
Stochastic Training of a Biologically Plausible
Spino-neuromuscular System Model

Stanley Gotshall
Department of Computer Science

University of Idaho
Moscow, ID

stan@ecpost.org

Terence Soule
Department of Computer Science

University of Idaho
Moscow, ID

tsoule@cs.uidaho.edu

ABSTRACT
A primary goal of evolutionary robotics is to create systems
that are as robust and adaptive as the human body. Mov-
ing toward this goal often involves training control systems
that process sensory information in a way similar to humans.
Artificial neural networks have been an increasingly popu-
lar option for this because they consist of processing units
that approximate the synaptic activity of biological signal
processing units, i.e. neurons. In this paper we train a non-
linear recurrent spino-neuromuscular system (SNMS) model
and compare the performance of genetic algorithms (GA)s,
particle swarm optimizers (PSO)s, and GA/PSO hybrids.
Several key features of the SNMS model have previously
been modeled individually but have not been combined into
a single model as is done here. The results show that each
algorithm produces fit solutions and generates fundamen-
tal biological behaviors, such as tonic tension behaviors and
triceps activation patterns, that are not explicitly trained.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics

General Terms
Algorithms

Keywords
Spinal Cord, Neural Networks, Spiking Networks, Genetic
Algorithms, Particle Swarm Optimizers, Breeding Swarm
Optimizers

1. INTRODUCTION
In biology, neural networks in the spinal cord provide the

body with a remarkably precise and adaptive system for
control. Motor neurons and muscle fibers exchange elec-
trical signals to produce controlled anatomical movements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11,2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

throughout the body. Thus, designing a biologically plausi-
ble neural controller can potentially allow researchers to har-
ness the properties of biological systems that are uniquely
suited to control complex mechanical systems.

The nervous system has an unmatched ability to control
highly nonlinear systems, i.e. skeletal muscles. Muscles
consist of thousands of muscle fibers that respond to elec-
trochemical signals from the spinal cord to move the body
[12]. In turn, feedback signals from muscle fibers allow the
spinal cord to adapt and activate muscle groups in order to
generate smooth and precise motions. By modeling control
systems after the spinal cord, we increase our understand-
ing of the role and importance of certain neural pathways
in the nervous system. It also opens the door to develop-
ing prosthetic devices that interpret brain signals the same
way the spinal cord does and to design robots with similar
possessing abilities.

An overarching goal of evolutionary robotics is to create
autonomous agents that are as robust and precise as the hu-
man body. This typically involves training systems to pro-
cess information received from visual, auditory, and tactile
sensors. Research in evolutionary robotics focuses on goals
such as training agents to generate controlled motions and
finding optimal paths through mazes. However, these meth-
ods typically do not use biologically realistic architectures
to process sensory signals. Although these methods often
use spiking neuron models that mimic the computational
power of a single nerve cell, the network architecture does
not propagate and process the information in a biological
way. Thus, a key step in moving toward biologically realis-
tic information processing is to use a biologically plausible
network architecture to control robotic systems.

This paper applies three stochastic/evolutionary algorithms:
1) genetic algorithms (GA)s, 2) particle swarm optimizers
(PSO)s, and 3) breeding swarm optimizers (BSO)s, which
is a GA/PSO hybrid, to train anatomical motion in a bio-
logically based spino-neuromuscular system (SNMS) model.
Neural networks in the spinal cord simultaneously integrate
signals from the brain and muscle sensors to determine the
amount of stimulation that the muscle fibers require to ac-
complish a motion. Our model mimics this integration by
simulating descending brain signals and muscle feedback
pathways which encode the contractile velocity and length
of muscle fibers.

Our results show these algorithms, with varying degrees
of success, effectively train the 700+ real-value and binary
parameters in the model to generate controlled anatomical
movements. Furthermore, comparisons with data from hu-

253

man subjects show that the training process produces key
biological control mechanisms that are not explicitly trained.

2. BACKGROUND AND PREVIOUS WORK
Artificial neural networks use individual processing units,

neurons, to mimic the processing power of the nervous sys-
tem. Traditional connectionist neural networks consist of
neurons that compute static functions of their inputs [6,
16, 24] which, in the biological sense, represents an activity
level (i.e. frequency) for that neuron. Networks consisting
of these neurons are effective for many applications such as
classification, prediction, and control systems. However, as
our understanding of the nervous system increases, more bi-
ologically realistic neuron models have emerged, i.e. spiking
neurons. Spiking neurons more accurately model the tem-
poral dynamics of biological neurons. Thus, networks of
spiking neurons can more accurately approximate the signal
processing abilities of neural networks in the brain or spinal
cord.

