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ABSTRACT
Program bloat is a fundamental problem in the field of Ge-
netic Programming (GP). Exponential growth of redundant
and functionally useless sections of programs can quickly
overcome a GP system, exhausting system resources and
causing premature termination of the system before an ac-
ceptable solution can be found. Simplification is an attempt
to remove such redundancies from programs. This paper
looks at the effects of applying an algebraic simplification
algorithm to programs during the GP evolution. The GP
system with the simplification is examined and compared
to a standard GP system on four regression and classifica-
tion problems of varying difficulty. The results suggest that
the GP system employing a simplification component can
achieve superior efficiency and effectiveness to the standard
system on these problems.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms, Performance

Keywords
Genetic Programming, Algebraic Simplification, Program
Simplification, Code Bloating, Online Simplification

1. INTRODUCTION
Genetic programming (GP) [8] is a method of automati-

cally generating programs for solving specific tasks. Firstly,
an initial group of randomly generated genetic programs,
normally represented as parse trees such as LISP-S trees, is
created. The process of selection based on fitness is carried
out to provide a basis for the next program generation. Fit-
ness is determined by running the programs and evaluating
them on a set of criteria called fitness function. The genetic
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operators of crossover for swapping of sections of programs,
mutation for random alterations to a program, and repro-

duction for retaining the best programs are applied to the
selected programs to create a new population of programs.
The process of creating new generations is repeated until
certain termination criterion is met. The “best” program in
the last generation is usually used as the resulting system
solution. GP can be seen as a genetic beam search through
the space of possible solutions to the task.

GP is an emerging field in evolutionary computing and
machine learning and has already been applied to many
tasks, including image analysis [13], object detection [16],
regression problems [8] and even control programs for walk-
ing robots [3]. GP has been very successful in solving or per-
forming these tasks and “now routinely delivers high-return
human-competitive machine intelligence” [9].

However, one of the current and fundamental problems
in GP is that the process of genetic programming will in-
evitably introduce some redundancy into the evolved pro-
grams [8, 14, 2]. This redundancy is regarded as a funda-
mental problem of GP as it slows down the search process by
consuming large amounts of memory and causes exploration
of large unnecessary parts of the search space. The search
process continues to slow as the programs become larger un-
til the programs become too large for the system’s memory
to hold, halting the system before a “good” solution can
be found. Redundancy can also result in an unnecessarily
complex program, which is inefficient in its execution and
difficult to interpret and comprehend.

On the other hand, this redundancy may aid the effective-
ness of the evolutionary process by providing a more diverse
selection of program fragments for the process to use, and
protecting useful “building blocks” within programs from
the destructive nature of the crossover operator [2].

Simplification is a process applied in order to reduce the
complexity of an expression, as well as eliminate any super-
fluous details. Simplification can be implemented in various
ways, including using simple algebraic techniques, transla-
tion into canonical forms or numeric hashing techniques.
Typically simplification is applied at the end of the evo-
lutionary process to remove some of the complexity of the
program, reducing the resource usage and improving com-
prehensibility, enabling it to run faster and to be easier to
interpret. The editing operation proposed in [8] is an exam-
ple of this kind. But as program redundancy is a problem
which also occurs during the evolutionary process, online
simplification during evolution to improve performance in
the whole system needs to be investigated.
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1.1 Goals
The goal of this paper is to invent a method in GP that

does program simplification during the evolutionary process.
We will investigate the effect of performing online simplifi-
cation of the programs during the evolutionary process, to
discover whether the reduction in complexity outweighs the
possible benefits of redundancy. This approach will be ex-
amined and compared with the standard GP without sim-
plification on four regression and classification problems of
increasing difficulty. Specifically, we are interested in:

• how the online simplification algorithm can be con-
structed by combining some algebraic simplification
rules and hashing techniques;

• whether the simplification improves the system effi-
ciency of the evolutionary process; and

• whether this approach deteriorates the classification
performance compared with the standard GP method
without simplification.

