
Solving the Artificial Ant on the Santa Fe Trail Problem
in 20,696 Fitness Evaluations

Steffen Christensen, Franz Oppacher
School of Computer Science, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, Canada, K1S 5B6
Tel: 1-613-520-4333

idyll@rogers.com, oppacher@scs.carleton.ca

ABSTRACT
In this paper, we provide an algorithm that systematically
considers all small trees in the search space of genetic
programming. These small trees are used to generate useful
subroutines for genetic programming. This algorithm is tested on
the Artificial Ant on the Santa Fe Trail problem, a venerable
problem for genetic programming systems. When four levels of
iteration are used, the algorithm presented here generates better
results than any known published result by a factor of 7.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning --- Induction; I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search --- Heuristic methods.

General Terms
Algorithms, Performance, Experimentation

Keywords
Genetic Programming, Representations, Running Time Analysis,
Speedup Technique

1. INTRODUCTION
The idea of automatically generating subroutines for genetic
programming has been around for a long time, at least since
Koza’s automatically defined functions [1]. In this paper, we
provide an algorithm for systematically attempting all small trees
for a given problem to automatically generate useful subroutines.
We test this algorithm on the Artificial Ant on the Santa Fe Trail
problem [2]. This problem is of interest not only because it is an
extensively used test problem, but because it has been subjected to
intensive analysis by Langdon and Poli in [3]. In their Figure 3,
the authors demonstrated that there are proportionately more
solutions of small size than of large size. In this paper, we use
this idea, combined with the knowledge that there are
exponentially fewer small trees than large trees, to systematically
consider all small trees as candidates for subroutine generalization.
We here describe a progressive algorithm that moves
systematically through the best trees of a given size and considers
them as candidates for subroutine generation. We demonstrate
this algorithm on the Santa Fe Trail problem, using the summary

table in [3] as a reference for the best published performance.
Compared to the results of Chellapilla [4] who achieved a
computational effort of 136,000 fitness evaluations, our algorithm
improves upon it sevenfold.

2. IMPROVING ON STANDARD GENETIC
PROGRAMMING

2.1 Fairly Evaluating the Work of
Enumeration
As Langdon and Poli describe in [3], and Luke and Panait
consider in [5], we can uniformly generate trees of a given size
using the simple random tree-generation algorithm of Iba [6]. Let
trees(n) be the number of trees of size n for a given node set. We
define an algorithm, MEMORIZING-RANDOM-TREE-SEARCH, that
uses Iba’s algorithm as a subroutine to implement memorizing
random search over the space of trees. This provides a reference
algorithm that we can use to evaluate performance claims for
enumeration on function trees.

Input: an oracle O, which takes a function tree t and answers true
if the function tree is correct and false otherwise

Output: a valid tree t that solves the problem

 1n ←
 {}usedTrees ←
 for ever
 do
 t ← GENERATE-RANDOM-TREE n
 while t usedTrees∈
 if ()O t then return t
 if ()usedTrees trees n= then

 1n n← +
 {}usedTrees ←
 end if
 end for

Algorithm 1. MEMORIZING-RANDOM-TREE-SEARCH.

With this algorithm, we can readily compute the number of fitness
evaluations required to achieve a 99% success probability, as is
typical for computational effort statistics. Let the number of trees
of a given size be n, and let the number of successes at that size be
s. Suppose that we perform k independent draws from this set of
trees. We can compute the probability of achieving a success
before k draws using (1), where successt is the index of the trial at
first success. Here we have simplified the problem by assuming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

1574

that s n<< , so that we can treat the failures on successive trials as
independent.

() ()1
s

success
n kP t k

n
−⎛ ⎞≤ ≅ − ⎜ ⎟

⎝ ⎠
 (1)

This expression can be solved for the unknown s, as in (2). We
can then compute the number of trials to 99% success for a given
tree size by substituting () 0.99successP t k≤ = in (2) and solving
for k.

()()()1
1 1 s

successk n P t k≅ − − ≤ (2)

Our final estimate for the 99% computational effort is then given
by (3), where m is the smallest tree size at which any successes
are available.

