
Memory Analysis and Significance Test for Agent
Behaviours

DaeEun Kim
University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom

DaeEun.Kim@le.ac.uk

ABSTRACT
Many agent problems in a grid world have a restricted sen-
sory information and motor actions. The environmental
conditions need dynamic processing of internal memory. In
this paper, we handle the artificial ant problem, an agent
task to model ant trail following in a grid world, which is one
of the difficult problems that purely reactive systems can-
not solve. We provide an evolutionary approach to quantify
the amount of memory needed for the agent problem and
explore a systematic analysis over the memory usage. We
apply two types of memory-based control structures, Koza’s
genetic programming and finite state machines, to recognize
the relevance of internal memory. Statistical significance
test based on beta distribution differentiates the character-
istics and performances of the two control structures.

Categories and Subject Descriptors: I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search;
I.2 [[Artificial Intelligence]: Miscellaneous; H.4 [Information
Systems Applications]: Miscellaneous

General Terms: Algorithms

Keywords: grid world problem, finite state machines, ge-
netic programming, internal states, computational effort

1. INTRODUCTION
Many agent problems in a grid world have been handled

to understand agent behaviours in the real world or pursue
characteristics of desirable controllers. Normally grid world
problems have a set of restricted sensory configurations and
motor actions. Memory control architecture is often needed
to process the agent behaviours appropriately. Finite state
machines and recurrent neural networks were used in the ar-
tificial ant problems [7]. Koza [13] applied genetic program-
ming with a command sequence function to the artificial ant
problem. Teller [24] tested a Tartarus problem by using an
indexed memory. Wilson [25] used a new type of memory-
based classifier system for a grid world problem, the Woods
problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

* *

(a) (b)

Figure 1: Artificial ant trails (a) John Muir trail (b)
Santa Fe trail (*: ant agent, ◦: food)

The artificial ant problem is a simple navigation task that
imitates ant trail following. In this problem, an agent must
follow irregular food trails in the grid world to imitate an
ant’s foraging behavior. The trails have a series of turns,
gaps, and jumps on the grid and ant agents have one sensor
in the front to detect food. Agents have restricted informa-
tion of the surrounding environment. Yet they are supposed
to collect all the food on the trails. The first work, by Jef-
ferson et al. [7], used the John Muir trail, and another trail,
called Santa Fe trail, was studied with genetic programming
by Koza [13]. The trails are shown in Figure 1.

This problem was first solved with a genetic algorithm
to test the representation problem of controllers by Jeffer-
son et al. [7]. A large population of artificial ants (65,536)
were simulated in the John Muir trail with two different con-
troller schemes, finite state machines and recurrent neural
networks. Each ant has a detector to sense the environment
and an effector to wander about the environment; one bit
of sensory input to detect food and two bits of motor ac-
tions to move forward, turn right, turn left and think (no
operation). Its fitness was measured by the amount of food
it collects in 200 time steps. At each time step, the agent
can sense the environment and decide on one of the motor
actions. The behaviors of ant agents in the initial popula-
tion were random walks. Gradually more food trails were
traced by evolved ants. Koza [13] applied genetic program-
ming to the artificial ant problem with the Sante Fe trail
(see Figure 1(b)), which has more gaps and turns between
food pellets. In his approach, the control program has a
form of S-expression (LISP) including a sequence of actions
and conditional statements.

Many evolutionary approaches related to the artificial ant
problem considered the fitness as the amount of food that

151

the ant has eaten within a fixed number of time steps [7, 13,
1, 23]. The approaches suggested a new design of control
structures to solve the problem, and showed the best per-
formance that they can achieve. The artificial ant problem
is an agent problem that needs internal memory to record
the past sensory readings or motor actions. However, there
has been little discussion for the intrinsic properties related
to memory to solve the problem, although the control struc-
tures studied so far have a representation of internal mem-
ory. Agent problems in a grid world have been tackled with
a variety of control structures [13, 15, 23, 8, 9], but there has
been little study to compare control structures for memory
effect.

Internal memory is an essential component in agent prob-
lems in a non-Markovian environment [19, 15, 11]. Agents
often experience a perceptual aliasing problem 1 in non-
Markovian environment. For instance, in the artificial ant
problem an ant agent has two sensor states with one sen-
sor, food detected or not in the front, but it needs differ-
ent motor actions on the same sensor state, depending on
the environmental feature. Thus, a memoryless reactive ap-
proach is not a feasible solution for the problem. There have
been memory-encoding approaches to solve agent problems
or robotic tasks in a non-Markovian environment or partially
observable Markov decision process (POMPDP). Lanzi [16]
has shown that internal memory can be used by adaptive
agents with reinforcement learning, when perceptions are
aliased. Also there have been researches using a finite-size
window of current and past observations and actions [19, 18].
Stochastic approaches or reinforcement learning with finite
state controllers have been applied to POMDPs [20, 4, 22].
Bakker and de Jong [3] proposed a means of counting the
number of internal states required to perform a particular
task in an environment. They estimated state counts from
finite state machine controllers to measure the complexity
of agents and environments. They initially trained Elman
networks by reinforcement learning and then extracted finite
state automata from the recurrent neural networks. As an
alternative memory-based controller, a rule-based state ma-
chine was applied to robotic tasks to see the memory effect
[10]. Kim and Hallam [11] suggested an evolutionary mul-
tiobjective optimization method over finite state machines
to estimate the amount of memory needed for a goal-search
problem.

Generally, finding an optimal memory encoding with the
best behaviour performance in non-Markovian environments
is not a trivial problem. To solve the artificial ant problem,
we will follow the evolutionary robotics approach. In the
evolutionary approach, the behaviour performance of an ant
agent is scored as fitness and then the evolutionary search
algorithm with crossover and mutation operators tries to
find the best control mapping from sensor readings to ac-
tions with a given memory structure. Here, we focus on the
question of how many memory states are required to solve
the artificial ant problem in non-Markovian environment or
what is the best performance with each level of memory
amount. This issue will be addressed with a statistical anal-
ysis of fitness distribution.

In this paper, we introduce a method of quantitative com-

1When the environmental features are not immediately ob-
servable or only partial information about the environment
is available to an agent, the agent needs different actions
with the same perceived situation.

(if-food-ahead (move)
(progn3 (left)

(progn2 (if-food-ahead (move)
(right))

(progn2 (right)
(progn2 (left) (right))))

(progn2 (if-food-ahead (move)
(left))

(move))))

Figure 2: Control strategy for Santa Fe trail by
Koza’s genetic programming (reprinted from [20])

parisons among control structures, based on the behaviour
performances. Then we compare two different control struc-
tures, genetic programming controllers and finite state ma-
chines. To discriminate the performances of a varying num-
ber of memory states, we provide a statistical significance
analysis over the fitness samples.

2. MEMORY-ENCODING STRUCTURES

2.1 Genetic programming approach
Koza [13] introduced a genetic programming approach to

solve the artificial ant problem. The control structure fol-
lows an S-expression as shown in Figure 2. The ant prob-
lem has one sensor to look around the environment, and
the sensor information is encoded in a conditional state-
ment if-food-ahead. The statement has two conditional
branches depending on whether or not there is a food ahead.
The progn function connects an unconditional sequence of
steps. For instance, the S-expression (progn2 left move)

directs the artificial ant to turn left and then move forward
in sequence, regardless of sensor readings. The progn func-
tion in the genetic program corresponds to a sequence of
states in a finite automaton.

In Koza’s approach, a fitness measure for evolving con-
trollers was defined as the amount of food ranging from 0
to 89, traversed within a given time limit. An evolved ge-
netic program did not have any numeric coding, but instead
a combination of conditional statements and motor actions
were represented in an S-expression tree without any explicit
state specification. The evaluation of the S-expression is re-
peated if there is additional time available. Figure 2 is one
of the best control strategies found [13].

Following Koza’s genetic programming approach, we will
evolve S-expression controllers for the Sante Fe trail in the
experiments. Here, we use only two functions, if-food-ahead
and progn2 to restrict evolving trees into binary trees, and
progn3 can be built with a combination of the primitive
function progn2. In the evolutionary experiments, the num-
ber of terminal nodes in an S-expression tree will be taken
as a control parameter. As a result, we can see the effect
of a varying number of leaf nodes, that is, a variable-length
sequence of motor actions depending on the input condition.
Later we will explain how the control parameter is related
with the amount of memory that the S-expression tree uses.

2.2 Finite state machines
A simple model of memory-based systems is a Boolean cir-

cuit with flip/flop delay elements. A Boolean circuit network
with internal memory is equivalent to a finite state machine
[12]. Its advantage is to model a memory-based system with

152

state input 0 input 1
q0 q1, L q0, M
q1 q2, R q2, M
q2 q3, R q3, R
q3 q4, L q4, M
q4 q0, M q0, M

state input 0 input 1
q0 q7, R q6, M
q1 q6, N q2, R
q2 q5, R q5, M
q3 q0, R q1, L
q4 q2, L q5, M
q5 q6, N q4, M
q6 q0, R q6, M
q7 q2, R q2, L

(a) (b)

Table 1: Finite state machines for Santa Fe trail
problem (input 1: food ahead, input 0: no food
ahead, output set is L (turn left), R (turn right),
M (move forward), N (no-operation)) (a) 405 time
steps, with 5 states (b) 379 time steps, with 8 states

a well-defined number of states, and allows us to quantify
memory elements by counting the number of states. The
incorporation of state information helps an agent to behave
better, using past information, than a pure reaction to the
current sensor inputs. Finite state machines have been used
in evolutionary computation to represent state information
[5].

A Finite State Machine (FSM) can be considered as a
type of Mealy machine model [12], so it is defined as M =
(Q, Σ, Δ, δ, λ, q0) where q0 is an initial state, Q is a finite set
of states, Σ is a finite set of input values, Δ is a set of multi-
valued outputs, δ is a state transition function from Q×Σ to
Q, and λ is a mapping from Q×Σ to Δ, where λ(q, a) ∈ Δ.
δ(q, a) is defined as the next state for each state q and input
value a, and the output action of machine M for the input
sequence a1, a2, a3, ..., an is λ(qx0 , a1), λ(qx1 , a2), λ(qx2 , a3),
..., λ(qxn−1 , an), where qx0 , qx1 , qx2 , ..., qxn is the sequence
of states such that δ(qxk , ak+1) = qxk+1 for k = 0, .., n − 1.

FSM can be used as a quantifiable memory structure, but
developing an optimal state transition mapping needs an ex-
haustive search and so we apply a genetic algorithm to find
desirable FSM controllers for the agent problem. An FSM
controller is denoted as a numeric chromosome consisting
of integer strings, unlike Koza’s genetic programming. The
chromosome represents a state transition table in a canonical
order and its initial state is 0 by default. That is, the gene
coding is defined here as a sequence of the pair (state num-
ber, state output) of each sensor value in canonical order of
state number. For example, the gene coding in Table 1(b) is
represented as: 7R6M 6N2R 5R5M 0R1L 2L5M 6N4M 0R6M

2R2L, where motor actions will also be coded numerically.
A set of sensor configurations is defined for each internal
state, following the Mealy machine notation. The encoding
of the Mealy machine can easily represent sequential states.
However, it needs an encoding of complete sensory configu-
rations for each state and scales badly with growing machine
complexity. This control structure is useful to agents with a
small number of sensors, since the chromosome size in finite
state machines is exponentially proportional to the number
of sensors. The artificial ant has one sensor, and the Mealy
machine will have a reasonable size of chromosome even for
a large number of internal states.

If there is a repeated sequence of actions, (A1, A2, A3, ...,
An) to be executed, it can be run by FSM controllers with
at most n internal states. Koza’s genetic program has a
sequence of conditioned actions and so it can be converted
into a finite state automaton without difficulty. Terminal

nodes in a genetic program of S-expression define motor ac-
tions of an ant agent, and the tree traversal by a depth-
first-search algorithm relying on sensor readings will guide
a sequence of actions. We can simply assign each action
in sequence to a separate internal state, and the sequence
order will specify the state transition. For example, the
function progn2 or progn3 has a series of actions, and so
the corresponding states defined for the actions will have
unconditional, sequential state transitions. The function
if-food-ahead will have a single internal state for its two
actions2 in the branches, because the actions depending on
the sensor reading (input 0 or 1) can be put together in a slot
of the internal state. With this procedure, we can estimate
the number of internal states that a genetic program needs,
as the total number of terminal nodes minus the number
of if-food-ahead’s. The above conversion algorithm will
be applied to evolved S-expression trees in the experiments
and we can compare the two types of controllers, FSM and
S-expression controllers, in terms of memory states. The
FSM built with the algorithm may not be of minimal form
in some case, because a certain state may be removed if some
sequence of actions are redundant, or if nested and consecu-
tive if-food-ahead’s appear in the evolved tree (some mo-
tor actions for no food may not be used at all). However,
the algorithm will mostly produce a compact form of FSMs.

Table 1(a) is a FSM converted from the genetic program
shown in Figure 2; the genetic programming result has a re-
dundant expression (progn2 (left) (right)) in the middle
of the S-expression and it was not encoded into the FSM.
If one looks into the controller in Table 1(a), the behaviour
result is almost the same as the Koza’s genetic program-
ming result in Figure 2, even if they are of different for-
mats. Sequential actions were represented as a set of states
in the finite automaton. When we evolved FSMs such that
ants collect all the food in the grid world, the controllers in
Table 1(b) as well as Table 1(a) were obtained in a small
number of generations. The FSM controller in Table 1(a)
takes 405 time steps to pick up all 89 pellets of food, while
Table 1(b) controller needs 379 time steps. As an extreme
case, a random exploration in the grid would collect all the
food if there is a sufficient time available. Thus, the effi-
ciency, that is, the number of time steps needed to collect
all the food can be a criterion for better controllers. In this
paper, we will consider designing efficient controllers with
a given memory structure and explore the relation between
performance and the amount of memory.

As alternative control structures, recurrent neural net-
works [7, 2] and multiple interacting programs [1] have been
applied to the artificial ant problem. The control struc-
tures have an advantage of representing a complex dynamic
operation, but their representations are not quantifiable in
terms of internal states. Especially recurrent neural net-
works have been popularly used in many agent problems
with non-Markovian environment [21], but it would be a
difficult task to identify the internal states directly or recog-
nize the relevance and role of internal memory. In contrast,
finite state machines and Koza’s genetic programming can
quantify the amount of internal memory needed for a given

2The function if-food-ahead is supposed to have two chil-
dren nodes or two subtrees. If an action is not observed im-
mediately at the left or right child, the first terminal node
accessed by the tree traversal will be chosen for the internal
state.

153

agent problem and allow us to analyze the role of internal
states on the behaviour performance. In the experiments,
we will show this quantitative approach and compare the
two different control structures.

3. BETA DISTRIBUTION MODEL
If there exists a decision threshold to evaluate the per-

formance, we can score a trial run as success or failure. In
this case we can consider the success rate as a performance
measure. Estimation of success rate can be achieved by em-
pirical data, that is, we can take a finite number of trial
runs, and count the number of successful runs. Then the
relative frequency of success can be an estimate of the suc-
cess rate. However, this measure does not reflect the total
number of runs. The estimated rate may have large devia-
tion from the real success rate when the number of runs is
small. For instance, one successful run out of four trial runs
should have a different analysis and meaning with 10 suc-
cessful runs out of 40 runs, although the relative frequency is
the same. Thus, we will explore how to estimate the success
rate more accurately.

When it is assumed that α + β experiments experience α
successes and β failures, the distribution of success rate p can
be approximated with a beta distribution. The probability
distribution of success rate can be obtained with Bayesian
estimation, which is different from the maximum likelihood
estimation of p = α

α+β
. The beta probability density func-

tion for the success rate is given by

f(p,α, β) =
1

B(α + 1, β + 1)
pα(1 − p)β

where B(α + 1, β + 1) =
� 1

0
pα(1 − p)βdp = Γ(α+1)·Γ(β+1)

Γ(α+β+2)

and Γ(n + 1) = nΓ(n).
Now we can define confidence intervals about success/failure

tests for a given strategy. Assume that a random variable
X with a beta distribution has the upper bound bu and the
lower bound bl for confidence limits such that P (bl ≤ X ≤
bu) = 1 − ε and P (X < bl) = ε/2. Then we can assert that
[bl, bu] is a (1− ε) · 100 percent confidence interval. If a suc-
cess probability p is beta-distributed, the confidence limits
bl, bu can be obtained by solving the following equations:

ε

2
=

� bu

0

pα(1 − p)β

B(α + 1, β + 1)
dp, (1)

ε

2
=

� 1

bl

pα(1 − p)β

B(α + 1, β + 1)
dp (2)

The lower and upper bound probability bl, bu will decide the
(1 − ε) · 100% confidence interval [bl, bu].

Now we compute the computational effort based on suc-
cess rate. We assume that a given experiment is repeatedly
run until a successful controller is found. A better strategy
or methodology will have a smaller number of runs to ob-
tain a successful controller. Thus, the computational effort
(computing time) needed to obtain the first success can be
a criterion for performance evaluation. The effort test was
suggested by Lee [17] to compare the performance of differ-
ent strategies for evolutionary experiments, and he used a
measure of the average computing cost needed for the first
successful run. In this paper the measure will be extended
more rigorously to show the confidence interval of the effort
cost.

For a given success rate p over the controller test, the
average number of trial runs before the first success run can
be calculated as

E(X) =

∞�
x=1

xp(1 − p)x =
1 − p

p

where x is the number of trials before the first success.
Therefore, the computational effort3 applied before the first
success will be 1−p

p
C where C is a unit computing cost per

run. If the computing cost per run is variable, we take the
averaged cost over multiple runs for an approximate estima-
tion of C. If a success rate p has the lower and upper bound
probability bl, bu by the estimation of confidence interval in
Equation (2), the (1 − ε) · 100% confidence effort cost will

be estimated with [1−bu
bu

C, 1−bl
bl

C].

4. EXPERIMENTS
Our evolutionary algorithm will focus on quantifying the

amount of memory needed to solve the artificial ant prob-
lem. In the ant problem, the fitness function F is defined as
follows:

F = tA − α · Qfood

where tA is the number of time steps required to find all
the food, or the maximum allowed amount of time if the ant
cannot eat all of them. In the experiments 400 time steps are
assigned for each ant agent’s exploration, and Qfood is the
amount of food the ant has eaten. α is a scaling coefficient,
which is set to 2. This fitness function considers finding
the minimum amount of time to traverse all the food cells.
Thus, smaller fitness means better controller. We will use
the Santa Fe trail for the target environment. An ant agent
may need varying computing time for its fitness evaluation,
because tA varies depending on the time to collect all the
food. When an ant succeeds in collecting all the food before
400 time steps, the exploration process can instantly stop
not to wait for the whole 400 time steps to complete. This
will influence the computing cost and so the computing cost
C for a single run will be measured by the averaged CPU
run-time over multiple runs.

In this paper, we will test two types of evolving con-
trol structures, FSMs and S-expression trees, and compare
the performances of ant agents for a given level of memory
amount. We will evolve each control structure with a vary-
ing number of internal states and analyze fitness samples
collected from the evolutionary algorithms.

For the first set of experiments with FSM controllers, the
chromosome of a FSM controller is represented as an inte-
ger string as described in section 2. One crossover point is
allowed only among integer loci, and the crossover rate is
given to each individual chromosome, while the mutation
rate is applied to every single locus in the chromosome. The
mutation will change one integer value into a new random in-
teger value. We used a tournament-based selection method
of group size four. A population is subdivided into a set
of groups and members in each group are randomly chosen
among the population. In each group of four members, the

3We assume the computational effort only consists of ex-
perimental runs who result in failure. If we include the first
successful run in the effort, the effort can be estimated with
1−p

p
Cf + Cs where Cf is a failure computing cost and Cs is

a success computing cost.

154

two best chromosomes4 are first selected in a group and then
they breed themselves. A crossover over a copy of two best
chromosomes, followed by a mutation operator, will produce
two new offspring. These new offspring replace the two worst
chromosomes in a group. In the experiments, the crossover
rate is set to 0.6 and the mutation rate, 2 over chromosome
length, is applied (the above tournament selection takes a
half of the population for elitism, and so the high mutation
rate will give more chance of diversity to a new population).

For another memory-based controller, the chromosome of
a genetic program is defined as an S-expression tree. The
crossover operator on the program is defined as swapping
subtrees of two parents. There are four mutation operators
available for one chromosome. The first operator deletes
a subtree and creates a new random subtree. The subtree
to be replaced will be randomly selected in the tree. The
second operator randomly chooses a node in the tree and
then changes the function (if-food-ahead or progn2) or the
motor action. This keeps the parent tree and modifies only
one node. The third operator selects a branch of a subtree
and reduces it into a leaf node with a random motor action.
It will have the effect of removing redundant subtrees. The
fourth operator chooses a leaf node and then splits it into
two nodes. This will assist incremental evolution by adding
a function with two action nodes. In the initialization of a
population or the recombination of trees, there is a limit for
the tree size. The maximally allowable depth of trees is 6
in the initialization, but there is no restriction of the depth
after the recombination. The minimum number of leaf nodes
is 1 and the maximum number of leaf nodes will be set up as
a control parameter in the experiment. If the number of leaf
nodes in a new tree exceeds the limit, the tree is mutated
until the limit condition is satisfied. The above tournament-
based selection of group size four will also be applied to the
genetic programming approach. The crossover rate is set to
0.6 and the mutation rate is 0.2.

4.1 Evolving FSMs
To quantify the amount of memory, a varying number of

states, ranging from 1 state to 20 states, are applied to the
artificial ant problem. For each different size of state ma-
chines, 50 independent runs with a population size of 100
and 10,000 generations are repeated and their fitness distri-
bution is used for the analysis of memory states. Similar evo-
lutionary experiments are applied to the S-expression con-
trollers with a population size of 500 and 2,000 generations5.
To compare S-expression and FSM controllers, evolved S-
expression controllers are converted into FSMs using the al-
gorithm described in section 2.

To find out an appropriate number of states needed to
reach a given performance level, experiments with a fixed
number of states is repeated 50 times. We first tested the
evolution of FSMs. Figure 3 shows the average fitness re-
sult for each number of memory states. The error bars of
95% confidence intervals are displayed with the average per-

4More than two chromosomes may have tie rank scores and
in this case chromosomes will be randomly selected among
the individuals.
5This parameter setting showed good performance within
the limit of 5 × 105 evaluations. This may be due to the
fact that genetic programming tends to develop new good
offspring through crossover of individuals in a large sized
population rather than with the mutation operator [21].

0 2000 4000 6000 8000 10000
0

50

100

150

200

250

300

350

400

generations

pe
na

lty
 fi

tn
es

s

 1 state
 2 states
 3 states
 4 states
 5 states
 6 states
 7 states
 8 states
 9 states
16 states

Figure 3: Fitness test experiments in the Santa Fe
trail problem

formance over 50 runs by assuming a t-distribution. The
experiment clearly distinguishes the performances of mem-
ory states ranging from one to eight states, although more
than eight states were not significantly different from eight
states.

According to the experiments, five memory states are re-
quired for ants to traverse all the food cells. A strategy for
an ant agent to collect all the food with five internal states
was to look around the environment and move forward if
there is no food in the surrounding neighbors. If food is
found in one of neighbor cells, the ant immediately moves
forward in that direction. The plan needs internal states to
take a sequence of actions (left, right, right, left, move)
or another sequence (right, left, left, right, move) with
a separate state for one action. If more internal states are
given, ants start to utilize environmental features to reduce
exploration time, for instance, ants can take three consecu-
tive move actions without looking around the neighbors after
a right or left turn finds food. With a large number of states,
more elaborated turns and moves are found in the behaviour
of ant agents.

The memory requirement for the task may be determined
by the average fitness of multiple runs and its confidence in-
terval, that is, the t statistic [10]. However, our experiments
show that the fitness performance has a relatively large vari-
ance (error bar) and so the mean difference between a pair of
internal states is not large enough to see the statistical signif-
icance. Langdon [14] argued that the artificial ant problem
is highly deceptive, since its fitness landscape is rugged with
plateaus, valleys and many local optima. Thus, we suggest
a measure of success rate to evaluate fitness samples, based
on the beta distribution. This statistic test can be applied
to any type of fitness samples regardless of whether they are
normally or skewedly distributed.

4.2 Beta distribution for memory analysis
Now we apply the beta distribution analysis to the fit-

ness samples for FSMs with a varying number of internal
states. We assume that if there exists any decision thresh-
old of fitness for success/failure for a given pair of con-
trollers such that it causes significant difference of perfor-
mance, then the control structures are distinguishable in
performance. Between seven and eight states, we place
a decision threshold of fitness 90 to determine their suc-
cess/failure. Then we obtain 5 successes among 50 trials for
seven internal states and 27 successes for eight states. If we

155

2 states 3 states 4 states 5 states 6 states 7 states 8 states

9 states10 states11 states12 states13 states14 states15 states

f=365 f=338 f=315 f=222 f=150 f=120 f=90

f=70

1 state

f=58
f=38f=32f=30

(a)

2 states 3 states 4 states 5 states 6 states 7 states 8 states

9 states10 states11 states12 states13 states

f=365 f=338 f=315 f=222 f=150 f=120 f=90

f=70

1 state

f=55

f=34 f=38

(b)

Figure 4: A partial order relation of FSMs with
varying number of memory states in terms of be-
haviour performance (by beta distribution) (a) 50
trials (b) 25 trials (the arrow label indicates the
threshold fitness for success/failure)

calculate the confidence interval of success rate in beta dis-
tribution, seven states and eight states have success rates,
[0.044, 0.214] and [0.403 0.671], respectively, and their effort
costs will be [1−0.214

0.214
C7,

1−0.044
0.044

C7] = [3.67C7, 21.73C7] and

[1−0.671
0.671

C8,
1−0.403
0.403

C8] = [0.49C8, 1.48C8], where C7, C8 is
the average computing cost for a single run in failure mode,
that is, an experimental run which does not reach the fitness
90. Here, it is assumed that the cost C7, C8 is almost identi-
cal for the two types of state machines. Then the confidence
intervals are significantly different and thus we can clearly
see the performance difference of the two control structures.
In fact, the computing cost for each run is variable by differ-
ent exploration time. In the evolutionary experiments the
averaged CPU run-time over multiple runs resulting in fail-
ure was C̄f7 = 39.69 sec, C̄f8 = 41.96 sec for seven and
eight states, respectively, while the averaged CPU run-time
for success was C̄s7 = 38.20 sec, C̄s8 = 38.36 sec. The dif-
ference of the computing costs does not influence the above
significance analysis, because the ratio of the costs is close
to 1.

By the analysis on the experiments with FSMs, we found
that finite states ranging from one to ten have distinctive dif-
ference in performance. There was no significant difference
between 10 states and 11 states, or between 11 states and 12
states. However, FSMs with 13 states showed significantly
better performance than FSMs with 10 states. Figure 4(a)
shows a partial order relation of FSMs with varying number
of states, which was estimated by the confidence interval of
success rate or effort cost. Evolving more than 15 states
produced slightly better controllers than evolving 15 states,
but the difference among the fitness samples was not signif-
icant. In the same procedure of memory analysis, we tested
the statistical significance with a smaller number of trials, 25
trials. We still obtained similar partial order relation among
a varying number of states, although the performance differ-
ence between 12 states and 15 states became insignificant.
It implies that the beta distribution model can be used for
performance comparison even with a small number of trials.
The above results show that the beta distribution analysis
can find significance of performance differences where fit-
ness samples have a large variance due to outliers or where

(if-food-ahead
(move)
(progn2 (right)

(progn2
(if-food-ahead

(progn2
(progn2 (move) (move))
(move))

(progn2
(progn2 (left) (left))
(if-food-ahead

(move) (right))))
(if-food-ahead

(progn2 (move) (move))
(move)))))

(a)

state no food ahead food ahead
q0 q1, R q0, M
q1 q4, L q2, M
q2 q3, M q3, M
q3 q6, M q6, M
q4 q5, L q5, L
q5 q6, R q6, M
q6 q0, M q7, M
q7 q0, M q0, M

(b)

Figure 5: An example of genetic programming re-
sult (a) evolved S-expression (nt = 12, nf = 4) (b)
converted FSM

t statistic does not produce useful information. The result
indirectly supports the validity and usefulness of the beta
distribution. We also applied Wilcoxon rank-sum test, and
similar partial order relations were obtained.

4.3 Genetic programming approach
For another type of memory-based controllers, we used

S-expression controllers. Let nt, nf , ns the number of ter-
minal nodes, the number of the function if-food-ahead’s,
and the number of internal states in an S-expression tree,
respectively. By the conversion algorithm described in sec-
tion 2, we can build an FSM such that the number of states
is ns = nt − nf . Figure 5 shows a conversion example for
an evolved S-expression tree. The states {q0, q1, q5, q6} in
Figure 5(b) have different state transitions or motor actions
on the input condition and they correspond to the operation
of the function if-food-ahead. The other states define the
same transition and action on any input condition, which
is a copy operation of progn2. The conversion algorithm
produces a compact form of FSM and helps tracing internal
states that the genetic program uses. In this paper we use
two control parameters, nt, ns to evolve S-expression trees.
Once a control parameter is set up for the evolutionary ex-
periments, for instance, the number of terminal nodes is
defined, the size of evolved trees should be within the limit
size. If an evolved tree is over the limit, the tree should be
re-generated by mutation to satisfy the condition.

In the first experiment, a varying number of terminal
nodes were used as a control parameter. A large number
of terminal nodes can expect more sequence of actions and
thus produce better performance. Figure 6(a) shows the av-
erage fitness performance with its 95% confidence range by
t statistic for a given number of terminal nodes. Evolving
20 terminal nodes and 30 terminal nodes had 3, 22 cases to
reach the fitness 90 or below, respectively, which are similar

156

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

400

generations

pe
na

lty
 fi

tn
es

s

 2 nodes
 4 nodes
 6 nodes
 7 nodes
 8 nodes
 9 nodes
10 nodes
12 nodes
15 nodes
20 nodes
30 nodes

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

400

generations

pe
na

lty
 fi

tn
es

s

 1 state
 2 states
 3 states
 4 states
 5 states
 7 states
 8 states
10 states
16 states

(a) (b)

Figure 6: Genetic programming result (a) evolve
controllers with a fixed number of terminal nodes
(b) evolve controllers with a fixed number of states

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

number of terminal nodes

nu
m

be
r

of
 s

ta
te

s

Figure 7: Relation between terminal nodes and in-
ternal states in genetic programming approach (a
varying number of terminal nodes was a control pa-
rameter)

to the performance of 7 states (5 successes) and 8 states (27
successes) among the FSM controllers in Figure 3. How-
ever, it is not easy to compare directly the performances of
FSM and S-expression controllers, since they should have
the same criterion for comparison. The best evolved tree for
each run often follows the rule that the number of terminal
nodes can be approximated by 1.5 times the number of states
(see Figure 7), when the tree is converted into the corre-
sponding FSM structure and the internal states are counted.
The best trees with 20 terminal nodes had a range of 9-
15 states, and the performance was significantly lower than
the performances of FSM controllers evolved with the same
range of states. It indirectly entails that evolving FSMs can
provide a better solution to encode internal memory.

For the next experiment, we set up the number of states
as a control parameter. In a similar process as above, we
test a varying number of states. If an evolved tree includes
more states than the limit, the tree will be mutated until
the limit condition is satisfied. In addition, we set the max-
imum number of terminal nodes for evolving trees to 1.7ns

for each number of states, ns, using the above relation rule
between terminal nodes and states (Figure 7). Without the
restriction on terminal nodes, the evolving trees encountered
bloat, degrading the performance. As shown in Figure 6(b),
the internal states play a critical role on the performance
improvement, and the fitness performance is enhanced with
more internal states. However, for a given number of states,
the genetic programming result is mostly worse than the
FSM evolution result shown in Figure 3. The best fitness
that the genetic programming achieved for the overall ex-
periments was 44, and it had a similar performance with

2 states 3 states 4 states 5 states 6 states 7 states 8 states

9 states10 states11 states12 states13 states

f=365 f=338 f=313 f=222 f=200 f=160

f=112

1 state

f=185

f=135

f=120

14 states

f=103
f=105

f=100

Figure 8: A partial order relation of S-expression
trees with varying number of states in terms of be-
haviour performance (the arrow label indicates the
threshold fitness for success/failure)

the FSM evolution only for a few sets of internal states.
Evolving directly the FSM structure tends to produce more
efficient controllers and its performance level is significantly
better. The S-expression is a procedural program arranging
a sequence of actions, while FSMs can not only encode a
sequence of actions, but also they have more dynamic fea-
tures in representation by allowing flexible transitions and
actions from state to state.

By the fitness distribution of genetic programming con-
trollers, we built a partial order relation among memory
structure as shown in Figure 8. When the diagram is com-
pared with the partial order graph by the FSM result (Fig-
ure 4), the threshold level for the relation is changed, but
roughly keeps the relation structure. It seems that a large
number of states have more variation on the relation result.
As a matter of fact, the lattice diagram for memory analy-
sis is extracted from empirical data which depends on the
corresponding control structure. It only shows the partial
order information among memory structure with a given
confidence level, but it does not mean that the correspond-
ing structure guarantees a given level of performance or it
cannot achieve better performance than the threshold level.
More trial runs will support more reliable information of the
performance level or the partial order relation.

So far we showed the distribution of success rate or com-
putational effort to measure the performance difference be-
tween a pair of sample groups. The significance test result
of the success rate is equivalent to that of the effort cost
if almost the same computing cost is spent for each evolu-
tionary run. At this point the analysis of the effort cost is
not more helpful than the analysis of success rate. How-
ever, the information of computational effort can be used
to understand the evolutionary process for a given problem.
To reach the fitness level 150, FSM controllers obtained 17
successes with 6 internal states and 105 evaluations (2,000
generations). More generations, for example, 5,000 gener-
ations and 10,000 generations produced more successes as
expected. The unit cost C2, C5, C10 is the computing cost
for 105, 2.5×105, 5×105 evaluations and the costs can be ap-
proximated with C10 = 2C5 = 5C2. Then the confidence in-
tervals for 105, 2.5×105, 5×105 evaluations (2,000, 5,000 and
10,000 generations) become [1.09C2 , 3.46C2], [1.69C2 , 5.09C2],
[1.74C2, 5.40C2], respectively. Then the experiments with
2,000 generations have the confidence interval with the small-
est effort level, whose range is also narrow. Thus, we can
recommend 2,000 generations for the future experiments.

We can compare the computational efforts for different
types of controllers or different algorithms. The analysis of
the effort cost will be useful especially when the algorithms
have different CPU run-time for an evolutionary run. For
instance, the FSM controller with eight states and 105 evalu-

157

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of fitness evaluations

su
cc

es
s

ra
te

GP 5 states
FSM 5 states

0 1 2 3 4 5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of fitness evaluations

su
cc

es
s

ra
te

GP 8 states
FSM 8 states

(a) (b)

Figure 9: Run-time distribution with genetic pro-
gramming and FSM controllers (the average and
95% confidence range of success rate in the beta
distribution are displayed) (a) evolving five inter-
nal states (threshold fitness: 222) (b) evolving eight
internal states (threshold fitness: 150)

ations (2,000 generations) has a confidence interval [0.05C2 ,
0.27C2] to obtain the fitness 150, while the genetic pro-
gramming for eight states needs a computing cost [3.67K0.4 ,
21.51K0.4] to obtain the first success with 95% chance. In-
deed, the ratio of the average CPU run-time between the
FSM and the genetic programming (K0.4/C2) was 1.23 in
the experiments. The comparison result implies that the
FSM controllers produce more efficient results than the ge-
netic programming controllers. This was confirmed again in
other pairwise tests for small fitness.

Hoos and Stützle [6] studied a run-time distribution to
compare different algorithms or determine parameter set-
tings. The distribution shows the empirical success rate de-
pending on varying run time. In our experiments, the num-
ber of trial runs is relatively small and so the beta distribu-
tion of success rate was applied to the run-time distribution
as shown in Figure 9, where the number of fitness evalua-
tions was used instead of the actual CPU run-time. The
FSMs with five and eight states showed significantly bet-
ter performance in the run-time process. Generally, FSMs
show more discriminative performance for a large number of
states.

5. CONCLUSION
In this paper, we applied two types of memory-encoding

controllers, genetic programming controllers (tree structure)
and finite state machines to the artificial ant task which has
a perceptual aliasing problem. We explored a systematic
analysis over the usage of internal memory, based on statis-
tical significance test, and built a partial order relation of
memory states needed to reach each level of performance.
The significance test with success rate or computational ef-
fort shows that FSMs have more powerful representation
to encode internal memory and produce more efficient con-
trollers than the tree structure, while the genetic program-
ming code is easy to understand. Using the suggested ap-
proach, we can identify the role of internal states or observe
the relevance of memory to agent behaviours.

6. ACKNOWLEDGMENT
The author would like to thank Dr. John Hallam for in-

troducing the effort test based on beta distribution.

7. REFERENCES
[1] P. Angeline. Multiple interacting programs: A representaiom

for evolving complex behaviors. Cybernetics and Systems,
29(8):779–806, 1998.

[2] P. Angeline, G. Saunders, and J. Pollack. An evolutionary
algorithm that constructs recurrent neural networks. IEEE
Trans. on Neural Networks, 5(1):54–65, 1994.

[3] B. Bakker and M. de Jong. The epsilon state count. In From
Animals to Animats 6: Proc. of Conf. on Simulation of
Adaptive Behaviour, pages 51–60. MIT Press, 2000.

[4] D. Braziunas and C. Boutilier. Stochastic local search for
POMDP controllers. In AAAI, pages 690–696, 2004.

[5] L. Fogel, A. Owens, and M. Walsh. Artificial intelligence
through simulated evolution. Wiley, New York, 1966.

[6] H. Hoos and T. Stützle. Evaluating Las Vegas algorithms -
pitfalls and remedies. In Proc. of Conf. on UAI, pages
238–245. Morgan Kaufmann, 1998.

[7] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers,
R. Korf, C. Taylor, and A. Wang. Evolution as a theme in
artificial life. In C. Langton, editor, Artificial Life II. Addison
Wesley, 1991.

[8] D. Kim. Analyzing sensor states and internal states in the
Tartarus problem with tree state machines. In Parellel
Problem Solving From Nature 8, Lecture Notes on Computer
Science vol. 3242, pages 551–560, 2004.

[9] D. Kim. Evolving internal memory for T-maze tasks in noisy
environments. Connection Science, 16(3):183–210, 2004.

[10] D. Kim and J. Hallam. Mobile robot control based on Boolean
logic with internal memory. In Advances in Artificial Life,
Lecture Notes in Computer Science vol. 2159, pages 529–538,
2001.

[11] D. Kim and J. Hallam. An evolutionary approach to quantify
internal states needed for the woods problem. In From Animals
to Animats 7, Proc. of Int. Conf. on the Simulation of
Adaptive Behavior, pages 312–322. MIT Press, 2002.

[12] Z. Kohavi. Switching and Finite Automata Theory.
McGraw-Hill, New York, London, 1970.

[13] J. R. Koza. Genetic Programming. MIT Press, