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ABSTRACT 
In this paper, we provide an algorithm that systematically 
considers all small trees in the search space of genetic 
programming.  These small trees are used to generate useful 
subroutines for genetic programming.  This algorithm is tested on 
the Artificial Ant on the Santa Fe Trail problem, a venerable 
problem for genetic programming systems.  When four levels of 
iteration are used, the algorithm presented here generates better 
results than any known published result by a factor of 7. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning --- Induction; I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, and 
Search --- Heuristic methods.  

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Genetic Programming, Representations, Running Time Analysis, 
Speedup Technique 

1. INTRODUCTION 
The idea of automatically generating subroutines for genetic 
programming has been around for a long time, at least since 
Koza’s automatically defined functions [1].  In this paper, we 
provide an algorithm for systematically attempting all small trees 
for a given problem to automatically generate useful subroutines.  
We test this algorithm on the Artificial Ant on the Santa Fe Trail 
problem [2].  This problem is of interest not only because it is an 
extensively used test problem, but because it has been subjected to 
intensive analysis by Langdon and Poli in [3].  In their Figure 3, 
the authors demonstrated that there are proportionately more 
solutions of small size than of large size.  In this paper, we use 
this idea, combined with the knowledge that there are 
exponentially fewer small trees than large trees, to systematically 
consider all small trees as candidates for subroutine generalization.  
We here describe a progressive algorithm that moves 
systematically through the best trees of a given size and considers 
them as candidates for subroutine generation.  We demonstrate 
this algorithm on the Santa Fe Trail problem, using the summary 

table in [3] as a reference for the best published performance.  
Compared to the results of Chellapilla [4] who achieved a 
computational effort of 136,000 fitness evaluations, our algorithm 
improves upon it sevenfold. 

2. IMPROVING ON STANDARD GENETIC 
PROGRAMMING 

2.1 Fairly Evaluating the Work of 
Enumeration 
As Langdon and Poli describe in [3], and Luke and Panait 
consider in [5], we can uniformly generate trees of a given size 
using the simple random tree-generation algorithm of Iba [6].  Let 
trees(n) be the number of trees of size n for a given node set.  We 
define an algorithm, MEMORIZING-RANDOM-TREE-SEARCH, that 
uses Iba’s algorithm as a subroutine to implement memorizing 
random search over the space of trees.  This provides a reference 
algorithm that we can use to evaluate performance claims for 
enumeration on function trees. 

Input:  an oracle O, which takes a function tree t and answers true 
if the function tree is correct and false otherwise 

Output:  a valid tree t that solves the problem 

  1n ←  
  {}usedTrees ←  
   for ever 
      do 
      t ← GENERATE-RANDOM-TREE n 
       while t usedTrees∈  
     if ( )O t  then return t 
     if ( )usedTrees trees n=  then 

          1n n← +  
          {}usedTrees ←  
       end if 
   end for 

Algorithm 1.  MEMORIZING-RANDOM-TREE-SEARCH. 

With this algorithm, we can readily compute the number of fitness 
evaluations required to achieve a 99% success probability, as is 
typical for computational effort statistics.  Let the number of trees 
of a given size be n, and let the number of successes at that size be 
s.  Suppose that we perform k independent draws from this set of 
trees.  We can compute the probability of achieving a success 
before k draws using (1), where successt  is the index of the trial at 
first success.  Here we have simplified the problem by assuming 
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that s n<< , so that we can treat the failures on successive trials as 
independent. 

( ) ( )1
s

success
n kP t k

n
−⎛ ⎞≤ ≅ − ⎜ ⎟

⎝ ⎠
 (1) 

This expression can be solved for the unknown s, as in (2).  We 
can then compute the number of trials to 99% success for a given 
tree size by substituting ( ) 0.99successP t k≤ =  in (2) and solving 
for k. 

