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ABSTRACT 
This paper has two aspects. First, it describes the use of genetic 
programming to automatically synthesize a solution to the 
challenge problem posed at an international competition held 
every four years in the field of optical design. In 2002, the 
competition at the International Optical Design Conference 
attracted 42 entries from 39 well-known optical designers, 
commercial consultants, and patent holders from many of the 
field’s most prominent companies, universities, and research 
institutions. The 39 human contestants spent an average of 34.1 
hours working on their entries. Virtually all entries were 
considered good solutions to the challenge problem. Genetic 
programming automatically synthesized a design “from 
scratch”—that is, without starting from a pre-existing human-
created design and without pre-specifying the number of lenses, 
the physical layout of the lenses, or the numerical or non-
numerical parameters of the lenses. The run of genetic 
programming did not employ any knowledge base of design 
techniques or principles from the field of optical design and did 
not entail any human intervention during the run. The 
genetically evolved optical lens system would have ranked in the 
middle (21st) if it had been entered into the 2002 competition 
and is therefore an instance of a “human-competitive” result 
produced by genetic programming. Second, this paper presents a 
mutation operation for numerical constants that is especially 
appropriate for problems in which the to-be-designed structure 
contains a large number of non-linearly interrelated numerical 
values and for problems in which the topology of the solution is 
to be automatically created. 

Categories and Subject Descriptors 
G.1.6–Global Optimization; I.2.2–Automatic Programming 
Program Synthesis; I.2.8–Control Methods and Search; J.2–
Physics 

General Terms 
Design, algorithms 

Keywords 
Genetic programming, automated design, optical lens system, 
human-competitive result, invention machine, mutation 
operation, International Optical Design Conference 

1 INTRODUCTION 
Every four years, a design competition is held at the 
International Optical Design Conference (IODC). In his paper 
reporting on the 2002 competition, Richard C. Juergens of 
Raytheon Missile Systems described the goal of the challenge 
problem formulated by the competition’s six-member committee 
of optical design experts [8]:  

The problem ideally should not be a commercially 
viable lens (this is to encourage participation in the 
problem), should be optically challenging, should be 
one that cannot be solved easily with a global 
optimizer, and should not favor one lens design 
program over another by its requirements. 

In 2002, 42 entries were submitted by 39 human contestants. 
Most contestants were well-known optical designers, 
commercial consultants, and patent holders from many of the 
most prominent companies, universities, and research 
institutions in the field of optical design. The contestants were 
given several months to formulate their solutions to the 
challenge problem. The contestants reported spending an 
average of 34.1 hours working on their entries. Participants in 
the competitions each had between 5 and 40 years of experience 
in the field of optical design [4].  

Juergen [8] summarized the 42 entries by saying: 

The different design forms submitted show that 
different designers used different techniques and 
different optimization methodologies to solve the 
problem. …  

This problem showed a wide variation among entrants 
in design form, the number of lenses used, glass 
choice, overall length, etc. So rather than being a test 
of optical design codes, it was more of a test of the 
designers. This was a problem where designer 
ingenuity and "thinking outside of the box" was 
essential to getting a good solution.  
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[I]n general, the results were quite good, with most of 
the spot sizes well below the diffraction limit, and 
with the RMS [root mean square] focal shift 
differences being much less than 0.001mm. [Emphasis 
added]  

In addition to Juergens, the committee included Richard 
Pfisterer of Photon Engineering, Richard Youngworth of Kodak, 
Joseph Howard of NASA Goddard Space Flight Center, 
Yongtian Wang of the Beijing Institute of Technology, and 
Bany Johnson of Optical E.T.C. David Shafer of Shafer Lens 
Design came up with the idea for the problem. The committee 
was advised by Paul Manhart of Raytheon Missile Systems and 
Robert Shannon of the University of Arizona Optical Sciences 
Center.  

This paper has two aspects. First, it describes the use of genetic 
programming to automatically synthesize a solution to the 
challenge problem posed at the 2002 International Optical 
Design Conference. Our evolutionary approach differed from 
the approach used by the 39 human contestants in that it was 
fully automated. Genetic programming automatically 
synthesized a design “from scratch”—that is, without starting 
from a pre-existing human-created design and without pre-
specifying the number of lenses, the physical layout of the 
lenses, or the numerical or non-numerical parameters of the 
lenses. The run of genetic programming did not employ any 
knowledge base of design techniques or principles from the field 
of optical design and did not entail any human intervention 
during the run. The human contestants generally started from 
design that they thought were good and then applied their 
judgment and standard software optimization techniques (e.g., 
damped least squares) to improve their designs.  