Although spiking neural networks are uniquely suited for
biological applications, researchers also use them for various
types of problems commonly solved with traditional neural
networks [9, 18]. Furthermore, spiking neurons are computa-
tionally more powerful than traditional neurons [15]. Thus,
practitioners can construct small networks of spiking neu-
rons to accomplish the same task as a traditional network
of greater size. This is done in the hope that the smaller
number of synaptic weights will ease the training process.

However, training spiking neural networks requires inno-
vative techniques. Traditional feed-forward neural networks
are trainable via back-propagation or Hebbian learning. Un-
fortunately, these training techniques cannot accommodate
the temporal characteristics of spiking neural networks. For-
tunately, researchers are developing a new generation of
neural network training techniques. Instead of training nu-
meric input-output patterns, these methods use mathemat-
ical methods to train temporal spiking patterns [13, 19].
These techniques are useful in pattern recognition and con-
trol system problems, but only when the objective is to train
a known input/output spiking pattern. However, in some
problems the patterns needed to solve the problem are not
known. This is often the case when the task of a neural net-
work is to control a mechanical system because the goal is
typically quantified in terms of a desired motion and not a
particular network output pattern. These scenarios need a
new training approach that does not depend on practitioners
knowing the input/output patterns a priori.

Thus, our goal is to use stochastic algorithms to train a
spiking neural network, and other parameters in the system,
to control a biologically plausible neuromuscular model of
an arm. This approach lets the user specify the quality of
potential solutions in terms of error from a target motion.
This way the practitioner does not need to know the specifics
of the network’s output patterns required to produce the
desired motions.

3. MODELS
Each of the following sub-sections describe key compo-

nents of the SNMS model. The arm consists of two groups of
muscle fibers corresponding to the biceps and triceps. Each
muscle fiber is controlled by semi-independent neural sub-
nets. Information about the state of the muscle fibers is fed

Figure 1: The joint has a movable lower limb with
center of mass indicated by mg. The parameters of
the joint model are listed in Table 1.

back into its muscle’s subnets to allow for adaptive behav-
iors in the system. The timestep for all model components
is 0.01 seconds.

3.1 Joint Model
The joint model used in our experiments (Figure 1) has

a single frictionless degree of freedom. The motion of the
forearm is dependant on contractions by either muscle and
the force of gravity. Furthermore, rotational springs are
encountered at π-2.4 and π-0.4 radians to model resistance
to over-contraction and hyperextension, respectively, in the
human arm. The connections of the muscles are shown as
I1 and I2 in Figure 1 and the movable section of the limb is
modeled as a uniform cylinder. The parameters of the joint
are shown in Table 1.

Table 1: Joint model parameters
Movable Limb Radius 0.2 meters
Movable Limb Mass 0.6 kg

Timestep 0.01 seconds
L1 0.08 meters
L2 0.8 meters
L3 0.08 meters
L4 0.72 meters

Spring Constant 20
Spring Damping Constant 10

3.2 Muscle Model
The Hill model [2, 8, 11] is commonly used to simulate

skeletal muscle systems and their nonlinearities. We use the
second canonical, functionally equivalent, form of the Hill
model because this form is easiest to apply to multiple mus-
cle fibers acting in parallel with one another [17]. Our imple-
mentation of each muscle has six independently triggerable
muscle fibers connected to a common tendon. Each mus-
cle fiber receives a binary signal from its alpha-motoneuron
(α-MN) and contracts according to the Hill equations. A

254

muscle fiber contracts during a given timestep if its α-MN
is active and relaxes otherwise. The tendon component of
the model stretches and shortens depending on the activity
of each muscle fiber. The muscles connect to the upper por-
tion of the arm and to the forearm near the joint as indicated
in Figure 1.

The Hill model is organized into four mechanical compo-
nents: the 1) contractile element, 2) damping element, 3)
serial elastic components (SEC)s, and the 4) parallel elas-
tic component (PEC). This form of the Hill model depicts
the muscle fibers as the “serial” elastic component and the
tendon as the “parallel” elastic component. This model also
generalizes to represent many motor units where a motor
unit is comprised of a single motoneuron and all the muscle
fibers it innervates1. The SEC models the elastic properties
of muscle fibers in a motor unit while the PEC models the
elasticity of a single tendon. The contractile element mod-
els the contraction and relaxation of muscle fibers and the
damping element models the coupling between the rate of
muscle contraction and fiber tension.