()() 11

99
1

() 1 0.01 ()
m

s

i
CE trees m trees i

−

=

≅ − +∑ (3)

We can demonstrate this algorithm by considering the data of [3]
for the Santa Fe trail problem. Figure 1 gives the number of trees
and number of successes by tree size for the Santa Fe trail
problem, as discovered by enumeration. With these data and
using (3), we can compute the 99% computational effort for Santa
Fe trail using MEMORIZING-RANDOM-TREE-SEARCH as 1,450,955
fitness evaluations. This differs from the exact value computed
without the independence approximation by 1 fitness evaluation,
and is conservative. It is also larger than the value of 450,000
quoted in [3], as we have included all the preliminary fitness
evaluations in our count. Langdon and Poli considered only those
trees of size 18, following the usual convention in GP for quoting
computational effort statistics of ignoring preliminary work to
find good parameter settings.

n trees(n) s(n)

≤ 7 5 043 0

8 20 412 0

9 95 256 0

10 516 132 0

11 2 554 416 12

12 13 712 490 48

Figure 1. Number of trees ()trees n and successes ()s n for
different tree sizes n, for the standard problem for artificial

ant on the Santa Fe Trail problem with 600 time steps.

2.2 Small Trees Analysis
We can improve on standard genetic programming by adding in
subroutines derived from the analysis of successful small trees.
To give a sense of this procedure, suppose that we enumerate all
the trees of size 1, 2, 3, etc. Trees of size 1 are uninteresting, as
they cannot be abstracted to a subroutine. For the artificial ant on
the Santa Fe trail problem, there are no trees of size 2, so we first
consider with trees of size 3. There are two high-performing trees
of size 3, namely the two trees shown in Figure 2: they each have
the best fitness of 78.

Figure 2. The two highest-performing trees of size 3 or lower

for the Artificial Ant on the Santa Fe Trail problem.

We can look for commonalities in these two high-performing
subtrees to determine a unique subtree. Fortunately, the common
subtree is easily identified – the two subtrees differ only in a
single node. Abstracting this subtree out, we get the tree of
Figure 3.

Figure 3. An abstraction of the two highest-performing trees
of size 3 for the artificial ant on the Santa Fe trail problem.

The “X” marks the node that will become a free parameter in
the new subroutine.

This abstraction is, in fact, very close to a conventional subroutine.
Suppose that we add the tree of Figure 3 back into the original
problem as a new unary function node, If-Food-Ahead-Move(X).
We take the common variation point as a free parameter of the
new subroutine. If we then run MEMORIZING-RANDOM-TREE-
SEARCH on the extended problem, we get the performance and
trees shown in Figure 4.

n trees(n) s(n)
≤ 7 15 771 0
8 74 091 0
9 432 183 12

10 2 573 859 142
11 15 538 719 1 172

Figure 4. Number of trees ()trees n and successes ()s n for
different tree sizes n, for the artificial ant on the Santa Fe

Trail problem with 600 time steps using the additional unary
function node If-Food-Ahead-Move(X) shown in Figure 3.

We can now compute the work to 99% success using the method
of section 2.1. A quick substitution gives 227,602 fitness
evaluations. To be fair, we must add in the fitness evaluations
that we performed while considering all the trees of size 3 or
smaller, which number 21 in total. The total computational effort
is then 227,623 fitness evaluations: a factor of 6.37 easier than
the normal computational effort.

2.3 Iterating the Small Trees Analysis
We can, of course, iterate this procedure. We should be careful in
doing so, as we have now added a new node type to the function
set of the artificial ant on the Santa Fe trail problem. As it is a
new unary function, we are not going to gain any advantage by
considering trees of size 2 or smaller, since the best of them will
simply regenerate the work that we have already done. We
should therefore begin our small tree scan at trees of size 3 and
larger. The best trees by size for the augmented system are listed
in Figure 5. Since the fitness of the trees of size 3 and 4 are no

1575

better than the best trees of size 2, we would not expect a savings
by making subroutines from any of these trees. At size 5, we find
4 trees that share the size-optimal fitness of 65. It is these trees
that we will consider further for subroutine making.

n trees(n) best
fitness

trees with best
fitness

2 3 78 2
3 21 78 4
4 84 78 16
5 435 65 4
6 2 343 51 1

Figure 5. Number of trees ()trees n , best fitness, and number
of trees with the best fitness value for different tree sizes n, for
the artificial ant on the Santa Fe Trail problem with 600 time

steps using the additional unary function node If-Food-
Ahead-Move(X) shown in Figure 3.