The evolved optical lens system would have ranked in the 
middle (21st) if it had been entered into the 2002 IODC 
competition. The evolved lens system is therefore an instance of 
a “human-competitive” result [12, 13] produced by genetic 
programming  

Second, this paper presents a mutation operation for numerical 
constants that is especially appropriate for problems in which 
the to-be-designed structure contains a large number of non-
linearly interrelated numerical values and in which the topology 
(that is, the size and shape) of the problem’s solution must be 
automatically created. 

Section 2 provides a statement of the problem. Section 3 
mentions previous work involving the use of genetic 
programming to design optical lens systems. Section 4 describes 
the improved mutation operation for numerical constants. 
Section 5 discusses the preparatory steps used to apply genetic 
programming to the automated design of optical lens systems. 
Section 6 presents the results produced by genetic programming 
for the challenge problem from the 2002 International Optical 
Design Conference. Section 7 is the conclusion.  

2 STATEMENT OF THE PROBLEM 
Optical design is more of an art than a science. As Warren J. 
Smith states in Modern Optical Engineering [16, page 393]: 

There is no “direct” method of optical design for 
original systems; that is, there is no sure procedure 
that will lead (without foreknowledge) from a set of 
performance specifications to a suitable design. 

A complete design for a classical optical lens system 
encompasses numerous decisions, including the choice of the 
system’s topology (e.g., the number of lens surfaces, number of 
lenses, number of lens groups, and their physical placement 
relative to one another), choices for numerical parameters (e.g., 
radius of curvature, distance between lens surfaces), and choices 
for non-numerical parameters (e.g., material). A classical lens 
system is conventionally specified by a table called a 
prescription (or, if the system is being analyzed by modern-day 
optical simulation software, a lens file). Once a classical optical 
system is specified by means of its prescription or lens file, 
many of its optical properties can be calculated by tracing the 
path of light rays of various wavelengths through the system.  

The challenge problem at the 2002 International Optical Design 
Conference called for the design of an all-refractive optical lens 
system that simulates the chromatic behavior of a diffractive 
optical element. Diffractive elements have large amounts of 
axial chromatic aberration—typically reversed in sign of that of 
normal optical materials and one to two orders of magnitude 
greater. Specifically, the 2002 problem involved designing an 
f/8 lens system with a focal length of 100 mm at the reference 
wavelength of 575 nm that simulates the chromatic nature of a 
diffractive optical element over wavelengths ranging from 400 
to 750 nm. The design was open-ended in that there were no 
restrictions on the number of lenses or the overall length of the 
lens system. The following specifications applied:  

● The optical lens system was to be all-refractive—
with no reflecting or diffractive surfaces allowed.  

● Lenses were to be all spherical, and must be made of 
glasses found in the current or previous Schott 
glass catalog.  

● 15 wavelengths equally spaced across the spectral 
band were to be used in the evaluation (namely 
400, 425, 450, 475, 500, 525, 550, 575, 600, 
625, 650, 675, 700, 725, and750 nm), with the 
reference wavelength being 575 nm.  

● The differences in paraxial focal shifts at each of the 
15 wavelengths from that of the reference 
wavelength were to be compared to the focal 
shifts of an ideal diffractive surface. All paraxial 
focus distances were to be positive from the last 
glass surface in the system (i.e., no negative 
image distances).  

● Axial and edge glass thicknesses were to be 
positive.  

The IODC 2002 committee specified a particular merit function 
(what practitioners of genetic and evolutionary computation 
would call the fitness measure) that was to be optimized and that 
would be used in ranking entries from the contestants. The 
IODC fitness measure had two elements. The first element was 
the RMS (root mean square) of the spot size at the nominal 
wavelength at a user-specified focal plane (which can be called 
the imaging performance). The second element was the RMS of 
the focal shift differences between the lens and those of the 
diffractive surface (which can be called the diffractive 
performance). Because the committee believed that it would be 
considerably easier to achieve a small spot size than to achieve 
good focal shift differences, the RMS of the spot size was 
weighted by a factor of 100 relative to the RMS of the focal shift 
differences. The fitness measure for the 2002 IODC problem 
was thus  
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F = (100 A)2 + B2 . 

