in Equations 7 and 8 below.

x6 − 2x4 + x2 (7)

x5 − 2x3 + x (8)

1583

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450 500

C
os

t f
un

ct
io

n

Generation number

Crossover 0%
Crossover 25%
Crossover 50%
Crossover 75%

Figure 7: Average convergence for CGP with
various crossover rates on x6 − 2x4 + x2

A sample of fifty data points are taken from the interval
[-1,1], and the cost function is defined as the sum of the
absolute values of the differences between the population
member’s values and the true function values at each of the
data points. The algorithm is classed as converged when all
of these absolute values are less than 0.01 (this is the criteria
Koza used for convergence).

A population size of 50 has been used with 48 offspring
created at each generation. Tournament selection has been
chosen to select the parents and crossover as described by
Equation 6 has been used. The maximum number of nodes
has been set at 10 initially and a mutation rate of 20% has
been used. Different rates of crossover have been investi-
gated, 0%, 25%, 50% and 75%. Note that 0% crossover
is equivalent to the traditional CGP which uses mutation
only, although the traditional CGP has been applied with
a smaller mutation rate and population size in most work
prior to this. For each crossover rate the new algorithm has
been run 1000 times and the average convergence over these
1000 runs is recorded at each generation.

6. RESULTS
For all the figures in this section of the paper, the

horizontal axis represents generation number in the CGP
and along the vertical axis is the cost function for the best
member of the population (averaged over 1000 runs) for
that particular generation number. Figure 7 displays this
average convergence (over the 1000 runs of the CGP) for
each crossover rate for the regression problem in Equation
7.

From Figure 7, it is apparent that this new form of
crossover has a large effect on convergence (unlike tree
crossover). If Figure 7 is displayed for the latter generations
(see Figure 8), then it can be seen that although the new
crossover improves convergence for the initial generations,
it does not particularly improve convergence for the latter
generations. It is not clear at this stage why this should be
the case, but future work will involve investigating possible
reasons why. For now, we accept that crossover works better
for the initial generations and try a crossover technique
which varies with generation number. Since for the initial
generations it seems that the larger the crossover rate the
faster the convergence, we choose an initial crossover rate for

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

200 300 400 500 600 700 800 900 1000

C
os

t f
un

ct
io

n

Generation number

Crossover 0%
Crossover 25%
Crossover 50%
Crossover 75%

Figure 8: Average convergence of CGP for the latter
generations on x6 − 2x4 + x2

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450 500

C
os

t f
un

ct
io

n

Generation number

Crossover 0%
Crossover 25%
Crossover 50%
Crossover 75%

Variable crossover

Figure 9: Average convergence for CGP with var-
ious crossover rates, including a variable crossover
rate on x6 − 2x4 + x2

generation number one of 90%. Also since it seems that by
generation number 200, crossover is not having a large effect
on convergence, we arrange that crossover is 0% by this
generation. Therefore for our variable crossover we begin
at generation number one with 90% crossover and reduce
the crossover rate linearly such that by generation number
180 crossover is being performed 0% of the time. This
variable crossover technique is simply based on analysing
these initial results, future work will involve investigating
alternative variable crossover techniques. Figure 9 displays
the average convergence for the variable crossover technique
and it can be seen that this means a faster convergence over
all generation numbers.

Table 1 displays the average number of generations re-
quired to reach convergence and the computational effort
as described by Koza in [6] and shown in Equation 9.
The significance of the results is also assessed using the
non-parametric Mann-Whitney U test [10]. The U values
produced from the Mann-Whitney U test are denoted with:
a � if they are classed as marginally significant (P < 0.05),
a † if they are classed as significant (P < 0.01) or a ‡ if they

1584

Table 1: The average number of generations and
computational effort (CE) required by CGP with
ten nodes to converge on a solution for x6 − 2x4 + x2

Crossover Average
Rate (%) Generations CE U

0 168 30,000 -
25 84 9,000 309,778 ‡

50 57 8,000 261,533 ‡

75 71 6,000 226,303 ‡

Variable 47 10,000 263,269 ‡

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350 400 450 500

C
os

t f
un

ct
io

n

Generation number

Crossover 0%
Crossover 25%
Crossover 50%
Crossover 75%

Figure 10: Average convergence for the second
regression problem x5 − 2x3 + x

are classed as highly significant (P < 0.001).

P (M, i) =
Ns (i)

Ntotal

R (z) =ceil

(
log (1 − z)

log (1 − P (M, i))

)

min I (M, i, z) =MR (z) i + 1

(9)

Figure 10 displays the average convergence for the regres-
sion problem given in Equation 8. Note that for this problem
it is more pronounced that the crossover has a big effect on
convergence for the initial generations but has less effect
for the latter generation. Variable crossover improves the
convergence over all generations, as can be seen in Figure
11.

Table 2 contains the average number of generations
required to converge together with Koza’s computational
effort figure for the various percentages of crossover.