Looking at the 4 trees with exceptional fitness of size 5 for this
new problem, shown in Figure 6, we see that they do not share
any tree shape, much less any nodes in common.

Figure 6. The four highest-performing trees of size 5 or lower

on the Santa Fe trail problem, augmented with the added
function If-Food-Ahead-Move(X) of Figure 3.

We may, for argument’s sake, choose the first tree to generalize
into a subroutine. Without any additional knowledge, let us take
all three terminals and make them parameters of a new subroutine.
Call this function If-Food-Ahead-Move-3(X, Y, Z); it is shown in
Figure 7.

Figure 7. An abstraction of the first of the four highest-
performing trees of size 5 for the Santa Fe trail problem,

augmented with If-Food-Ahead-Move(X). "X", "Y" and "Z"
mark nodes that become free parameters in the subroutine, If-

Food-Ahead-Move-3(X, Y, Z).

As before, we add the tree of Figure 7 back into the revised
problem as a new arity-3 function node. If we then run
MEMORIZING-RANDOM-TREE-SEARCH on Santa Fe ant with both
subroutines, we get the performance and trees shown in Figure 8.

n trees(n) s(n)
≤ 6 4 104 0
7 20 469 4
8 127 767 38
9 826 059 280

Figure 8. Number of trees ()trees n and successes ()s n for
different tree sizes n, for the artificial ant on the Santa Fe

Trail problem with 600 time steps using the additional unary
function node If-Food-Ahead-Move(X) shown in Figure 3 and
the arity-3 function node If-Food-Ahead-Move-3(X, Y, Z) of

Figure 7.

We can now compute the work to 99% success for this augmented
tree as before. We derive that 18,100 fitness evaluations are
required for this version of the problem. As before, we must add
in the fitness evaluations that we performed while considering all
the trees of size 5 or smaller, which number 543 in total. We
must also add in the 21 trees that we considered in generalizing
the first subroutine. The total computational effort is then 18,664
fitness evaluations: a factor of 12.2 better than the previous, and
77.7 times better than the original computational effort.

The possibility remains that this is a fluke, that we were
uncharacteristically lucky in choosing the first of the four trees to
generalize in Figure 6. In Figure 9, we have illustrated key
statistics from performing trial all-terminal subroutine
generalizations from each of these four superior trees.

Tree Name m
1

1
()

m

i
trees i

−

=
∑ ()trees m ()s m 99CE

1 After 7 4 104 20 469 4 18 664
2 In 8 24 573 127 767 14 60 952
3 Before 8 24 573 127 767 8 81 055
4 Binary 8 32 286 171 615 35 54 008

Figure 9. Some statistics for solving Santa Fe Trail as in
Figure 8, but with each of the four possible generalizations of
the trees shown in Figure 6. The computational effort to 99%

success, 99CE , includes all preliminary work required.

1576

As Figure 9 illustrates, in each case the performance is better than
that of the single-subroutine version, although we were a bit lucky
in that we happened to choose the best candidate to generalize.
The question arises: how can we automatically choose which tree
from which to make a subroutine? One obvious technique would
be to alternate randomly among all competing options, thus
guaranteeing performance that is not too bad. Unfortunately, this
technique has two disadvantages. First, since the mean value will
be weighted by the poorest performing outliers, this may not be an
efficient strategy. Second, we no longer have a single subroutine
to generalize from, but rather a set of subroutines that are
competing for success. If we wish to iterate this procedure, we
will end up with combinatorially many sets of subroutines to
choose from, which would be unwieldy at best.