3.3 Neuron Model: Integrate-and-Fire
Each neuron in the network is an integrate-and-fire (IF)

spiking neuron with time constant τ0=0.05 seconds [4, 10,
21]. Over time an IF neuron receives input signals from
presynaptic neurons which increase the neuron’s potential.
In the absence of input, the potential decays exponentially.
However, if a volley of input signals causes the neuron’s
potential to exceed its threshold, the neuron fires and sends a
signal to all its postsynaptic neurons. After a neuron fires it
enters a refractory period of a single timestep during which it
cannot build up any potential. This is commonly referred to
as the absolute refractory period [12]. With this refractory
period, each neuron can have a maximum frequency of 50 Hz
which is within the range of biological firing rates for regular
spiking neurons [22]. After the refractory period, the neuron
can build potential and fire again. The IF neuron is modeled
with

s(t + Δt) =

�
(1 − Δt

τ0
)s(t) + Δt

τ0

�
n ωnxn , s(t) < 1

0 , s(t) ≥ 1
(1)

and

y(t) =

�
1 , s(t) ≥ 1

0 , s(t) < 1
(2)

where the functions s(t) and y(t) are the neuron’s electric
potential and output, respectively, at time t. The summa-
tion in Equation 1 represents the sum of synaptic inputs
multiplied by their respective weights.

3.4 Neural Network
Our neural network model is designed to incorporate what

are believed to be the key control pathways in the SNMS,
including the group Ia and group II afferent pathways, the Ia
inhibitory interneurons, and Renshaw cell inhibition (Figure
2). The system’s neural network consists of 180 IF neurons

1In this paper, each group consisting of one contractile el-
ement, one damping element, and one serial elastic com-
ponent will be called a motor unit where an entire muscle
consists of six motor units. Biologically, a motor unit also
includes the innervating α-MN.

Figure 2: This figure shows a single neural subnet
with descending neural pathways to the spinal neu-
rons for one agonist motor unit. The group Ia and
group II afferent structures are mathematical prox-
ies for the overall effect of extrafusal and intrafusal
fibers on the spindle nerve endings [12]. This subnet
is repeated five times for the remaining agonist mo-
tor units and six times for the six antagonist motor
units.

with 700+ synaptic connections and is composed of twelve
subnets, one for each of the twelve muscle fibers in the bi-
ceps and triceps. The subnets have identical topologies and
receive independent descending inputs (Figure 2). The indi-
vidual subnets contain chains of neuron clusters which model
individual descending pathways to the spinal neurons. The
agonist muscle refers to the muscle fiber innervated by the
α-MN and antagonist refers to fibers in the opposing mus-
cle. The input to a given subnet is implemented as three
synchronous unipolar inputs.

In biology, it is difficult for a simple chain of neurons to
propagate a signal because a relatively high input frequency
is needed for each neuron in order to fire. Even with a
high input frequency to a simple chain, the firing frequency
of each successive neuron decreases significantly unless the
synaptic weights are arbitrarily large. It is more likely that
these pathways are organized as groups of neurons where in-
formation is passed from one group to the next. This archi-
tecture is known as a synfire chain. Each descending node in
Figure 2 is implemented as a synfire node [1, 23, 25], where
each synfire node is a collection of three IF neurons that are
fully connected to the preceding node and following node.
The use of synfire nodes allows signals to propagate without
this attenuation and also allows for complex variations in
descending signal patterns.

After neuronal signals propagate from the brain and down
the spinal cord, they synapse on the α-MN which activates
skeletal muscle fibers. When activated, the α-MN sends a
signal to muscle fibers causing them to contract and shorten
which moves the associated joint. Furthermore, like many
artificial nonlinear control systems, the spinal cord has an
inhibitory feedback mechanism, the Renshaw cells. These
cells are thought to modulate and control the α-MN’s rate
of discharge to produce controlled motions [3]. The connec-
tions of the α-MN and Renshaw cell are shown in Figure 2.
Each Renshaw cell has inhibitory synaptic links to all six
α-MNs in its muscle’s network.

255

The spinal cord also has feedback systems to receive state
information from muscle fibers. The most prominent types
of feedback in skeletal muscles are the primary (group Ia)
and secondary (group II) afferents which relay the contrac-
tile velocity and length of muscle fibers, respectively, back
to the spinal cord. In the model, the Ia proxy afferent neu-
ron receives two real valued inputs which reflect the average
change in length per timestep (i.e. velocity) of the six mus-
cle fibers during the current timestep. One velocity input
is active when the average muscle fiber length is decreasing
and the other is active when it is increasing. These inputs
are separated to reflect the high and low frequencies of ac-
tion potentials associated with muscle fiber contraction and
relaxation. The model also includes a group II proxy affer-
ent neuron in each subnet which receives the average muscle
fiber length at each timestep. This neuron sends its output
only to the local α-MN and the last descending synfire node
(Figure 2).