In this expression, A is the RMS of the spot size. The value of A 
is computed with a rectangular grid across the entrance pupil 
with 100 rays across the diameter (giving 7,850 rays in the on-
axis spot diagram).  

In the above expression, B is the RMS of the focal shift 
differences. Si, is the focal shift for the i-th wavelength for the 
ideal diffractive element that is being approximated in this 
problem. If λ(i) is the wavelength, then 
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3 PREVIOUS USE OF GENETIC 
PROGRAMMING FOR OPTICAL 
DESIGN 

In 2002, Beaulieu, Gagné, and Parizeau [2] successfully used 
genetic programming to “re-engineer” the design of a pre-
existing monochromatic lens system with four lenses using 
functions that incrementally adjusted (additively or 
multiplicatively) the distance between lens surfaces, radius of 
curvature of lens surfaces, and stop location values.  

In 2005, Al-Sakran, Koza and Jones [1], Jones, Al-Sakran, and 
Koza [6, 7] and Koza, Al-Sakran, and Jones [9, 10, 11] used 
genetic programming to automatically re-invent seven 
previously patented optical lens systems “from scratch.” 

4 MULTI-DIMENSIONAL MUTATION 
OPERATION 

The challenge of the field of optical design is similar to the 
challenge involved in designing electrical circuits, antennas, 
controllers, networks of chemical reactions, and other complex 
structures in that a satisfactory design usually entails the 
synthesis of both (1) a topological arrangement of components 
and (2) a determination of the numerical and non-numerical 
parameters for each component. Practical design of optical 
systems differs, however, from the design of these other types of 
structures in two important respects.  

First, in many lens systems, each ray that is used to analyze the 
system’s performance passes through all the system’s surfaces 
and is very substantially influenced by the thickness of each 
lens, the material of each lens, the curvature of each lens 

surface, and the spacing between each lens surface. That is, the 
degree of coupling between the components of an optical system 
is unusually high.  

Second, very small changes in the value of the numerical 
parameters of the components in an optical system are often very 
important. That is, sensitivity to component values is unusually 
high in optical systems. In contrast, most electrical circuits can 
successfully perform their desired functions even though their 
individual components are, in practice, manufactured using 
processes in which component values routinely vary by 5% or 
more.  

Moreover, it was clear in advance that the demanding 
specifications of the challenge problem at the 2002 International 
Optical Design Conference would necessitate a structure having 
a large number of components—each with numerous numerical 
and non-numerical parameters. This expectation was confirmed 
to us when our initial debugging runs yielded structures with 
well over a hundred parameter values. This expectation was 
further confirmed by the fact that, among the 42 human entries 
to the competition, the winning entry had 59 lenses; the largest 
number of lenses was 90; and the average was 21 lenses. Each 
surface is characterized by two numerical parameters and one 
non-numerical parameter. The largest number of lens groups 
was 31. The average number of glass types was 8.  

The foregoing considerations suggested that a difficult optical 
design problem would probably challenge the ability of genetic 
programming to discover the appropriate value for the numerous 
numerical and non-numerical values associated with the 
system’s numerous components to a far greater degree than was 
the case for design problems from other fields that were 
previously solved by means of genetic programming. This 
observation suggested that it might be desirable to enhance the 
ability of genetic programming to cope with design problems 
involving discovery of numerous highly coupled, highly 
sensitive parameter values.  

The mutation operation typically used in runs of genetic 
programming for parameter values is a point mutation 
operation—that is, it adjusts one numerical or non-numerical 
parameter at a time. In generation 0, each perturbable value is 
set, individually and separately, to a random value in a chosen 
range appropriate for the problem. In the case of problems of 
optical design, the perturbable value is numerical if a radius of 
curvature or a distance (thickness) is involved, but non-
numerical if a material is involved (e.g., a type of glass from a 
specified glass catalog, air, vacuum, oil, plastic). After 
generation 0, a perturbable value may be perturbed. For 
numerical values, the to-be-perturbed value is considered to be 
the mean of a Gaussian distribution. A relatively small preset 
parameter establishes the standard deviation of the Gaussian 
distribution. The to-be-perturbed numerical value is then 
perturbed by an amount determined by the Gaussian 
distribution. When a material (e.g., a type of glass) must be 
mutated in an optical lens system, a two-dimensional mutation 
operation is used. The current material is considered to be a 
point on a plane defined by the material’s index of refraction, n, 
and its Abbe number, V. The to-be-perturbed material is then 
perturbed by picking a randomly chosen distance determined by 
a Gaussian distribution. A point in the plane representing an 
allowable material (e.g., a material in the specified glass catalog) 
is found whose distance from the point representing the original 
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material is closest (measured by Euclidean distance) to the 
randomly chosen distance.  