Another technique would be to use the best fitnesses as a function
of tree size to discriminate between the variants. This has the
advantage of using information provided by the fitness function to
guide our choice of subroutines to generalize. Here, we again
perform all applicable generalizations, but we greedily choose the
best variant among the alternatives available at a given size. If all
the variants tie at a given size, we go to the next larger size. The
process repeats until the tie is broken, or until we have exhausted
a predetermined budget of fitness evaluations. In Figure 10, we
show the best fitness at a given size, and the number of trees with
that best fitness for all trees of sizes 2 through 5 for each of the
function sets made reference to thus far. We skip trees of size 1
since no nullary functions were considered in this series.

n Normal + IFAM + IFAM
+ Var. 1

+ IFAM
+ Var. 2

+ IFAM
+ Var. 3

+ IFAM
+ Var. 4

2 78 x2 78 x2 78 x2 78 x2 78 x2
3 78 x2 78 x4 78 x4 78 x4 78 x4 65 x1
4 86 x6 78 x16 65 x1 65 x1 65 x1 65 x3
5 78 x16 65 x4 51 x1 59 x2 51 x1 43 x1

Figure 10. Best fitness at a given size n, and the number of
trees with this fitness, for each of the function set

augmentations discussed thus far. In the Santa Fe trail
problem, smaller scores are better, and 0 is a perfect score.

The notation “X xY” denotes a best score of X at the given size,
with Y trees having this fitness. IFAM refers to the function
If-Food-Ahead-Move(X); the four variants labelled “Var. 1”,
“Var. 2” and so on refer to the indexed variants of Figure 9.
The subroutines corresponding to Variants 1, 2, and 3 have

arity-3; Variant 4 is arity-2.

Considering Figure 10, this greedy heuristic would work as
follows. When we add a new subroutine of arity a, the new
subroutine has the possibility of improving the performance of all
small trees of size 2a + and larger. Since a subroutine made from
a tree with arity a can exactly duplicate the generating tree at size

1a + , it will take a tree of size at least 2a + to improve on the
performance. Therefore, we begin our comparison technique at
trees of size 2a + . Since Variant 4 has arity 2, it is the first tree
to be compared at tree size 4. It would be unfair to not compare
against the arity-3 trees of Variants 1 through 3, so we generate all
trees of size 5 for all 4 variants. We also generate all trees of size
4 for Variant 4, since it may be better than the size 5 variants.
This exhausts 2,499 fitness evaluations in total, and reveals
Variant 4 as the lone winner: the best fitness for Variant 4 at tree
size 5 is better than all alternatives.

One advantage of this algorithm is that we have already done the
work required to get the next tree to generalize. We can then
iterate the subroutine generalization step until we have exhausted
our budget of fitness evaluations. For the Santa Fe ant problem,
this results in one more subroutine generated from the single
fitness 43 individual determined in the last step. This new
subroutine is a new trinary function. Adding in this new
subroutine gives the success data of Figure 11.

n trees(n) s(n)
≤ 6 6 705 0
7 37 209 13

Figure 11. Number of trees ()trees n and successes ()s n for
different tree sizes n, for the artificial ant on the Santa Fe

Trail problem with 600 time steps using the additional unary
function node If-Food-Ahead-Move(X), the trinary function
node If-Food-Ahead-Move-3(X, Y, Z), and the function node

generated from the fitness 43 individual of Figure 10.

We can now compute the work to 99% success for this augmented
tree as before. Naively, this version of the problem requires
17,804 fitness evaluations to get a solution with 99% confidence.
As before, we must add in the fitness evaluations that we
performed while generating each of the previous functions. We
used 21 543+ evaluations to get the first two functions. The third
function required 2,499 evaluations to discriminate among the
choices; the discrimination duplicates the work required to choose
the best function to generalize. Therefore, the total work to 99%
success in this case is 20,867 fitness evaluations.

We can use the optimization described earlier as well to trim this
number down. Specifically, for a new subroutine of arity a, there
is no point in testing trees using this subroutine of size 1a + or
smaller. While we made use of this trick for the third subroutine
we generated, we did not use it for the first or second subroutines.
This avoids testing the 3 trees of size 1 for the first subroutine,
and the 3 trees of size 2 for the second subroutine. We also avoid
performing 165 fitness evaluations for the trees of size 4 and
below included in the counting of Figure 11. This gives us a
grand total of 20,696 fitness evaluations for the Santa Fe ant
problem.