Alpha-MN activation causes direct contraction of normal
muscle fibers, also called extrafusal fibers. The gamma-
motoneuron (γ-MN), on the other hand, causes contraction
of modified muscle fibers called intrafusal fibers. Contrac-
tion of these fibers do not contribute to the contractile force
of the muscle but increases their sensitivity to changes in
length as the entire muscle’s length changes. In turn, the
intrafusal fibers serve as the input to the afferent feedback
neurons mentioned previously. The model also includes the
γ-MN which receives descending signals in parallel with the
α-MN [12]. This models the phenomena known as α − γ
(alpha-gamma) coactivation. We simulate the sensitivity of
excited intrafusal fibers by adding a synapse from the γ-MN
to the proxy afferent neurons (Figure 2). Furthermore, the
inhibitory connection from the α-MN to the afferent neu-
ron is a mathematical proxy for the muscle shortening that
occurs just after the α-MN fires. After a contraction, the
tension on the muscle fiber decreases momentarily lowering
the afferent neuron’s potential.

Training the network requires adjusting 12 real values
used to determine the strength of each contractile element,
12 binary values to determine which biceps motor units re-
ceive descending inputs during the upward (6) and down-
ward (6) motion, and 700+ real values for each synaptic
connection. We use the GA (Genetic Algorithm), PSO (Par-
ticle Swarm Optimizer), and BSO (Breeding Swarm Opti-
mizer) to train the system because adjusting this number of
parameters by hand would clearly be prohibitive.

4. EXPERIMENTS
The following algorithms train three distinct parameter

types in the model: The 1)synaptic weights, 2)strengths of
muscle fibers, and 3)binary selectors for neural subnets. All
individuals in each algorithm are randomly initialized in the
same manner where synaptic weights are randomly selected
uniformly in the interval [0,4] (excitatory) and [-4,0] (in-
hibitory), fiber strengths in the interval [0,6], and subnet
selectors in the uniform binary interval [0,1]. The velocity
vectors in the PSO and BSO initialize with the intervals
as their respective position vectors both in the positive and
negative direction with the exception of the binary values
which initialize their velocity vectors in the interval [-6,6].

Each algorithm evaluates fitness of potential solutions with

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14

A
rm

 A
ng

le
 (

de
g)

Time (sec)

Two Cycle Target Motion

40 Hz 20 Hz 40 Hz 20 Hz

Target Angle
Lower Spring

Figure 3: Two cycle target motion. Starting at 0
seconds, no descending pathways receive an input
pattern. At 1.5 seconds, an input pattern of 40 Hz is
sent to a subset the biceps’ subnets, as chosen by the
training algorithm, and the signals across each input
neuron is phase shifted evenly across a window of

1
40Hz

. At a given frequency, the inputs to the subnets
are out of phase and do not overlap during a given
timestep unless the frequency is sufficiently high.
During the downward motion the biceps network
receives a descending input of 20 Hz. The upward
and downward target angular velocities are 45 deg

sec
in both directions.

the equation

F = −
�
all t

(Θ(t) − target(t))2 (3)

where Θ(t) is the angle between the movable forearm and
the fixed upper arm at time t, and target(t) is the target
angle at time t. It is important to note that the fitness
equation does not attempt to minimize overall muscle ac-
tivity or encourage specific neural behaviors. The fitness
function measures the error from the target trace in Fig-
ure 3. The following subsections describe each algorithm in
more detail.

4.1 Genetic Algorithm Training
These experiments use the two standard models of GAs,

steady-state and generational. The generational GA creates
a new population every generation and automatically pre-
serves the two most fit individuals from the previous gener-
ation (elitism). The steady-state version on the other hand
does not generate a new population, but replaces the two
least fit individuals with two offspring during each iteration.
For the real-value segments of the individuals, recombina-
tion is performed via arithmetic crossover [7] added to a
small normal random variable as shown in Table 2. Uni-
form crossover is used for the binary component. In both
algorithms, after an individual is generated via crossover,
each allele in the offspring then undergoes mutation with
probability p, shown in Table 2.

4.2 Particle Swarm Training
The PSO is a relatively new stochastic search and opti-

mization technique based on swarm intelligence developed
by Eberhart and Kennedy in 1995 [14]. The following ex-

256

Table 2: GA, PSO, and BSO parameters
Parameter GA PSO BSO

Trials 35 35 35
Fitness Evaluations 150k 150k 150k

Population Size 30 30 30
Selection Type Tournament N/A Tournament

Tournament Size 2 N/A 2
Crossover Probability 1.0 N/A N/A
Crossover Type (reals) Arithmetic + N(0,0.2) [7] N/A VPAC [20]
Crossover Type (bits) Uniform N/A Uniform
Mutation Probability 1/dimensions N/A 1/dimensions
Mutation Type (reals) N(0,0.2) N/A N(0,1→0)
Mutation Type (bits) Uniform N/A Uniform

Mutation Variance (reals) N/A N/A 1.0 → 0.0
Social (c1, c2) N/A 2,2 2,2

Inertia N/A 0.9→ 0.3 0.9→0.3

periments employ the two main PSO types, inertia and con-
striction. The PSO is modeled with a population of parti-
cles where each particle knows its position and velocity in
n-dimensional space. Each particle remembers the best loca-
tion it has seen and also has access to the best location seen
by the entire swarm. The maximum and minimum values
in the GA are used as constraints for the particles’ veloc-
ities but not their positions. PSO-style algorithms usually
do not need artificial constraints on position values unless
the problem itself requires certain constraints. The inertia
PSO [20] particle velocity at timestep t is

v(t) = Ω(t−1)v(t−1)+(c1)(r1)(xb(t−1))+(c2)(r2)(xgb(t−1))
(4)

where c1 and c2 are social constants shown in Table 2, the
vector xb is the particle’s personal best position, xgb is the
global best position, Ω is the population’s current inertia
value, and r1 and r2 are independent uniform random vari-
ables in the interval [0,1]. The constriction PSO [5] velocity
update equation is

v(t) = τ [v(t− 1) + (c1)(r1)(xb(t− 1)) + (c2)(r2)(xgb(t− 1))]
(5)

where τ is the constriction coefficient derived from the equa-
tion

τ =
2

|2 − φ −
�

φ2 − 4φ| (6)

where

φ =

�
c1 + c2 , c1 + c2 > 4

4.1 , otherwise.
(7)

In these experiments c1 + c2=4, thus φ=4.1 and τ ≈ 0.73.
For real numbers, the position vector for both PSO types is
then updated as

p(t) = p(t − 1) + v(t) (8)

and for the binary numbers it is updated with

p(t) =

�
1 , rand < s(v(t − 1))

0 , otherwise
(9)

where rand is a uniform random variable in the interval [0,1]
and s(v) is the sigmoid function s(v) = 1/(1 + e−v) where v
is the velocity vector [14].

4.3 Breeding Swarm Training
The BSO algorithm is identical to the PSO with added

steps of crossover and mutation. Crossover is implemented
with Settles’ VPAC (Velocity Propelled Averaged Crossover)
[20]. VPAC is defined as

xc1 = (xp1 + xp2)/2 − (φ1)(vp1) (10)

xc2 = (xp1 + xp2)/2 − (φ2)(vp2) (11)

where φ1 and φ2 are independent uniform random variables
on the interval [0,1]. Both offsprings’ xb (personal best)
vector is reset, vc1 = vp1, and vc2 = vp2 after crossover.
Each allele is then mutated with a linearly decaying variance
according to Table 2.

To determine the number of particles to undergo crossover,
the algorithm uses a breeding ratio r. Typically, a small
fixed breeding ratio is chosen and popsize · r particles are
generated via VPAC crossover and mutation. The offspring
particles then replace the least fit popsize · r particles in the
population. VPAC crossover generates offspring in pairs, so
after using the breeding ratio to determine the number of
offspring we round down to the nearest multiple of 2. In
this implementation with a population size of 30 and r=0.1,
2 offspring are created via crossover and mutation and then
inserted at each generation.

4.4 Human Subjects
In our experiments, twenty human subjects completed

submaximal elbow flexion and extension to produce data for
comparison with our SNMS model. Each subject was asked
to stand with his upper arm held by his side and perform
a biceps curl under 9 different conditions: 3 speeds (45 deg

sec
,

90 deg
sec

, 135 deg
sec

) and 3 loads (20%, 50%, and 80% of the sub-
ject’s maximum repetition weight (MRW)). Five repetitions
were completed for the 20% and 50% conditions and three
repetitions were completed for the 80% condition. Speed
was controlled with a metronome. The order of speeds was
randomized and the order of loads within a speed was ran-
domized. Subjects were allowed to practice the speed of the
movement in an unloaded condition prior to beginning test-
ing for that speed condition. A two-minute and five-minute
rest was permitted between the load and speed conditions,
respectively. In this paper we present data corresponding to
three human subjects at a speed of 45 deg

sec
at 20% and 50%

of the subjects’ MRW.

257

-100

-80

-60

-40

-20

 0

 0 20000 40000 60000 80000 100000 120000 140000

A
ve

ra
ge

 B
es

t F
itn

es
s

Fitness Evaluations

GA/PSO/BSO Average Best Fitness

Steady State GA
Inertia BSO BR=0.1

Generational GA
Inertia PSO

Constriction BSO BR=0.1
Constriction PSO

Figure 4: This shows the average best fitness of each
algorithm over 35 runs. The steady state GA mean
is statistically higher than all other algorithms with
p < 0.01, however it is higher than the constriction
PSO with p < 0.10 (Student’s t-test). The means of
the BSO with inertia and constriction are marginally
higher than their PSO counterparts with p = 0.065
and p = 0.013, respectively (Student’s t-test).

5. RESULTS
Now we compare the relative performance of each algo-

rithm and examine the distribution of best fitness values at
the end of each algorithm run. We also examine the behav-
ior of individually trained systems and compare this with
electromyogram (EMG) data recorded from the human sub-
jects. EMGs reflect the amount of overall muscle activity
by measuring the excitation of a muscle.

5.1 Fitness
Figure 4 shows the average best fitness of each algorithm

averaged over 35 trials over 150,000 fitness evaluations. On
average, the steady state GA yields the highest fit solutions
at the end of training followed closely by the inertia BSO.
Figure 5 and Table 3 show the distribution of solutions for
each algorithm with respect to fitness at the end of each
training run.

Table 3: Mean, Standard Deviation of Mean, Best,
and Worst Fitness of Each Algorithm at the End of
Training

Algorithm Mean Std. Dev. Best Worst
GA (Steady State) -18.56 4.94 -10.95 -38.75
GA (Generational) -30.48 12.91 -15.66 -75.05

PSO (Inertia) -36.60 28.04 -9.12 -116.13
PSO (Constriction) -64.40 53.17 -11.70 -210.80

BSO(Inertia) -25.59 20.46 -5.72 -88.79
BSO (Constriction) -46.73 43.10 -10.01 -177.16

5.2 Behaviors
These results show behaviors of individually trained SNMS

models and the human subjects with EMG readings. In our

BSO (Constriction)

BSO (Inertia)

PSO (Constriction)

PSO (Inertia)

GA (Generational)

GA (Steady State)

-250 -200 -150 -100 -50 0

Fitness

Global Best Solutions at End of Runs

Figure 5: The distribution of the steady state and
generational GAs tightly surround their respective
means whereas the other algorithms have much
wider distributions. The BSO algorithms appear
to have slightly tighter distributions around their
means than their PSO counterparts.

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14

A
rm

 A
ng

le
 (

de
g)

Time (sec)

Arm Motion (GA Best and Average)

Best Target Angle
Average Target Angle

Target Angle

Figure 6: This shows the best fit solution generated
by the steady state GA and an average fit solution.
The GA’s best solution binds more tightly to the
target angle throughout the motion.

 0

 50

 100

 150

 200

 0 2 4 6 8 10 12 14A
rm

 A
ng

le
 (

de
g)

 /
N

or
m

al
iz

ed
 E

M
G

Time (sec)

Arm Motion (Intertia BSO: Fitness=-8.56)

Arm Angle
Target Angle
Biceps EMG
Triceps EMG

Figure 7: The BSO finds a solution which uses the
afferent feedback pathways and activates the triceps
even though it receives no descending input.

258

 0

 50

 100

 150

 10 12 14 16 18 20A
rm

 A
ng

le
 (

de
g)

 /
N

or
m

al
iz

ed
 E

M
G

Time (sec)

Arm Motion (Human Subject 17)

Arm Angle
Biceps EMG

Triceps EMG

Figure 8: This shows the anatomical movements and
surface electrode EMG readings during human sub-
ject 17’s upward and downward motions at 45 deg

sec
at

50% of MRW.

 0

 50

 100

 150

 10 12 14 16 18 20A
rm

 A
ng

le
 (

de
g)

 /
N

or
m

al
iz

ed
 E

M
G

Time (sec)

Arm Motion (Human Subject 1)

Arm Angle
Biceps EMG

Triceps EMG

Figure 9: This shows the anatomical movements and
surface electrode EMG readings during human sub-
ject 1’s upward and downward motions at 45 deg

sec
at

20% of MRW.