It is true that successive mutations may sometimes be applied to 
the same individual. It is also true that, in some versions of 
genetic programming, two points in a given individual may be 
mutated (with probability p2) and k points may be mutated (with 
probability pk). Nonetheless, because p is always relatively 
small, p2 and pk are exceedingly small. In short, as a practical 
matter, mutation in genetic programming (and, indeed, in 
genetic algorithms) performs a low-dimensionality local 
search—not a high-dimensionality search. 

The authors believe that a higher-dimensional mutation 
operation is appropriate for difficult problems requiring the 
discovery of numerous highly coupled parameter values. 
Accordingly, for the work described in this paper, we used a 
new multi-dimensional mutation operation. This operation is 
similar to conventional mutation in that it acts on a single 
individual selected from the population based on its fitness and 
in that a point is picked at random from the individual in the 
same manner as for crossover. Figure 1 shows an illustrative 
individual in which the picked point is the PROG2 function at 
the top of the sub-tree contained within the dotted lines. In the 
new multi-dimensional mutation operation, none of the 
functions in the sub-tree rooted at the picked point are affected 

by the operation. That is, the new operation does not replace the 
pre-existing subtree with a newly grown subtree at the picked 
point. The new operation does not affect the functions in the 
subtree. Instead, all the parameter values (numerical and non-
numerical) contained in the sub-tree are separately and 
individually mutated (using the same Gaussian perturbation used 
for point mutation). During the course of a run of genetic 
programming, this new multi-dimensional mutation operation is 
applied to subtrees containing differing numbers of parameters. 
That is, the dimensionality of the new multi-dimensional 
mutation operation varies.  

In addition to the new multi-dimensional mutation operation 
described above, this work also employed a domain-specific 
operation that splits nested groups of lenses. The group-splitting 
operation begins by randomly picking a surface within a nested 
group (if any) of lenses. The operation duplicates the picked 
surface and inserts a fixed amount air (in fact, the minimum 
allowed amount of air) between the two surfaces. This operation 
is motivated by a technique described by Smith [15, page 25] 
often used by optical designers. 

There are several classic design modification 
techniques which can be reliably used to improve an 
existing lens design [including] split[ing] a cemented 
doublet.  

 

PROGN2

SS

PROGN2

BK7-3.523 0.219

SS

PROGN2

AIR BK7-2.983 2.804 -1.053 0.073

SS

SS

PROGN2

SK4+1.252 0.059

SS

PROGN2

AIR BK7-1.224 0.219 +4.053 0.073

SS

 
Figure 1 Multi-dimensional mutation operation 
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5 PREPARATORY STEPS 
We now describe the representation scheme (including a 
developmental process, function set, and terminal set), the 
fitness measure, and the two domain-specific mutation 
operations that we used.  

5.1 Representation Scheme 
The format for optical prescriptions (lens files) that is widely 
used in the field of optical design suggests the use of a 
developmental process [17, 5] for representing individuals in the 
population. The developmental representation that we used 
employs a turtle similar to the turtle used in Lindenmayer 
systems [14], the LOGO programming language, and previous 
work using genetic programming to synthesize geometric 
patterns [9], analog electrical circuits [12, 13], and antennas [3]. 
For work in this paper, we followed our previously published 
developmental representation, function set, terminal set, 
constrained syntactic structure, and test fixture [1, 6, 7, 10].  

There are two functions (SS and PROGN2) in the function set 
for this problem. The three-argument SS (“spherical surface”) 
function causes the turtle to do three things at its starting point 
(and each subsequent point to which the turtle moves). First, it 
inserts a spherical surface with a specified radius of curvature at 
the turtle’s present location. Second, the SS function moves the 
turtle to the right by a specified distance along the system’s 
main axis. Third, the SS function fills the space to the right of 
the just-added surface with a specified type of material. The 
two-argument PROGN2 function is a connective function.  