2.4 Stopping Subroutine Generation
The question arises of when to stop adding new subroutines. As
we alluded to earlier, we should determine beforehand a threshold
for the number of evaluations that we wish to use to generate
subroutines. This establishes a “budget” of fitness evaluations,
within which we are free to do as we please. We then carefully
monitor this budget, and abort subroutine generation when the
number of fitness evaluations required goes over our
predetermined limit. Fortunately, we are aided in this effort by
the existence of a simple and efficient algorithm to count the
number of trees of a given size and node choice [7]. This lets us
precompute how much work will be required to test all the
competing small trees, so we can easily test whether it is
worthwhile to attempt subroutine generalization in a given case.

As an example of this procedure, consider the next step in the
previous generalization sequence. There are 4 trees with fitness
37 of size 6 using the three subroutines found earlier. These 4
trees would be candidates for subroutine generalization; they all
have arity-4 and do not share the same geometry, so are

1577

incommensurable. Since 4a = , we need to consider trees of size
6 and larger. A quick computation shows that there will be 6,078
trees of size 6 for each of the 4 variants to consider. This will
require an additional 24,312 evaluations to perform, on top of the
9,600 evaluations performed already by that point. If we allocate
a budget of 10,000 fitness evaluations for subroutine generation,
then we would cut off the subroutine generation procedure at that
point, and proceed to test trees of size 7 with the three subroutines
already discovered.

In general, we will always carry out a side computation first to see
if it will cost too much to try to generate subroutines from high-
scoring subtrees. We may find ourselves upping this estimate if
no better subtrees to generalize are found during the procedure, as
with the If-Food-Ahead-Move subroutine described at the start of
section 2.3. A list of the work estimates for the Santa Fe ant
problem is given in Figure 12.

Subroutines n Evaluations
so far

Evaluations
to test

subroutines
(none) 1 3

 3 21 ≥ 42
+ IFAM 3 42 ≥ 126

 4 126 ≥ 561
 5 561 ≥ 3 060

+ Variant 4 5 3 060 ≥ 3 927
+ Subroutine 3 5 3 927 ≥ 9 600

 6 9 600 ≥ 33 912

Figure 12. The sequence of subroutine-generalization steps
carried out in the present work. For each step, we have

shown the subroutines added, the tree size n under
consideration, the number of evaluations performed thus far,

and the estimate of the number of evaluations that will be
required to generate a new subroutine.

As Figure 12 shows, our choice of 10,000 fitness evaluations is
not too arbitrary. We would have derived the same result if the
cutoff were anywhere between 3,927 and 33,911 fitness
evaluations. In practice, an efficient algorithm might consider
progressively more fitness evaluations to devote to subroutine-
generation as success is lacking. For instance, we might want to
spend 25% of our fitness evaluations on generating subroutines,
and the rest on actually solving the problem. We do not pursue
such an algorithm any further in this paper.

2.5 Subroutines With GP
In an ideal situation, the subroutines generated by the techniques
described herein would be useful in standard genetic
programming. To test this hypothesis, we used Luke’s ECJ [8] to
determine the computational effort to 99% success for the Santa
Fe Trail problem in a control and three experimental conditions.
We used standard GP as a control. For the experimental
condition, we used GP augmented with one or two automatically-
generated subroutines, as derived by the methods given above.
We used the reference implementation of the artificial ant on the
Santa Fe trail, which uses tournament selection of size 7 and
evaluates to 600 fitness evaluations. To reduce the running time
and thereby increase the number of runs performed, we limit tree
sizes to 50 nodes. We performed at least 10,000 runs for each
setting, or enough runs to derive a computational effort accurate

to within 5% of the true value, 95% of the time. We performed
runs with the population size and generation number chosen to be
powers of 2 so as to get nearly optimal settings for the
computational effort in each case. The results are shown in
Figure 13.