 0

 50

 100

 150

 8 10 12 14 16 18 20A
rm

 A
ng

le
 (

de
g)

 /
N

or
m

al
iz

ed
 E

M
G

Time (sec)

Arm Motion (Human Subject 5)

Arm Angle
Biceps EMG

Triceps EMG

Figure 10: This shows the anatomical movements
and surface electrode EMG readings during human
subject 5’s upward and downward motions at 45 deg

sec
at 50% of MRW. Note that for this subject increased
triceps activity is not needed for stable motion.

experiments we observe that each algorithm generates in-
distinguishable solutions for a given fitness value. Figures 6
and 7 produce similar anatomical motions and are generated
by the steady state GA and the inertia BSO, respectively.
Each algorithm consistently yields solutions which activate
the triceps during the upward motion2. Interestingly, the
triceps EMG in two human subjects (Figure 8 and 9) and
the PSO solution (Figure 7) steadily increases during the
upward motion. However, we hypothesize that human sub-
ject 5 has a particularly strong and toned upper body be-
cause virtually no extra triceps activity is needed to stabilize
the motion (Figure 10). Many solutions also generate small
amounts of muscle fiber excitation, i.e. tonic tension, in the
absence of descending input also shown in Figure 7 which is
also seen in human subject 17 (Figures 8) just before motion
begins.

6. CONCLUSIONS
In this paper we show that GAs, PSOs, and BSOs can be

used to fill in the unknown details of the SNMS model, e.g.
the strengths of the individual muscle fibers and synaptic
links, to integrate them all in a single model. We find that
these algorithms effectively train the SNMS model to follow
the target motion. On average, the steady state GA out-
performs all the other algorithms and generates the most
consistent results with respect to fitness. We hypothesize
that the PSO based algorithms yield less consistent results
because the position update equation is a function only of
the velocity and not position. The velocity values for the bi-
nary component direct the particle to a particular position
in binary space, but as the velocity for a given dimension
approaches 0, the position alternates between 0 and 1 with
equal probability (Equation 9). Since the binary values in
the particle represent which subnets receive descending in-
puts, changing these values during algorithm convergence
will likely result in large changes in fitness which may make
it difficult for the PSO based algorithms to generate more
consistent solutions.

Nevertheless, these algorithms generate fundamental bio-
logical behaviors in the SNMS model that are not directly
trained. In biology, during contraction of the biceps, the
triceps usually becomes active to stabilize motion (Figure
8) which is observed in the model (Figure 7). It is impor-
tant to note that the triceps motor units do not receiving
descending signals in the simulation, and thus could remain
inactive. However, the algorithms tend to utilize the triceps
via the afferent pathways to generate solutions that satisfy
the target motion. This suggests that the afferent feedback
components are sufficient to generate the same behaviors
they are responsible for in biology.

The algorithms also tend to train the feedback pathways
in the model to produce small amounts of muscle fiber exci-
tation, i.e. tonic tension, in the absence of descending input
(Figure 7). In biology, the spinal cord’s stretch reflex medi-
ated by the afferent pathways maintains this tension which
plays a key role in maintaining balance and posture. In the
simulation, it facilitates rapid muscle fiber responses at the
initiation of the upward motion which is consistent with the
function of the stretch reflex and other related reflexes [12].

2EMG data from the simulation is taken from a variable
in the Hill model which corresponds to the voltage across
the neuromuscular endplate. Surface electrodes approxi-
mate this voltage on a larger scale.

259

The successful training of our SNMS model opens the
door for modeling increasingly complex neuromuscular sys-
tem models for a range of anatomical motions such as rais-
ing and lowering the arm at varying speeds and by training
the system to lift various weights. Researchers can also ex-
pand the model architecture by adding neuron types and
new types of feedback such as joint or pain receptors. The
model can also be changed easily to simulate various mo-
tions in different positions such as moving the arm in the
horizontal plane or in a supine orientation. These types
of improvements in neuromuscular system modeling will in-
crease our understanding of the spinal cord as a nonlinear
control system. This knowledge will also allow researchers
enhance the information processing abilities of robotic con-
trol systems.

7. ACKNOWLEDGEMENTS
We thank Dr. Kathy Browder and her assistant Jessica

Sampson for their helpful discussions and for providing the
human subject data.

8. REFERENCES
[1] M. Abeles, G. Hayton, and D. Lehmann. Modeling

compositionality by dynamic binding of synfire chains.
Journal of Computational Neuroscience, 17:179–201,
2004.