( )( )( )1
1 1 s

successk n P t k≅ − − ≤  (2) 

Our final estimate for the 99% computational effort is then given 
by (3), where m is the smallest tree size at which any successes 
are available. 
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We can demonstrate this algorithm by considering the data of [3] 
for the Santa Fe trail problem.  Figure 1 gives the number of trees 
and number of successes by tree size for the Santa Fe trail 
problem, as discovered by enumeration.  With these data and 
using (3), we can compute the 99% computational effort for Santa 
Fe trail using MEMORIZING-RANDOM-TREE-SEARCH as 1,450,955 
fitness evaluations.  This differs from the exact value computed 
without the independence approximation by 1 fitness evaluation, 
and is conservative.  It is also larger than the value of 450,000 
quoted in [3], as we have included all the preliminary fitness 
evaluations in our count.  Langdon and Poli considered only those 
trees of size 18, following the usual convention in GP for quoting 
computational effort statistics of ignoring preliminary work to 
find good parameter settings. 

n trees(n) s(n) 

≤ 7 5 043 0 

8 20 412 0 

9 95 256 0 

10 516 132 0 

11 2 554 416 12 

12 13 712 490 48 

Figure 1.  Number of trees ( )trees n   and successes ( )s n  for 
different tree sizes n, for the standard problem for artificial 

ant on the Santa Fe Trail problem with 600 time steps. 

2.2 Small Trees Analysis 
We can improve on standard genetic programming by adding in 
subroutines derived from the analysis of successful small trees.  
To give a sense of this procedure, suppose that we enumerate all 
the trees of size 1, 2, 3, etc.  Trees of size 1 are uninteresting, as 
they cannot be abstracted to a subroutine.  For the artificial ant on 
the Santa Fe trail problem, there are no trees of size 2, so we first 
consider with trees of size 3.  There are two high-performing trees 
of size 3, namely the two trees shown in Figure 2:  they each have 
the best fitness of 78. 

 
Figure 2.  The two highest-performing trees of size 3 or lower 

for the Artificial Ant on the Santa Fe Trail problem. 

We can look for commonalities in these two high-performing 
subtrees to determine a unique subtree.  Fortunately, the common 
subtree is easily identified – the two subtrees differ only in a 
single node.  Abstracting this subtree out, we get the tree of 
Figure 3. 

 
Figure 3.  An abstraction of the two highest-performing trees 
of size 3 for the artificial ant on the Santa Fe trail problem.  

The “X” marks the node that will become a free parameter in 
the new subroutine. 

This abstraction is, in fact, very close to a conventional subroutine.  
Suppose that we add the tree of Figure 3 back into the original 
problem as a new unary function node, If-Food-Ahead-Move(X).  
We take the common variation point as a free parameter of the 
new subroutine.  If we then run MEMORIZING-RANDOM-TREE-
SEARCH on the extended problem, we get the performance and 
trees shown in Figure 4. 

n trees(n) s(n) 
≤ 7 15 771 0 
8 74 091 0 
9 432 183 12 

10 2 573 859 142 
11 15 538 719 1 172

Figure 4.  Number of trees ( )trees n   and successes ( )s n  for 
different tree sizes n, for the artificial ant on the Santa Fe 

Trail problem with 600 time steps using the additional unary 
function node If-Food-Ahead-Move(X) shown in Figure 3. 

We can now compute the work to 99% success using the method 
of section 2.1.  A quick substitution gives 227,602 fitness 
evaluations.  To be fair, we must add in the fitness evaluations 
that we performed while considering all the trees of size 3 or 
smaller, which number 21 in total.  The total computational effort 
is then 227,623 fitness evaluations:  a factor of 6.37 easier than 
the normal computational effort. 