Condition Random
Search M G with GP

Standard GP 1 450 954 1 100 17 440 000
+ 1 subroutine 227 623 1 000 14 200 000
+ 2 subroutines 53 670 (avg.) 250 1 40 000
+ 3 subroutines 20 696

Figure 13. Computational effort to 99% success for
MEMORIZING-RANDOM-TREE-SEARCH and genetic

programming for the 4 function sets of this paper on the Santa
Fe Trail problem. For the genetic programming runs, M is

the population size and G the optimal generation number for
the GP. The GP data are accurate to 5%; the random search

data are accurate within 1 evaluation.

From the data of Figure 13, we can see that the same subroutines
that improve performance on MEMORIZING-RANDOM-TREE-
SEARCH also help genetic programming. The genetic
programming numbers of Figure 13 are computed in the usual
way: work required to find the optimal parameter settings is
ignored. This differs from the situation with memorizing random
search, where all evaluations are counted. The data of Figure 13
neglect an initial 42 fitness evaluations required for GP with 1
subroutine, and an initial 3,060 evaluations for GP with 2
subroutines – for fairness, they should be included as well in the
tallies above.

3. RESULTS
We can compare the results derived here against published values
for the computational effort of artificial ant on the Santa Fe trail.
The best collection of published results on the Santa Fe Trail
problem is in [3]. We derive our Figure 14 from Table 3 in that
work, where we show the best computational efforts for each
treatment in the published literature.

Algorithm Ref. Effort
Koza GP [2] 450 000

Subtree Mutation [9] 426 000
Size Limited EP [4] 136 000

Random trees: size 18 [3] 450 000
Simulated Annealing [3] 435 000

PDGP [3] 336 000
Strict Hill Climbing [3] 186 000

This Work, Standard
GP 440 000

This Work, Random
Search + Subroutines 20 696

This Work, GP +
Subroutines 43 000

Figure 14. A comparison of various published results for the
computational effort to 99% success on the artificial ant on

the Santa Fe trail problem with the results of this paper. The
referenced results are quoted without error bars; for typical
run counts used in GP, 95% confidence intervals cover about
a factor of 2. Data presented here are accurate to at least 5%.

1578

4. DISCUSSION
The results of this work clearly demonstrate that the methods of
this paper are successful. The computational effort to 99%
success for MEMORIZING-RANDOM-TREE-SEARCH is a factor of 7
less than any published result for this problem. In addition,
Christensen and Oppacher [10] showed that Koza’s computational
effort has some statistical troubles, especially when fewer than
100 runs are performed. In particular, they showed that reported
computational effort numbers tend to underestimate the true
values when few runs are performed. We heed their advice in the
experiments in section 3, where we perform 10,000 runs of each
treatment to avoid statistical issues with the computational effort
statistic. This underestimation may befall some of the published
results quoted in Figure 14, suggesting that the true values of
computational effort for the listed methods are more likely to lie
above the quoted values than below them. Since Langdon and
Poli published the raw data for their size 18 random search data in
Figure 3 of [3], we can conclude that the quoted value of 450,000
evaluations has a 95% confidence interval on the relative error of
about 20%.

We have not, of course, considered the generalizability of this
procedure to other problems. The artificial ant on the Santa Fe
trail is an interesting problem, with a non-zero probability of a
perfect solution under typical GP conditions. We might expect
that the methods described here would be useful for related
problems where an exact success is possible. However, it is not
clear at all that these techniques will be beneficial for problems
where the probability of exact success is vanishing. Examples of
the latter would include problems with continuous-valued fitness
functions such as symbolic regression [2]. Indeed, problems like
symbolic regression that have ephemeral random constants
(ERCs) [2] may not benefit from the methods of this paper as the
terminal set is effectively infinite in principle. However, the
methods presented herein can be used as is once a set of ERCs are
assigned.

The procedure detailed here effects a compression of the GP
function tree; in this way, it acts a little like a data compression
algorithm. It differs from constructive GP systems in that the data
to be compressed, the successful subroutines, are derived from
promising small tree candidates, not from genetic information
within the individual itself. The idea of manufacturing new
function nodes from successful subtrees can be viewed as biasing
the search space towards trees that contain subunits that are
independently successful. Indeed, this is what genetic
programming itself tries to do, and so it perhaps unsurprising that
the technique presented here is successful. What may be
surprising is that it so greatly outperforms standard genetic
programming. This suggests that on the Santa Fe trail problem at
least, the kind of local search presented here is a very productive
addition to genetic programming. Indeed, we have also published
the best known result for the Santa Fe trail problem using a
variant of genetic programming, beating the previous record by a
factor of roughly 3, namely 43,000 evaluations to Chellapilla’s
136,000.

5. CONCLUSIONS
In this paper, we present a method for automatically generating
useful subroutines by systematically considering all small trees.
Iterating this procedure allows the automatic generation of several
subroutines, along with a reasonable criterion for terminating the
search for subroutines. The method presented here achieves a

computational efficiency on the artificial ant on the Santa Fe trail
problem that is a factor of 7 less than any published result for this
problem, and is a factor of roughly 70 less than memorizing
random search. We also show that the subroutines thus conceived
can be useful in a conventional genetic programming run. The
use of these subroutines reduces the work required to solve the
artificial ant on the Santa Fe trail problem by a factor of 3 over
any previously published result. We recommend this subroutine-
generating algorithm as a preliminary stage for any problem with
a finite function and terminal set.

6. REFERENCES
[1] Koza, J.R. Genetic Programming II: Automatic Discovery

of Reusable Programs. MIT Press, Cambridge, USA. 1994.
[2] Koza, J.R. Genetic Programming: On the Programming of

Computers by Means of Natural Selection. MIT Press,
Cambridge, USA. 1992.

[3] Langdon, W.B., and Poli R., Why Ants Are Hard. Genetic
Programming 1998: Proceedings of the Third Annual
Conference. 193-201. Morgan Kaufmann, Madison, USA.
1998.

[4] Chellapilla, K. Evolutionary Programming with Tree
Mutations: Evolving Computer Programs Without
Crossover. In Koza, J.R. et al., eds., Genetic Programming
1997: Proceedings of the Second Annual Conference.
Morgan Kaufmann. 1997.

[5] Luke, S. and Panait, L. A Survey and Comparison of Tree
Generation Algorithms. In Spector, L., Goodman, E.D., Wu,
A., Langdon, W.B., Voigt, H.-M., Gen, M., Sen, S., Dorigo,
M., Pezeshk, S., Garzon, M.H., Burke, E., eds. Proceedings
of the 2001 Genetic and Evolutionary Computation
Conference. 81-88. Morgan Kaufmann, San Francisco,
USA. 2001.

[6] Iba, H. Random Tree Generation for Genetic Programming.
In Voigt H.-M., Ebeling W., Rechenberg I., Schwefel, eds.
Parallel Problem Solving From Nature IV, Proceedings of
the International Conference on Evolutionary Computation,
LNCS 1141. 144-153. Springer Verlag, Berlin, Germany.
1996.

[7] Christensen S., Towards Scalable Genetic Programming,
Ph.D. Thesis. 122-132. Ottawa-Carleton Institute for
Computer Science, Ottawa, Canada. 2007.

[8] ECJ: A Java-based Evolutionary Computation and Genetic
Programming System. Available at
http://cs.gmu.edu/~eclab/projects/ecj/. 2007.

[9] Langdon W.B., and Poli, R. Fitness Causes Bloat: Mutation.
In Banzhaf W., et al. eds. Proceedings of the First European
Workshop on Genetic Programming. Springer-Verlag. 1998.

[10] Christensen, S., and Oppacher, F. An Analysis of Koza’s
Computational Effort Statistic for Genetic Programming. In
Foster, J.A., Lutton, E., Miller, J.F., Ryan, C., Tettamanzi, A.,
eds. Genetic Programming, 5th European Conference,
EuroGP 2002. LNCS 2278. 182-191. Springer-Verlag,
Heidelberg, Germany. 2002.

[11] Wolpert, D.H. and Macready, W.G. No Free Lunch
Theorems for Search. Technical report SFI-TR-95-010.
Santa Fe Institute, USA. 1995.

1579