A constrained syntactic structure specifies how the functions 
and terminals may be combined in a program tree. The 
constrained syntactic structure enforces the use of one terminal 
set (containing perturbable numerical values) for each value-
setting subtree that establishes the numerical value for thickness 
and radius of curvature; another terminal set for establishing the 
type of material (containing symbolic values changeable by the 
glass mutation operation); and the function set for all other parts 
of the program tree (with PROGN2 as the top-most function in 
each program tree).  

The object surface, image surface and entry pupil together 
constitute a test fixture that is directly analogous to the test 
fixtures used in connection with previously published work on 
the automatic synthesis of electrical circuits by means of genetic 
programming [12, 13].  

5.2 Fitness Measure 
We developed our own lens analysis simulator based on 
KOJAC, a public-domain educational software package for 
optical ray tracing originally authored by Olivier Scherler and 
currently maintained by Olivier Ripoll, to evaluate the 
performance of candidate lens systems. We wrote code to use 
the ray traces produced by KOJAC to compute relevant optical 
characteristics and additionally wrote code for the image 
analysis. We embedded all of this code into our genetic 
programming code. For post-run validation of final results, we 
used a commercially available software package (OSLO from 
Lambda Research) running on a single workstation.  

The fitness of an individual in the population was evaluated in 
four phases. The first three phases tested whether an individual 
was degenerate, optically implausible, or was not in the desired 
result space. 

In the first phase, lens systems containing only air surfaces are 
culled.  

In the second phase, the lens system is scaled such that the EFL 
is exactly 100mm when calculated at the nominal wavelength of 
575 nm. If the resulting scaled system has a negative EFL or the 
system becomes extremely large or small, the individual is 
assigned a large penalty value of fitness (and effectively culled). 
Otherwise, the focal shift RMS error (B in section 2) is 
calculated. The individual is assigned a temporary value of 
fitness equal to B. If B > 0.5 (i.e., there is insufficient diffractive 
behavior), the individual is not evaluated further. 

In the third phase, the system was checked to be sure that it 
forms an image to the right of the lenses (i.e., is focal). If the 
system is focal, no additional value is added to the individual’s 
temporary value of fitness. If the individual was afocal (i.e., the 
rays exiting the system are divergent), then a value equal to the 
slope of a divergent reference ray is added to the fitness. Phase 3 
is necessary because the calculation of an RMS spot size is 
meaningless for a system without an image plane. If an 
individual is compliant with the requirements of the first three 
phases, we proceed to the fourth phase. 

In the fourth phase, 7,850 rays evenly spaced over the entry 
pupil of the system were cast for the spot diagram and the 
resultant value of A (the RMS spot size) is calculated. The 
individual was then assigned a final value of fitness using the 
formula (described in section 2 above) established by the 
committee that formulated the challenge problem for the 2002 
International Optical Design Conference. 

5.3 Control Parameters 
The population size was approximately 161,600 (320 
individuals per node and 505 nodes on a Beowulf-style cluster 
computer). The multi-dimensional mutation for numerical and 
non-numerical values (described in section 4) was performed 
with a probability of 50% and the conventional crossover 
operation for genetic programming [13] was performed with a 
probability of 35%. The lens-spitting operation [6] and the n-let 
splitting mutation operation (described in section 4) were 
performed with a probability of 6% and 5%, respectively. The 
conventional sub-tree mutation and reproduction operations for 
genetic programming [13] were performed with probability 1% 
and 3%, respectively.  

6 RESULTS 
The best-of-run individual appeared in generation 1019. This 
individual had a fitness of 0.09042 (i.e., a focal shift RMS value 
of 0.09152 and a spot size RMS value of 0.00007593).  

This individual had 88 surfaces (not counting stacked air 
surfaces) and 76 surfaces (after combining like glass types). The 
length of the system was 1712.14 mm.   

The value of 0.00007593 is two orders of magnitude below the 
diffraction limit of the evolved system (0.005918).  
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Figure 2 Best-of-run individual from generation 1019 
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Figure 3 Best result (by Lerner) on the challenge problem at the 2002 International Optical Design Conference 
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Figure 4 Plot of 42 human-created entries (small squares) and our evolved system (large circle) 
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Table 1 compares, for each of the 15 wavelengths, the ideal 
value of the effective focal length (EFL) with the EFL for the 
best-of-run individual. Column 2 of the table is the value of the 
focal length of the ideal diffractive element that is being 
approximated at each wavelength in this problem. Column 3 is 
the corresponding value for the best-of-run individual.  

Table 1: Comparison of ideal value of effective focal length 
and evolved individual  

 Wavelength (nm) Ideal 
EFL 
value 

Evolved 
EFL 
value 

 400 143.7514 143.696 
 425 135.2955 135.421 
 450 127.7791 127.807 
 475 121.0538 120.977 
 500 115.0012 114.879 
 525 109.5249 109.415 
 550 104.5465 104.485 
 575 100.001 100.001 
 600 95.83429 95.891 
 625 92.11176 92.096 
 650 88.46242 88.569 
 675 85.18604 85.272 
 700 82.14368 82.176 
 725 79.31114 79.256 
 750 76.66743 76.492 

Figure 5 shows the same information as table 1. The two sets of 
values are so similar that the two curves are virtually 
indistinguishable.  
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Figure 5 Comparison of ideal value of effective focal length 
and evolved individual 
Figure 2 presents the optical lens system that emerged as the 
best-of-run individual from generation 1019. Because lens 
surfaces in our evolved system (and other entries in the IODC 
competition) contain several densely concentrated sets of 
surfaces, the system is presented visually in three parts. Part A 
of the figure shows the entire optical lens system. The entire 
evolved system has 76 effective surfaces and a length of 1,712 

mm (about 5 ½ feet). Then, the first seven surfaces of part A are 
deleted and the remaining 69 surfaces (occupying only 28.22 
mm and labeled W) are expanded and shown as part B of the 
figure. Finally, part B’s final seven surfaces are deleted and the 
62 remaining surfaces (occupying only 14.38 mm and labeled Y 
and Z) are shown in part C of the figure. The portion of part B 
labeled Y is shown at the left of part C. The portion of part B 
labeled Z is shown at the right of part C.  

The best result on the challenge problem at the 2002 
International Optical Design Conference was submitted by Scott 
Lerner of Lawrence Livermore Labs. Lerner’s lens system 
(figure 3) was about 4/5 of a mile (1,078,241mm).  

Figure 4 is a plot of the 42 entries in the challenge problem at 
the 2002 International Optical Design Conference in terms of 
the competition’s two judging criteria—namely the RMS focal 
shift (horizontal axis) and the RMS spot size (vertical axis). 
Smaller values are better. Lerner’s result is in the lower-left 
corner. Our evolved optical lens system is represented by the 
large circle in the figure. As can be seen, our evolved optical 
lens system would have ranked in the middle (21st) if it had been 
entered into the competition in 2002.  

Two of the eight criteria [12, 13] for saying that an 
automatically created result is “human-competitive” are 

(G) The result solves a problem of indisputable 
difficulty in its field.  

(H) The result holds its own or wins a regulated 
competition involving human contestants (in the form 
of either live human players or human-written 
computer programs). 

Our result on the challenge problem at the 2002 International 
Optical Design Conference satisfies criteria G and H. Therefore, 
we claim that the genetically evolved result in this paper is an 
instance of “human-competitive” result produced by genetic 
programming.  

7 CONCLUSION 
This paper described how genetic programming was used to 
automatically synthesize a solution to the challenge problem at 
the 2002 International Optical Design Conference. Genetic 
programming automatically synthesized a design “from 
scratch”—that is, without starting from a pre-existing human-
created design and without pre-specifying the number of lenses, 
the physical layout of the lenses, or the numerical or non-
numerical parameters of the lenses. The automatic synthesis did 
not employ any knowledge base of principles or techniques from 
the field of optical design and did not entail any human 
intervention during the run. The genetically evolved optical lens 
system would have ranked in the middle (21st) if it had been 
entered into the 2002 competition and is therefore an instance of 
a “human-competitive” result produced by genetic 
programming. This paper also described a new high-
dimensionality mutation operation for numerical constants that 
is especially appropriate for problems in which the to-be-
designed structure contains a large number of non-linearly 
interrelated numerical values and in which the topology (that is, 
the size and shape) of the problem’s solution must be 
automatically created.  
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