[2] J. E. Baker and D. D. Thomas. A thermodynamic
muscle model and a chemical basis for a.v. hill’s
muscle equation. Journal of Muscle Research and Cell
Motility, 21:335–344, 2000.

[3] T. Bui, S. Cushing, D. Dewey, R. Eyffe, and P. Rose.
Comparison of the morphological and electronic
properties of renshaw cells, Ia inhibitory interneurons,
and motoneurons in the cat. Journal of
Neurophysiology, 90:2900–2918, 2003.

[4] B. Cartling. Control of computational dynamics of
coupled integrate-and-fire neurons. Biological
Cybernetics, 78:383–395, 1997.

[5] M. Clerc. Towards a deterministic and adaptive
particle swarm optimization. In Proceedings of the
Congress on Evolutionary Computation, pages
601–610, 1999.

[6] N. Durand and J.-M. Alliot. Neural nets trained by
genetic algorithms for collision avoidance. Applied
Intelligence, 13:205–213, 2000.

[7] A. Eiben and J. Smith. Introduction to Evolutionary
Computing. Natural Computing. Springer, 1998.

[8] G. J. Ettema and K. Meijer. Muscle contraction
history: Modified hill versus an exponential decay
model. Biological Cybernetics, 83:491–500, 2000.

[9] D. Floreano and C. Mattiussi. Evolution of spiking
neural controllers for autonomous vision-based robots.
In Proceedings of the International Symposium on
Evolutionary Robotics From Intelligent Robotics to
Artificial Life, pages 38–61. Springer-Verlag, 2001.

[10] M. Giuglaiano, M. Bove, and M. Grattarola. Activity
driven computational strategies of a dynamically
regulated integrate-and-fire model neuron. Journal of
Computational Neuroscience, 7:247–254, 1999.

[11] A. V. Hill. The heat of shortening and the dynamic
constants of muscle. Proc. Roy. Soc. London,
126(843):136–195, 1938.

[12] E. R. Kandel, J. H. Schwartz, and T. M. Jessell.
Priciples of Neural Science. McGraw-Hill, New York,
4th edition, 2000.

[13] A. Kasinski and F. Ponulak. Experimantal
Demonstration of Learning Properties of a New
Supervised Learning Method for the Spiking Neural
Networks, pages 145–152. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2005.

[14] J. Kennedy and R. Eberhart. A discrete binary
version of the particle swarm algorithm. In
Proceedings of the Conference on Systems, Man, and
Cybernetics, pages 4104–4109, 1997.

[15] W. Maass and B. Ruf. The computational power of
spiking neurons depends on the shape of the
postsynaptic potentials. Electronic Colloquium on
Computational Complexity (ECCC), 3(25), 1996.

[16] M. Mandischer. Evolving recurrent neural networks
with non-binary encoding. In IEEE International
Conference on Evolutionary Computation, volume 2,
pages 584–589, 1995.

[17] T. A. McMachon. Muscles, Reflexes, and Locomotion.
Princeton University Press, 1984.

[18] N. Pavlidis, O. Tasoulis, V. Plagianakos,
G. Nikiforidis, and M. Vrahatis. Spiking neural
network training using evolutionary algorithms. In
Proceedings of the 2005 International Joint Conference
on Neural Networks, pages 2190–2194, 2005.

[19] B. Ruf and M. Schmitt. Learning temporally encoded
patterns in networks of spiking neurons. Neural
Processing Letters, 5:9–18, 1997.

[20] M. Settles and T. Soule. Breeding swarms: a ga/pso
hybrid. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 161–168.
ACM Press, 2005.

[21] M. J. Shelley and L. Tao. Efficient and accurate
time-stepping schemes for integrate-and-fire neuronal
networks. Journal of Computational Neuroscience,
11:111–119, 2001.

[22] G. Shepherd. Neurobiology. Oxford University Press,
New York, 3rd edition, 1994.

[23] T. Wennekers and G. Palm. Controlling the speed of
synfire chains. In International Conference on
Artificial Neural Networks (ICANN), pages 451–456,
Berlin, 1996. Springer.

[24] X. Yao. Evolving artificial neural networks.
Proceedings of the IEEE, 87(9):1423–1447, 1999.

[25] A. Yazdanbakhsh, B. Babadi, S. Rouhani,
E. Arabzadeh, and A. Abbassian. New attractor states
for synchronous activity in synfire chains with
excitatory and inhibitory coupling. Biological
Cybernetics, 86:367–378, 2002.

260

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