2.3 Iterating the Small Trees Analysis 
We can, of course, iterate this procedure.  We should be careful in 
doing so, as we have now added a new node type to the function 
set of the artificial ant on the Santa Fe trail problem.  As it is a 
new unary function, we are not going to gain any advantage by 
considering trees of size 2 or smaller, since the best of them will 
simply regenerate the work that we have already done.  We 
should therefore begin our small tree scan at trees of size 3 and 
larger.  The best trees by size for the augmented system are listed 
in Figure 5.  Since the fitness of the trees of size 3 and 4 are no 
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better than the best trees of size 2, we would not expect a savings 
by making subroutines from any of these trees.  At size 5, we find 
4 trees that share the size-optimal fitness of 65.  It is these trees 
that we will consider further for subroutine making. 
 

n trees(n) best 
fitness 

trees with best 
fitness 

2 3 78 2 
3 21 78 4 
4 84 78 16 
5 435 65 4 
6 2 343 51 1 

Figure 5.  Number of trees ( )trees n , best fitness, and number 
of trees with the best fitness value for different tree sizes n, for 
the artificial ant on the Santa Fe Trail problem with 600 time 

steps using the additional unary function node If-Food-
Ahead-Move(X) shown in Figure 3. 

Looking at the 4 trees with exceptional fitness of size 5 for this 
new problem, shown in Figure 6, we see that they do not share 
any tree shape, much less any nodes in common. 

 

 
Figure 6.  The four highest-performing trees of size 5 or lower 

on the Santa Fe trail problem, augmented with the added 
function If-Food-Ahead-Move(X) of Figure 3. 

We may, for argument’s sake, choose the first tree to generalize 
into a subroutine.  Without any additional knowledge, let us take 
all three terminals and make them parameters of a new subroutine.  
Call this function If-Food-Ahead-Move-3(X, Y, Z); it is shown in 
Figure 7. 

 
Figure 7.  An abstraction of the first of the four highest-
performing trees of size 5 for the Santa Fe trail problem, 

augmented with If-Food-Ahead-Move(X).  "X", "Y" and "Z" 
mark nodes that become free parameters in the subroutine, If-

Food-Ahead-Move-3(X, Y, Z). 

As before, we add the tree of Figure 7 back into the revised 
problem as a new arity-3 function node.  If we then run 
MEMORIZING-RANDOM-TREE-SEARCH on Santa Fe ant with both 
subroutines, we get the performance and trees shown in Figure 8. 
 

n trees(n) s(n) 
≤ 6 4 104 0 
7 20 469 4 
8 127 767 38 
9 826 059 280 

Figure 8.  Number of trees ( )trees n   and successes ( )s n  for 
different tree sizes n, for the artificial ant on the Santa Fe 

Trail problem with 600 time steps using the additional unary 
function node If-Food-Ahead-Move(X) shown in Figure 3 and 
the arity-3 function node If-Food-Ahead-Move-3(X, Y, Z) of 

Figure 7. 

We can now compute the work to 99% success for this augmented 
tree as before.  We derive that 18,100 fitness evaluations are 
required for this version of the problem.  As before, we must add 
in the fitness evaluations that we performed while considering all 
the trees of size 5 or smaller, which number 543 in total.  We 
must also add in the 21 trees that we considered in generalizing 
the first subroutine.  The total computational effort is then 18,664 
fitness evaluations:  a factor of 12.2 better than the previous, and 
77.7 times better than the original computational effort. 

The possibility remains that this is a fluke, that we were 
uncharacteristically lucky in choosing the first of the four trees to 
generalize in Figure 6.  In Figure 9, we have illustrated key 
statistics from performing trial all-terminal subroutine 
generalizations from each of these four superior trees. 

Tree Name m
1

1
( )

m

i
trees i

−

=
∑  ( )trees m  ( )s m 99CE  

1 After 7 4 104 20 469 4 18 664
2 In 8 24 573 127 767 14 60 952
3 Before 8 24 573 127 767 8 81 055
4 Binary 8 32 286 171 615 35 54 008

Figure 9.  Some statistics for solving Santa Fe Trail as in 
Figure 8, but with each of the four possible generalizations of 
the trees shown in Figure 6.  The computational effort to 99% 

success, 99CE , includes all preliminary work required. 
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As Figure 9 illustrates, in each case the performance is better than 
that of the single-subroutine version, although we were a bit lucky 
in that we happened to choose the best candidate to generalize.  
The question arises:  how can we automatically choose which tree 
from which to make a subroutine?  One obvious technique would 
be to alternate randomly among all competing options, thus 
guaranteeing performance that is not too bad.  Unfortunately, this 
technique has two disadvantages.  First, since the mean value will 
be weighted by the poorest performing outliers, this may not be an 
efficient strategy.  Second, we no longer have a single subroutine 
to generalize from, but rather a set of subroutines that are 
competing for success.  If we wish to iterate this procedure, we 
will end up with combinatorially many sets of subroutines to 
choose from, which would be unwieldy at best. 

Another technique would be to use the best fitnesses as a function 
of tree size to discriminate between the variants.  This has the 
advantage of using information provided by the fitness function to 
guide our choice of subroutines to generalize.  Here, we again 
perform all applicable generalizations, but we greedily choose the 
best variant among the alternatives available at a given size.  If all 
the variants tie at a given size, we go to the next larger size.  The 
process repeats until the tie is broken, or until we have exhausted 
a predetermined budget of fitness evaluations.  In Figure 10, we 
show the best fitness at a given size, and the number of trees with 
that best fitness for all trees of sizes 2 through 5 for each of the 
function sets made reference to thus far.  We skip trees of size 1 
since no nullary functions were considered in this series. 

n Normal + IFAM + IFAM  
+ Var. 1 

+ IFAM  
+ Var. 2 

+ IFAM  
+ Var. 3 

+ IFAM 
+ Var. 4

2   78 x2 78 x2 78 x2 78 x2 78 x2 
3 78 x2 78 x4 78 x4 78 x4 78 x4 65 x1 
4 86 x6 78 x16 65 x1 65 x1 65 x1 65 x3 
5 78 x16 65 x4 51 x1 59 x2 51 x1 43 x1 

Figure 10.  Best fitness at a given size n, and the number of 
trees with this fitness, for each of the function set 

augmentations discussed thus far.  In the Santa Fe trail 
problem, smaller scores are better, and 0 is a perfect score.  

The notation “X xY” denotes a best score of X at the given size, 
with Y trees having this fitness.  IFAM refers to the function 
If-Food-Ahead-Move(X); the four variants labelled “Var. 1”, 
“Var. 2” and so on refer to the indexed variants of Figure 9.  
The subroutines corresponding to Variants 1, 2, and 3 have 

arity-3; Variant 4 is arity-2. 

Considering Figure 10, this greedy heuristic would work as 
follows.  When we add a new subroutine of arity a, the new 
subroutine has the possibility of improving the performance of all 
small trees of size 2a + and larger.  Since a subroutine made from 
a tree with arity a can exactly duplicate the generating tree at size 

1a + , it will take a tree of size at least 2a + to improve on the 
performance.  Therefore, we begin our comparison technique at 
trees of size 2a + .  Since Variant 4 has arity 2, it is the first tree 
to be compared at tree size 4.  It would be unfair to not compare 
against the arity-3 trees of Variants 1 through 3, so we generate all 
trees of size 5 for all 4 variants.  We also generate all trees of size 
4 for Variant 4, since it may be better than the size 5 variants.  
This exhausts 2,499 fitness evaluations in total, and reveals 
Variant 4 as the lone winner:  the best fitness for Variant 4 at tree 
size 5 is better than all alternatives. 

One advantage of this algorithm is that we have already done the 
work required to get the next tree to generalize.  We can then 
iterate the subroutine generalization step until we have exhausted 
our budget of fitness evaluations.  For the Santa Fe ant problem, 
this results in one more subroutine generated from the single 
fitness 43 individual determined in the last step.  This new 
subroutine is a new trinary function.  Adding in this new 
subroutine gives the success data of Figure 11. 

n trees(n) s(n) 
≤ 6 6 705 0 
7 37 209 13 

Figure 11.  Number of trees ( )trees n   and successes ( )s n  for 
different tree sizes n, for the artificial ant on the Santa Fe 

Trail problem with 600 time steps using the additional unary 
function node If-Food-Ahead-Move(X), the trinary function 
node If-Food-Ahead-Move-3(X, Y, Z), and the function node 

generated from the fitness 43 individual of Figure 10. 

We can now compute the work to 99% success for this augmented 
tree as before.  Naively, this version of the problem requires 
17,804 fitness evaluations to get a solution with 99% confidence.  
As before, we must add in the fitness evaluations that we 
performed while generating each of the previous functions.  We 
used 21 543+ evaluations to get the first two functions.  The third 
function required 2,499 evaluations to discriminate among the 
choices; the discrimination duplicates the work required to choose 
the best function to generalize.  Therefore, the total work to 99% 
success in this case is 20,867 fitness evaluations. 

We can use the optimization described earlier as well to trim this 
number down.  Specifically, for a new subroutine of arity a, there 
is no point in testing trees using this subroutine of size 1a + or 
smaller.  While we made use of this trick for the third subroutine 
we generated, we did not use it for the first or second subroutines.  
This avoids testing the 3 trees of size 1 for the first subroutine, 
and the 3 trees of size 2 for the second subroutine.  We also avoid 
performing 165 fitness evaluations for the trees of size 4 and 
below included in the counting of Figure 11.  This gives us a 
grand total of 20,696 fitness evaluations for the Santa Fe ant 
problem. 

2.4 Stopping Subroutine Generation 
The question arises of when to stop adding new subroutines.  As 
we alluded to earlier, we should determine beforehand a threshold 
for the number of evaluations that we wish to use to generate 
subroutines.  This establishes a “budget” of fitness evaluations, 
within which we are free to do as we please. We then carefully 
monitor this budget, and abort subroutine generation when the 
number of fitness evaluations required goes over our 
predetermined limit.  Fortunately, we are aided in this effort by 
the existence of a simple and efficient algorithm to count the 
number of trees of a given size and node choice [7].  This lets us 
precompute how much work will be required to test all the 
competing small trees, so we can easily test whether it is 
worthwhile to attempt subroutine generalization in a given case. 

As an example of this procedure, consider the next step in the 
previous generalization sequence.  There are 4 trees with fitness 
37 of size 6 using the three subroutines found earlier.  These 4 
trees would be candidates for subroutine generalization; they all 
have arity-4 and do not share the same geometry, so are 
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incommensurable.  Since 4a = , we need to consider trees of size 
6 and larger.  A quick computation shows that there will be 6,078 
trees of size 6 for each of the 4 variants to consider.  This will 
require an additional 24,312 evaluations to perform, on top of the 
9,600 evaluations performed already by that point.  If we allocate 
a budget of 10,000 fitness evaluations for subroutine generation, 
then we would cut off the subroutine generation procedure at that 
point, and proceed to test trees of size 7 with the three subroutines 
already discovered. 

In general, we will always carry out a side computation first to see 
if it will cost too much to try to generate subroutines from high-
scoring subtrees.  We may find ourselves upping this estimate if 
no better subtrees to generalize are found during the procedure, as 
with the If-Food-Ahead-Move subroutine described at the start of 
section 2.3.  A list of the work estimates for the Santa Fe ant 
problem is given in Figure 12. 

Subroutines n Evaluations 
so far 

Evaluations 
to test 

subroutines 
(none) 1 3   

  3 21 ≥ 42 
+ IFAM 3 42 ≥ 126 

  4 126 ≥ 561 
  5 561 ≥ 3 060 

+ Variant 4 5 3 060 ≥ 3 927 
+ Subroutine 3 5 3 927 ≥ 9 600 

  6 9 600 ≥ 33 912 

Figure 12.  The sequence of subroutine-generalization steps 
carried out in the present work.  For each step, we have 

shown the subroutines added, the tree size n under 
consideration, the number of evaluations performed thus far, 

and the estimate of the number of evaluations that will be 
required to generate a new subroutine. 

As Figure 12 shows, our choice of 10,000 fitness evaluations is 
not too arbitrary.  We would have derived the same result if the 
cutoff were anywhere between 3,927 and 33,911 fitness 
evaluations.  In practice, an efficient algorithm might consider 
progressively more fitness evaluations to devote to subroutine-
generation as success is lacking.  For instance, we might want to 
spend 25% of our fitness evaluations on generating subroutines, 
and the rest on actually solving the problem.  We do not pursue 
such an algorithm any further in this paper. 

2.5 Subroutines With GP 
In an ideal situation, the subroutines generated by the techniques 
described herein would be useful in standard genetic 
programming.  To test this hypothesis, we used Luke’s ECJ [8] to 
determine the computational effort to 99% success for the Santa 
Fe Trail problem in a control and three experimental conditions.  
We used  standard GP as a control.  For the experimental 
condition, we used GP augmented with one or two automatically-
generated subroutines, as derived by the methods given above.  
We used the reference implementation of the artificial ant on the 
Santa Fe trail, which uses tournament selection of size 7 and 
evaluates to 600 fitness evaluations.  To reduce the running time 
and thereby increase the number of runs performed, we limit tree 
sizes to 50 nodes.  We performed at least 10,000 runs for each 
setting, or enough runs to derive a computational effort accurate 

to within 5% of the true value, 95% of the time.  We performed 
runs with the population size and generation number chosen to be 
powers of 2 so as to get nearly optimal settings for the 
computational effort in each case.  The results are shown in 
Figure 13.  

Condition Random 
Search M G with GP 

Standard GP 1 450 954 1 100 17 440 000 
+ 1 subroutine 227 623 1 000 14 200 000 
+ 2 subroutines 53 670 (avg.) 250 1 40 000 
+ 3 subroutines 20 696       

Figure 13.  Computational effort to 99% success for 
MEMORIZING-RANDOM-TREE-SEARCH and genetic 

programming for the 4 function sets of this paper on the Santa 
Fe Trail problem.  For the genetic programming runs, M is 

the population size and G the optimal generation number for 
the GP.  The GP data are accurate to 5%; the random search 

data are accurate within 1 evaluation. 

From the data of Figure 13, we can see that the same subroutines 
that improve performance on MEMORIZING-RANDOM-TREE-
SEARCH also help genetic programming.  The genetic 
programming numbers of Figure 13 are computed in the usual 
way:  work required to find the optimal parameter settings is 
ignored.  This differs from the situation with memorizing random 
search, where all evaluations are counted.  The data of Figure 13 
neglect an initial 42 fitness evaluations required for GP with 1 
subroutine, and an initial 3,060 evaluations for GP with 2 
subroutines – for fairness, they should be included as well in the 
tallies above. 

3. RESULTS 
We can compare the results derived here against published values 
for the computational effort of artificial ant on the Santa Fe trail.  
The best collection of published results on the Santa Fe Trail 
problem is in [3].  We derive our Figure 14 from Table 3 in that 
work, where we show the best computational efforts for each 
treatment in the published literature. 