For this second regression problem, crossover does not
seem to have as big an effect as for the previous problem.
This seems to be because, for this problem, occasional runs
take a huge number of generations to converge. This can be
seen in Figure 12 which shows the number of generations
required to converge for 100 runs of the two regression
problems. As can be seen in the figure, for the first
problem most runs take approximately the same number
of generations to converge, whereas in the second problem
there are occasional runs which take a very large number of
generations to converge. This trait will be investigated in
more detail in future work.

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350 400 450 500

C
os

t f
un

ct
io

n

Generation number

Crossover 0%
Crossover 25%
Crossover 50%
Crossover 75%

Variable crossover

Figure 11: Average convergence for the second
regression problem x5 − 2x3 + x including results for
a variable crossover rate

Table 2: The average number of generations and
computational effort (CE) required by CGP with
ten nodes to converge on a solution for x5 − 2x3 + x

Crossover Average
Rate (%) Generations CE U

0 516 44,000 -
25 735 24,000 502,024
50 691 14,000 422,394 ‡

75 655 11,000 343,119 ‡

Variable 278 13,000 294,577 ‡

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100

N
um

be
r

of
 g

en
er

at
io

ns
 to

 c
on

ve
rg

e

Run number

Problem given in Equation 4
Problem given in Equation 5

Figure 12: The number of generations to converge
over 100 runs for both symbolic regression problems

1585

0

0.5

1

1.5

2

2.5

3

3.5

4

0 50 100 150 200 250 300 350 400 450 500

C
os

t f
un

ct
io

n

Generation number

Crossover 0%
Crossover 25%
Crossover 50%
Crossover 75%

Variable crossover

Figure 13: Average convergence for the symbolic
regression problem in Equation 7 using CGP with
fifty nodes

Table 3: The average number of generations and
computational effort (CE) required by CGP with
fifty nodes to converge on a solution for x6 − 2x4 +x2

Crossover Average
Rate (%) Generations CE U

0 78 18,000 -
25 85 13,000 443,769 ‡

50 71 11,000 420,519 ‡

75 104 13,000 463,118 †

Variable 45 14,000 401,205 ‡

The number of nodes used is now increased from 10 to 50
in both regression problems. Figure 13 displays the results
for the regression problem in Equation 7, and Table 3 gives
the average number of generations to converge together with
Koza’s computational effort figure. Figure 14 and Table 4
are the same for the regression problem given in Equation
8.

The results in this section show that the new technique
enhances the performance of CGP. The majority of the
U values produced are classed as highly significant, which
supports the findings from computational effort figures and
indicates that the use of crossover in CGP is beneficial when
applied to symbolic regression problems. The reason the
new method works well could be the fact that the problem
has been transformed into that of simply minimising a
function (the cost function) of n variables (where n is the

Table 4: The average number of generations and
computational effort (CE) required by CGP with
fifty nodes to converge on a solution for x5 − 2x3 + x

Crossover Average
Rate (%) Generations CE U

0 131 18,000 -
25 193 17,000 539,076 †

50 224 12,000 454,875 ‡

75 152 19,000 554,642 ‡

Variable 58 16,000 470,984 �

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350 400 450 500

C
os

t f
un

ct
io

n

Generation number

Crossover 0%
Crossover 25%
Crossover 50%
Crossover 75%

Variable crossover

Figure 14: Average convergence for the symbolic
regression problem in Equation 8 using CGP with
fifty nodes

total number of real-valued numbers in the representation).
Crossover methods tested in the past have involved swap-
ping the integers in the CGP representation in some manner,
and it is thought that this may produce too great a change
to the functional form of the current solution. By making
the cost function into a simple function of variables and
performing crossover in the way described in this paper, the
values of the variables are allowed to move in a continuous
manner to their optimal values.

It is also thought that another possible reason for the
success in the new technique may be attributed to the fact
that for nodes to the far left of the representation, the
interval [0,1] is spit into a less number of sub-sections and
therefore it will ”change” less due to the crossover. In
contrast for nodes to the far right of the representation, the
interval [0,1] is split into more sub-sections and therefore
is more likely to change through crossover. It is thought
that this could help the optimisation due to the fact that
functions to the left can be thought of as fundamental sub-
functions of the entire solution function.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have introduced a new crossover tech-

nique, which improves the performance of Cartesian Genetic
Programming. The CGP representation is adapted slightly
in order to allow the new crossover. It has been found that
this new representation together with crossover reduces the
average number of generations required to converge by 72%
in the case of the regression problem given in Equation
7, and by 46% in the case of the problem in Equation
8. It has been shown that for the regression problem in
Equation 8 the new crossover technique does not have as
good an effect on convergence as for the first regression
problem. This is thought to be because of the fact that
occasional runs of the CGP for this second problem take a
huge number of generations to converge. Future work will
involve investigating this trait.