1.2 Structure
The rest of the paper is organised as follows. Section 2 de-

scribes the simplification algorithm developed in this paper.
Section 3 presents the four data sets and experiment con-
figurations. Section 4 describes the results with discussions.
Section 5 concludes and gives future work directions.

2. THE PROGRAM SIMPLIFICATION AP-
PROACH

In the standard GP system, the programs are represented
as a LISP-S (or similar language) expression, which is stored
in a tree representation [8]. The ramped half-and-half method
was used for generating programs in the initial population
and for the mutation operator [1]. The proportional selec-
tion mechanism and the reproduction, crossover and mu-
tation operators [8] were used in the learning and evolu-
tionary process. The function set consists of the commonly
used four arithmetic operators (+,−,×,÷) and an if (con-
ditional) operator. The terminal set consists of a number
of feature/variable terminals from the task and several con-
stant terminals. Based on this setting, a genetic program
looks like an algebraic expression.

The new approach introduced in this paper uses the same
setting as the standard GP approach mentioned above. The
major difference between them is that the new approach has
an online program simplification algorithm to be applied to
the genetic programs during the evolutionary process.

The task of the simplification method is to obtain a smaller
program, by removing the redundancy of a program, that
yields the same output as the original program. In this ap-
proach, we use the idea in the algebraic expression simplifi-
cation to construct simplification rules, apply these rules us-
ing a postfix search to the genetic programs, and use hashing
to estimate the algebraic equivalence to simplify the genetic
programs during evolution.

In the rest of the section, we describe the simplification
rules and the simplification process, then give an example
to show how a program can be simplified, and finally sum-
marise the simplification algorithm.

2.1 The Simplification Rules
As in algebraic expression simplification, we use multiple

rules to simplify a given genetic program. A specific rule
might only be suitable for removing/reducing a particular
part of the genetic program.

Similarly to STRIPS operators [5], we use two parts, a
precondition and a postcondition to represent the simplifi-
cation rules. The precondition represents the state of the
surrounding nodes in the program tree that must be present
in order to be able to apply the simplification rule, and the
postcondition represents the additions and deletions made
to the program tree to obtain the simplified form.

These rules form the ruleset of the program simplification
algorithm, which covers major sources of redundancy in the
evolved genetic programs. For example,

• an arithmetic operator with only constant children (e.g.
(+ 3 2) = 5)

• subtraction or division of self (e.g. (- f0 f0) = 0)

• redundant conditionals, where the outcome is always
the same (e.g. if<0(2 f0 f1) = f1)

A selection of the simplification rules used in this approach
are presented in table 1. In this table, constants are repre-
sented by lower-case characters (e.g. a, b, x, j), and vari-
ables are represented by upper-case characters (e.g A, B, X,
J).

Table 1: The simplification rules used.
Precondition Effective Result
if<0(a, B, C) → B if a < 0, else C

if<0(A, B, B) → B

a + b → c, c = a + b

a - b → c, c = a - b

a × b → c, c = a × b

a ÷ b → c, c = a ÷ b

a + (b + C) → c + C, c = a + b

a + (b - C) → c - C, c = a + b

a - (b + C) → c - C, c = a - b

a - (b - C) → c + C, c = a - b

a × (b × C) → c × C, c = a × b

a × (b ÷ C) → c ÷ C, c = a × b

a ÷ (b ÷ C) → c × C, c = a ÷ b

a + (B + c) → b + B, b = a + c

a + (B - c) → b + B, b = a - c

a - (B + c) → b - B, b = a - c

a - (B - c) → b - B, b = a + c

a × (B × c) → b × B, b = a × c

a × (B ÷ c) → b × B, b = a ÷ c

a ÷ (B ÷ c) → b ÷ B, b = a × c

A ÷ 1 → A

A ÷ A → 1

0 ÷ A → 0

0 × A = A × 0 → 0

A × 1 = 1 × A → A

A + 0 = 0 + A → A

A - 0 → A

A - A → 0

A × 1

B
= 1

B
× A → A

B

A × B
A

= B
A

× A → B
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2.2 The Simplification Process
To apply the ruleset to a genetic program for simplifica-

tion, we used a kind of “greedy” engine, which is a recursive
algorithm. It recursively travels through the program tree
in a bottom-up fashion by the postfix order traversal mode.
For each node it processes, the algorithm checks the precon-
dition for each simplification rule in the ruleset. If a rule
matches, it is applied to the partial tree associated with the
node to make simplification. If none of the rules can be
applied at a node, the algorithm moves to the next node
(either neighbouring node or parent node).