Algorithm Ref. Effort 
Koza GP [2] 450 000 

Subtree Mutation [9] 426 000 
Size Limited EP [4] 136 000 

Random trees: size 18 [3] 450 000 
Simulated Annealing [3] 435 000 

PDGP [3] 336 000 
Strict Hill Climbing [3] 186 000 

This Work, Standard 
GP  440 000 

This Work, Random 
Search + Subroutines   20 696 

This Work, GP + 
Subroutines   43 000 

 

Figure 14.  A comparison of various published results for the 
computational effort to 99% success on the artificial ant on 

the Santa Fe trail problem with the results of this paper.  The 
referenced results are quoted without error bars; for typical 
run counts used in GP, 95% confidence intervals cover about 
a factor of 2.  Data presented here are accurate to at least 5%. 
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4. DISCUSSION 
The results of this work clearly demonstrate that the methods of 
this paper are successful.  The computational effort to 99% 
success for MEMORIZING-RANDOM-TREE-SEARCH is a factor of 7 
less than any published result for this problem.  In addition, 
Christensen and Oppacher [10] showed that Koza’s computational 
effort has some statistical troubles, especially when fewer than 
100 runs are performed.  In particular, they showed that reported 
computational effort numbers tend to underestimate the true 
values when few runs are performed.  We heed their advice in the 
experiments in section 3, where we perform 10,000 runs of each 
treatment to avoid statistical issues with the computational effort 
statistic.  This underestimation may befall some of the published 
results quoted in Figure 14, suggesting that the true values of 
computational effort for the listed methods are more likely to lie 
above the quoted values than below them.  Since Langdon and 
Poli published the raw data for their size 18 random search data in 
Figure 3 of [3], we can conclude that the quoted value of 450,000 
evaluations has a 95% confidence interval on the relative error of 
about 20%. 

We have not, of course, considered the generalizability of this 
procedure to other problems.  The artificial ant on the Santa Fe 
trail is an interesting problem, with a non-zero probability of a 
perfect solution under typical GP conditions.  We might expect 
that the methods described here would be useful for related 
problems where an exact success is possible.  However, it is not 
clear at all that these techniques will be beneficial for problems 
where the probability of exact success is vanishing.  Examples of 
the latter would include problems with continuous-valued fitness 
functions such as symbolic regression [2].  Indeed, problems like 
symbolic regression that have ephemeral random constants 
(ERCs) [2] may not benefit from the methods of this paper as the 
terminal set is effectively infinite in principle.  However, the 
methods presented herein can be used as is once a set of ERCs are 
assigned. 

The procedure detailed here effects a compression of the GP 
function tree; in this way, it acts a little like a data compression 
algorithm.  It differs from constructive GP systems in that the data 
to be compressed, the successful subroutines, are derived from 
promising small tree candidates, not from genetic information 
within the individual itself.  The idea of manufacturing new 
function nodes from successful subtrees can be viewed as biasing 
the search space towards trees that contain subunits that are 
independently successful.  Indeed, this is what genetic 
programming itself tries to do, and so it perhaps unsurprising that 
the technique presented here is successful.  What may be 
surprising is that it so greatly outperforms standard genetic 
programming.  This suggests that on the Santa Fe trail problem at 
least, the kind of local search presented here is a very productive 
addition to genetic programming.  Indeed, we have also published 
the best known result for the Santa Fe trail problem using a 
variant of genetic programming, beating the previous record by a 
factor of roughly 3, namely 43,000 evaluations to Chellapilla’s 
136,000. 

5. CONCLUSIONS 
In this paper, we present a method for automatically generating 
useful subroutines by systematically considering all small trees.  
Iterating this procedure allows the automatic generation of several 
subroutines, along with a reasonable criterion for terminating the 
search for subroutines.  The method presented here achieves a 

computational efficiency on the artificial ant on the Santa Fe trail 
problem that is a factor of 7 less than any published result for this 
problem, and is a factor of roughly 70 less than memorizing 
random search.  We also show that the subroutines thus conceived 
can be useful in a conventional genetic programming run.  The 
use of these subroutines reduces the work required to solve the 
artificial ant on the Santa Fe trail problem by a factor of 3 over 
any previously published result.  We recommend this subroutine-
generating algorithm as a preliminary stage for any problem with 
a finite function and terminal set. 
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