The results in this paper for the cases where crossover is
set at 0% are equivalent to those of the traditional CGP,
which uses mutation only. The computational effort figures
reported in this paper for 0% crossover are similar to those
reported for the traditional CGP [18], although in this paper

1586

a larger mutation rate and population size have been used.
Future work will involve investigating how changing these
parameter values in the CGP (i.e. mutation rate, population
size, parent selection method) affects the performance of the
new method. We will also investigate the fact that crossover
has more effect for the initial generations and try alternative
method of variable crossover.

This paper reports on initial testing of the new technique
when applied to two regression problems. Future work
will involve testing the new method on other problems, in
particular on larger problems and other types of problems.

8. REFERENCES
[1] P. Angeline. Subtree crossover: Building block engine

or macromutation? In Genetic Programming 1997:
Proceedings of the Second Annual Conference (GP97),
pages 9–17, Stanford University, USA, 13–16July
1997. Morgan Kaufman.

[2] J. Clegg, J. Dawson, S. Porter, and M. Barley. The
use of a genetic algorithm to optimize the functional
form of a multi-dimensional polynomial fit to
experimental data. In 2005 IEEE Congress on
Evolutionary Computation, volume 1, pages 928–934,
Edinburgh, 2005.

[3] J. Clegg, A. Marvin, J. Dawson, and S. Porter.
Optimisation of stirrer designs in a reverberation
chamber. In IEEE Trans. EMC, volume 47 of No. 2,
pages 399–403, 2005.

[4] L. Dawson, J. Clegg, S. Porter, J. Dawson, and
M. Alexander. The use of genetic algorithms to
maximise the performance of a partially lined screened
room. In IEEE Trans. EMC, volume 44 of No. 1,
pages 233–242, 2002.

[5] K. De Jong. An analysis of the behaviour of a class of
genetic adaptive systems. In Doctoral Thesis,
Department of Computer and Communication
Sciences. University of Michigan, Ann Arbor., 1975.

[6] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, 1992.

[7] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press, 1994.

[8] S. Luke and L. Spector. A comparison of crossover
and mutation in genetic programming. In Genetic
Programming 1997: Proceedings of the Second Annual
Conference (GP97), pages 240–248, Stanford
University, USA, 13–16 July 1997. Morgan Kaufman.

[9] S. Luke and L. Spector. A revised comparison of
crossover and mutation in genetic programming. In
Genetic Programming 1998: Proceedings of the Third
Annual Conference (GP98), pages 208–213, University
of Wisconsin, Madison, WI, USA, 22–25 July 1998.
Morgan Kaufman.

[10] H. Mann and D. Whitney. On a test of whether one of
2 random variables is stochastically larger than the
other. Annals of Mathematical Statistics, (18):50–60,
1947.

[11] J. F. Miller. An empirical study of the efficiency of
learning boolean functions using a cartesian genetic
programming approach. In GECCO 1999: Proceedings
of the Genetic and Evolutionary Computation
Conference, pages 1135–1142, Orlando, Florida, 1999.
Morgan Kaufmann.

[12] J. F. Miller and P. Thomson. Cartesian genetic
programming. In Proceedings of the 3rd European
Conference on Genetic Programming (EuroGP 2000),
volume 1802 of Lecture Notes in Computer Science,
pages 121–132, Edinburgh, 2000. Springer-Verlag.

[13] R. Poli. Parallel Distributed Genetic Programming. In
D. Corne, M. Dorigo, and F. Glover, editors, New
Ideas in Optimization, pages 403–432. McGraw-Hill,
UK, 1999.

[14] J. Schaffer and L. Eshelman. On crossover as an
evolutionarily viable strategy. In Proceedings of the
Fourth International Conference on Genetic
Algorithms, pages 61–68, La Jolla, CA, 1991. Morgan
Kaufmann.

[15] W. Spears and K. De Jong. On the virtues of uniform
crossover. In Proceedings of the Fourth International
Conference on Genetic Algorithms, pages 230–236, La
Jolla, CA, 1991. Morgan Kaufmann.

[16] V. K. Vassilev and J. F. Miller. The advantages of
landscape neutrality in digital circuit evolution. In
Proceedings of the 3rd International Conference on
Evolvable Systems (ICES 2000), volume 1801 of
Lecture Notes in Computer Science, pages 252–263.
Springer Verlag, 2000.

[17] M. Vose and G. Liepins. Schema disruption. In
Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 237–242, La Jolla, CA,
1991. Morgan Kaufmann.

[18] J. Walker and J. Miller. Automatic acquisition,
evolution and re-use of modules in cartesian genetic
programming. to be published in IEEE Transactions
on Evolutionary Computation, 2007.

[19] T. Yu and J. F. Miller. Neutrality and the evolvability
of boolean function landscape. In Proceedings of the
4th European Conference on Genetic Programming
(EuroGP 2001), volume 2038 of Lecture Notes in
Computer Science, pages 204–217. Springer-Verlag,
2001.

1587

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