In this way, the algorithm guarantees that each node in
the program tree is only visited once. However, as all simpli-
fication rules only look at a static and limited area, arbitrary
depth levels of simplification (simplification of terms which
are not neighbouring but far away) are not supported in this
algorithm.

2.3 Estimating Algebraic Equivalence
Another important aspect of a simplification system is

determining when X is equal to Y, providing a mechanism
for evaluating rules in the ruleset. This is fairly trivial
when comparing single nodes, as one needs simply to check
whether the nodes are identical. However, checking whether
multi-node subexpressions or subtrees are equal is more dif-
ficult.

Our goal is to allow for not only noticeably similar ex-
pressions (e.g. (x + y + z) and (z + x + y)) to be iden-
tified as equivalent, but also seemingly dissimilar expres-
sions, for example, (/ (+ (- (* w x) (* x y)) (* (- w

y) y)) (- (* x x) (* y y))) and (/ (- w y) (- x y))

as well.
In this approach, we use hashing to address the alge-

braic equivalence of two subtrees/subprograms. The hash-
ing function is used to extend the algebraic system men-
tioned earlier to be capable of simplifying more expressions.
In the 1970s and 1980s, [12] and [7] describe methods for
achieving algebraic equivalence using hashing methods for
algebraic expressions. In this approach, we use a variant
of those methods to cope with all common terminals and
functions in the evolved genetic programs.

Note that using the hashing technique to determine al-
gebraic equivalence adds to the risk of two non-equivalent

subexpressions being determined as equal and one or both
being discarded (depending on the simplification rule). By
using a very large number of distinct hash values, the num-
ber of collisions can be kept minimal, and probabilistically
minute. In this work, p is used to denote the hashing or-

der for the hash function (i.e. the total number of possible
hash values). It is important that the collection of hash
values qualify as a finite field ([10]) and so p should be a
prime number. Note that any finite field with p elements is
isomorphic to Zp [10] (integers from 0 to p).

In the rest of this subsection, we describe how to estimate
the algebraic equivalence for feature terminals, constant ter-
minals, the four arithmetic operators and the conditional
operator.

2.3.1 Feature Terminals
In a GP system, a feature terminal represent inputs from

the task environment, such as an image feature in object
classification or a simple variable in symbolic regression.
The important attribute of these terminals is that a fea-

ture terminal always keeps the same value for a particular
fitness case for all genetic programs during the evolutionary
process. Accordingly, in this approach, the feature terminals
are assigned random hash values at the beginning of the GP
system run and remain unchanged for the entire duration of
the evolutionary process. Specifically, we use:

Hash(Featuren) = a random value in Zp (1)

2.3.2 Constant Terminals
In a GP system, constants can be any numeric type: in-

tegers, rationals, floating point, etc. Therefore, the hash
function needs to be designed to handle all these types, of
which the most difficult is floating point. [12] does not de-
scribe a solution to this in his paper. In this approach, we
handle this by approximating the floating point with a ra-
tional number, thus converting it to a simple division of two
integers.

Calculating accurate and irreducible rationals can be very
time consuming, so a quick approximation is used. The nu-
merator is formed by multiplying the floating point by a
predefined precision constant (δ) and truncating the left-
over fractional part. Using the same precision constant as a
denominator, a rational representation can be very quickly
found.

Hash(c) =
c × δ

δ
mod p = (c × δ) ×

1

δ
mod p (2)

This approach of course, requires modular division which
one may not be familiar with. Now, the division of two
numbers x

y
is equivalent to the multiplication of the first

number with the multiplicative inverse of the second number
x × 1

y
. So to perform division, one needs only to calculate

the multiplicative inverse of y and multiply by x.
The key point here is to find the integer equivalence of

the inverse of δ mod p. In this approach, this is done us-
ing the Extended Euclidean Algorithm [15, 4]. For any two
integers a and b, there exists two integers q, r such that
a = b · q + r. Commonly, q is called the quotient and
r the remainder. Starting from step 0, the algorithm ad-
ditionally calculates an auxiliary number xi at each divi-
sion step, where x0 = 0, x1 = 1 and for the other steps
xi = (xi−2 − xi−1 · qi−2) mod p. At step i, the devision is
performed in the format of ai = qi · bi + ri, where ai =
bi−1, bi = ri−1 and a0 = a, b0 = b at step 0. The resulting x

will be the equivalence of the inverse of a mod b.
As an example, assuming that δ = 10 , the constant to be

hashed c = 0.6 and the hash order p = 17, then we have

Hash(0.6) =
0.6 × 10

10
mod 17 = 6 ×

1

10
mod 17 (3)

Now we use the extended Euclidean algorithm to find the
integer equivalence of 1

10
(the inverse of 10 in Z17). Here,

a0 = p = 17, b0 = δ = 10. Each step of the algorithm is
shown below to calculate xi, the value of x at that step.

Step 0: 17 = 1(10) + 7 x0 = 0
Step 1: 10 = 1(7) + 3 x1 = 1
Step 2: 7 = 2(3) + 1 x2 = (x0 − x1 · q0) mod p

= (0 − 1 · 1) mod 17 = 16
Step 3: 3 = 3(1) + 0 x3 = (x1 − x2 · q1) mod p

= (1 − 16 · 1) mod 17 = 2
Step 4: x4 = (x2 − x3 · q2) mod p

= (16 − 2 · 2) mod 17 = 12
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The last value for x is 12, meaning that the integer equiv-
alence of the inverse of 10 ( 1

10
in Z17) is 12. A quick check

shows that 12 × 10 mod 17 = 120 mod 17 = 1, so this is
indeed correct. Substituting 12 in for 1

10
in equation 3, we

have

6 ×
1

10
mod 17 = 6 × 12 mod 17 = 72 mod 17 = 4

So the constant 0.6 hashes to the value 4 in this example.

2.3.3 The Arithmetic Operators
Because the hashing method takes place in a finite field, all

of the standard arithmetic methods are easily handled using
modulo arithmetic. Hashing of these operators is equivalent
to evaluating them within the field:

Hash(A + B) = (A + B) mod p (4)

Hash(A − B) = (A − B) mod p (5)

Hash(A × B) = (A × B) mod p (6)

Hash(A ÷ B) = (A ÷ B) mod p (7)

where the division hashing follows the rule of the extended
Euclidean algorithm discussed above.

2.3.4 The if<0 operator
The if<0 conditional operator is a more difficult case, as

it is not an arithmetic function and so cannot simply be
converted to a modulo arithmetic equivalent. Additionally,
it consists of three parameters (instead of the usual two): a
condition, a true branch and a false branch. All the three
parameters must be considered when hashing this operator
as well as the order in which they appear. The following
approach was formulated to handle this operator:

Hash(if<0(A, B, C)) = (
A

B
+ C) mod p (8)

which uses division and addition to take into account the
position of the three parameters.

2.3.5 Operator Closure
All of the functions supported are closed, meaning that for

any of the functions ⋄ ∈ {+,−,×,÷, if < 0}, (Hash(A) ⋄
Hash(B)) mod p = Hash(A ⋄ B) in Zp. More specifically:

Hash(A + B) = (Hash(A) + Hash(B)) mod p (9)

Hash(A − B) = (Hash(A) − Hash(B)) mod p (10)

Hash(A × B) = (Hash(A) × Hash(B)) mod p (11)

Hash(A ÷ B) = (Hash(A) ÷ Hash(B)) mod p (12)

Hash(if<0(A ⋄ B, C, D)) = (
Hash(A ⋄ B)

Hash(C)
+ Hash(D)) mod p

(13)

This means that by storing already calculated hash values
within the tree node structure, one does not need to recal-
culate the hash values of subtrees each time a tree is to be
hashed, as hash values of subtrees can be combined to give
correct hash values of the whole tree.

2.4 An Example
Now, we use an example to show the simplification pro-

cess for a given genetic program. The example genetic pro-
gram (- (- -0.2 -0.5) (if<0 (% (+ f0 f1) (+ f1 f0))

0.8 (- f0 f0))) can be represented in the tree shown in
figure 1.

Figure 1: The original program tree.

Assume that the hashing order is 17, f0 and f1 are “ran-
domly” assigned the values 3 and 5 respectively. Also, for
presentation convenience, Table 2 reiterates the rules in the
ruleset that are specifically used in this example.

Table 2: Simplification rules used in this example.
Precondition Effective Result
(1) (- a b) → c, c= a − b

(2) (% A A) → 1

(3) (- A A) → 0

(4) (if<0 a B C) → C (if a ≥ 0)

The algorithm traverses the program tree in a “bottom-
up” fashion using a post-fix traversal. This means that the
algorithm processes the program nodes in the order depicted
in figure 2.

Figure 2: Bottom-up traversal order (shown by in-
teger values).

The first node inspected by the algorithm is “-0.2”, fol-
lowed by “-0.5”. As no simplification rule exists in the rule-
set that governs single nodes, these nodes (and indeed the
entire bottom layer of nodes) are left unchanged. Next, the
algorithm moves to the parent node of “-0.2” and “-0.5”,
which is “-”. The subtree formed by this node and its chil-
dren (- -0.2 -0.5) matches the precondition for rule (1)
(- a b). The system applies this rule, replacing the subtree
with the rule’s effective result: “0.3”.

Now, the subtrees (+ f0 f1) and (+ f1 f0) do not match
the preconditions for any of the rules, so are left unchanged.
Note however, that they both have the same algebraic equiv-
alence hash value (shown in figure 3). Therefore, when
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Figure 3: Hashing of two subtrees with same value
(shown by integer values).

node 10 (“%”) is inspected, the subtree (% (+ f0 f1) (+

f1 f0)) does indeed match the precondition for rule (2) (%
A A). The entire subtree is replaced using the rule to a sin-
gle node 1. Similarly, the subtree (- f0 f0) matches rule
(3) (- A A) and is replaced by the single node 0 when the
algorithm processes “-”.

Figure 4 shows the tree after processing nodes 1 through
14.

Figure 4: The program after partial processing.

At this stage, the program is already reduced to 6 nodes
in size, and there are still two nodes left to be processed. In-
specting the if<0 node, the algorithm matches it with rule
(4) (if<0 c A B), as the first parameter of the if<0 opera-
tor is a constant. In this case, the constant is 1, which will
obviously never be less than 0. The system then, follow-
ing the rule, replaces this subtree with its third parameter,
which is 0.

Lastly the root node is processed, which again matches
rule (1) (- a b). Applying it yields the final result, a single
numerical constant node “0.3” (figure 5).

Figure 5: The final program, a single node.

2.5 Summary of the Simplification Algorithm
The simplification algorithm simplifies a given program in

the following way:

• Traverse the program tree in a bottom-up fashion us-
ing a postfix mode.

• For the terminal nodes, calculate the equivalence hash
values.

• For each non-terminal node

– Calculate the equivalence hash value of the node,
directly using the hash values of its child nodes.

– Iterate through the set of rules. If the node (and
its surrounding nodes) match the precondition of
a rule, apply that rule to simplify the sub-tree
associated with the node.

• Once all nodes have been processed, output the final,
simplified program tree.

This algorithm is invoked on a number of programs in
the GP system, replacing the original programs with their
simplified counterparts.

3. EXPERIMENTATION SETUP

3.1 Datasets
Four datasets, two for symbolic regression tasks and two

for multi-class object classification tasks, were used to exam-
ine the simplification method. The two symbolic regression
tasks represent different “difficulties”. The first consists of
200 data points conforming to a simple parabolic curve. The
second is a much more complicated piecewise function. We
also used 200 data points in [-10, 10] as the fitness cases in
this task. An example data set for each task is shown in
figure 6.
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Figure 6: Plots of the two regression task “ideal”
solutions.

The first classification task uses a coin dataset. The dataset
consists of 480 70x70 pixel image cutouts of New Zealand 5
and 10 cent coins with different sides up and different orien-
tations. These make up four distinct classes: 5 cent heads,
5 cent tails, 10 cent heads, 10 cent tails.

The second classification task uses a subset of the Yale
Database B Face Dataset [6]. It consists of face images of
5 subjects taken from a single position under 65 different
lighting conditions. This creates a set of 325 instances. Ex-
ample data sets for the two classification tasks are shown in
figure 7.

(a) (b)

Figure 7: Object classification data sets. (a) Coins;
(b) Faces.

3.2 Terminal and Function Sets
The terminal set consists of several randomly generated

constant terminals as well as a number of feature terminals.
The constant terminals are simply n floating point numbers
generated in the range of [-1, 1] using a uniform distribu-
tion random number generator (r0, r1, ..., rn). The number
of feature terminals (m) are task dependent. For the two
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symbolic regressions tasks, the feature terminal corresponds
to the single independent variable. In the coins classification
task, there are 8 feature terminals representing the extracted
pixel statistic features. In the face dataset, we use 18 feature
terminals representing the extracted pixel statistic features
from the various facial regions.

Terminal Set = {r0, r1, ..., rn, f0, ..., fm}

The function set used for these tasks consists of the four
basic arithmetic operators, as well as a conditional if<0 op-
erator. The division used is the commonly used “protected
division” where a divide by zero results in zero, removing
the undefined case. The conditional if<0 operator takes
three parameters, a condition which will be evaluated, a
true branch if the condition evaluates to < zero and a false

branch if the condition evaluates to ≥ zero.

Function Set = {+,−, ∗, %, if<0}

3.3 Fitness Function
For each symbolic regression task, the fitness of a program

is governed by the mean squared error of the desired output
and the actual output of the program on all patterns of each
data set.

For the classification tasks, the fitness of a program is gov-
erned by the accuracy of classification, that is, the number
of instances correctly classified by the program as a percent-
age of the total number of instances in the training set. In
this approach, we used the static-boundary method (first
described in [16]) to translate the single output of a genetic
program with a training pattern to a set of class labels.
While other methods exist [17, 11], determining the best
class translation rule is beyond the scope of this paper.

3.4 Experiment Configuration
Table 3 shows the common parameter values used in the

standard GP system and the new GP system with simplifi-
cation.

Table 3: Genetic programming system parameters.
Task Gens Pop.Size Mut. Elit. Cross. Max.Dep.
Reg1 50 500 30% 10% 60% 6
Reg2 50 500 30% 10% 60% 8
Coins 50 500 30% 10% 60% 6
Face 50 500 30% 10% 60% 8

In the new simplified GP, we also used additional “sim-
plification parameters”. As mentioned earlier, hash order

refers to the number of distinct hash values that programs
can be hashed to, and constant precision is the number of
decimal places that are kept when hashing a floating point
number. Proportion is the percentage of programs in a pop-
ulation to be applied to simplification. Measured in number
of generations, frequency refers to how often the simplifica-
tion process is applied. The parameter values used in the
experiments are shown in table 4. Frequency at every 0 gen-
eration means that the standard GP without simplification
is applied.

For the coin classification problem, we equally split the
data sets into a training set, a validation set and a test set.
For the face data set, due to a relatively small number of
examples, we used a 10-fold cross validation technique.

Both GP systems run 50 generations for all the four data
sets unless it found a solution, in which case the evolution
was terminated early. For the coin classification problem,

Table 4: Algebraic simplification: simplification pa-
rameters.

Parameter Value
Hash order (p) 1000077157

Constant precision (δ) 1000000
Proportion 100%
Frequency Every 0, 1, 2, 4, or 6 gens.

the evolution was also terminated when the accuracy on the
validation set started falling down.

All single experiments were repeated 50 runs and the
means and standard deviations of the results are presented
in the next section.

4. RESULTS AND DISCUSSION
Table 5 shows results of the two GP approaches on the

four data sets in terms of the effectiveness (best fitness —
mean squared error for regression and classification accuracy
for classification), training efficiency (number of generations
and training time), and average size of all the programs in
the systems in number of nodes.

4.1 Effectiveness
As can be seen from table 5, the GP approach with the

proposed simplification at different frequencies almost al-
ways achieved comparable or even superior fitness, either
mean square error or accuracy, on these data sets than the
basic GP approach without simplification.

We hypothesised that the simplification process during
evolution might destroy the existing good building blocks
of the genetic programs, which might result in worse clas-
sification performance. However, these results are clearly
different from the original hypothesis. After checking the
evolutionary process, we identify the following reasons. At
the beginning of evolution, although the simplification algo-
rithm might destroy some potentially good building blocks,
this effect was very much offset by the powerful crossover
operator, which can preserve good even form larger build-
ing blocks. At the later stage, when the programs are get-
ting larger and the GP evolution is difficult to make further
improvement since the crossover operator starts to destroy
good existing building blocks, the simplification algorithm
actually generates new genetic materials which might con-
tain new good building blocks by reorganising the entire
genetic programs. This makes it possible to consider the
simplification as a new genetic operator in the future.

We also observe that the GP approach with simplification
in every generation achieved worse performance than every
two to six generations in most cases. Although this simplifi-
cation could introduce new genetic materials like mutation,
the programs will not have sufficient chances for evolution
if we apply the simplification too often. Applying simplifi-
cation less frequently will give the GP system more chances
to perform evolution than that in every generation.

4.2 Efficiency
According to Table 5, while the numbers of generations

used for the evolutionary training process for different GP
systems were fairly similar, the actual training CPU times
are quite different. As expected, the GP approach with the
simplification almost always improved the training efficiency
and in some cases very much so. This is mainly because
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Table 5: Results for each of the four tasks.
Task Frequency Best Fitness Generations Time(s) Avg. Prog Size

Reg1

without 0.005 ± 0.013 28.781 ± 13.427 1.221 ± 0.501 37.611 ± 5.634
Every 1 0.011 ± 0.042 32.438 ± 13.119 1.232 ± 0.464 25.606 ± 2.937
Every 2 0.005 ± 0.013 31.562 ± 14.291 1.109 ± 0.486 27.232 ± 3.667
Every 4 0.027 ± 0.119 31.094 ± 13.359 1.071 ± 0.494 28.412 ± 5.074
Every 6 0.003±0.009 31.688 ± 12.228 1.070 ± 0.359 29.200 ± 4.581

Reg2

Without 83.774 ± 75.283 44.875 ± 4.756 5.141 ± 1.019 104.436 ± 22.171
Every 1 92.884 ± 80.624 44.875 ± 4.756 5.206 ± 0.861 74.362 ± 13.642
Every 2 67.346 ± 59.315 44.875 ± 4.756 4.270 ± 0.759 74.841 ± 13.886
Every 4 82.471 ± 85.606 44.875 ± 4.756 4.152 ± 1.069 77.337 ± 21.487
Every 6 85.301 ± 93.883 44.875 ± 4.756 3.989 ± 0.627 75.549 ± 12.840

Coins

Without 0.973 ± 0.025 35.750 ± 11.200 1.657 ± 0.532 44.476 ± 7.302
Every 1 0.964 ± 0.039 37.469 ± 10.992 1.700 ± 0.452 32.539 ± 5.622
Every 2 0.974 ± 0.028 35.031 ± 11.290 1.492 ± 0.407 34.720 ± 4.253
Every 4 0.974 ± 0.032 36.656 ± 10.527 1.477 ± 0.411 34.884 ± 5.264
Every 6 0.954 ± 0.054 37.250 ± 10.336 1.522 ± 0.355 36.566 ± 3.919

Faces

Without 0.855 ± 0.117 46.077 ± 3.578 2.646 ± 0.578 37.861 ± 8.755
Every 1 0.876 ± 0.104 45.712 ± 4.415 2.622 ± 0.583 29.798 ± 6.571
Every 2 0.867 ± 0.117 45.885 ± 3.717 2.367 ± 0.460 29.364 ± 5.966
Every 4 0.851 ± 0.105 46.077 ± 3.578 2.251 ± 0.441 28.917 ± 5.757
Every 6 0.866 ± 0.075 46.077 ± 3.578 2.288 ± 0.464 30.081 ± 6.274

the simplification process removes the redundancy, makes
the genetic programs shorter, and accordingly reduces the
search space.

Not surprisingly, the GP system with simplification at
every generation generally led to a very slight increase in
training time in most cases (except for the face data set
where there was a slight improvement). This can be at-
tributed to the overhead introduced into the system by the
simplification component. This overhead, when occurring
at every generation, usually outweighs the time saved from
processing smaller simplified programs.

4.3 Program Size
As can be seen from the last column of table 5, the aver-

age size of the programs is significantly reduced for the GP
system with simplification at all frequencies over the basic
GP without simplification. The small size programs have a
big advantage in that the actual computation time of the
solution program will be short. This is particularly useful
in the situations that has a strict time requirement such as
in some industrial control and security systems.

To do a further analysis, we also present the average size
of genetic programs at every generation for the four tasks in
figure 8. While performing simplification at lower frequen-
cies results in a higher average program size than performing
at every generation, this increase in size is very small, sug-
gesting that simplification does not need to be performed at
every generation.

4.4 Simplification Frequency Analysis
In most data sets, applying simplification at every gener-

ation led to a slight loss in fitness and a slightly higher com-
putational cost. This suggests that in general, simplification
should not be applied to evolution at every generation.

While GP with different simplification frequencies results
in different results, it is always possible to find a good one
that can achieve better effectiveness and better efficiency
than the basic GP without simplification. However, this
is generally task dependent and usually needs an empirical
search. But if such a search can improve the system per-
formance significantly, this is a small price to pay. Our ex-

periments suggest that simplification at every 2 generations
could serve as a starting point.

5. CONCLUSIONS
The goal of this paper was to develop an online program

simplification approach in GP during the evolutionary pro-
cess. This goal was successfully achieved by defining a set of
algebraic simplification rules, traversing the program tree in
an bottom-up fashion by an postfix order, and applying the
simplification rules along with an algebraic equivalence com-
ponent to non-terminal nodes to simplify programs directly
without needing to translate it into another format.

The GP system with the simplification algorithm was ex-
amined and compared with the basic GP approach without
simplification on four regression and classification problems
of varying difficulty. The results suggest that, the new sim-
plification approach outperformed the basic GP approach in
terms of effectiveness, efficiency and program size on these
data sets.

The results also suggest that performing simplification at
every generation is not recommended and simplification at
every two generations could serve as a starting point.

The online simplification during evolution seems to be
able to reduce the search space. While it could introduce
new genetic materials, it is not clear whether and/or how it
destroys good building blocks in the early stage of evolution,
which needs to be further investigated.

In the current approach, we applied the simplification to
all individual programs in the population. We will investi-
gate whether the performance can be further improved if we
only simplify a proportion of programs in the population.
We will also investigate what effects would be produced if
we consider the simplification as a new operator and put it
into the function set.
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Figure 8: Average program size per generation. (a) Reg1; (b) Reg2; (c) Coins; (d) Faces.
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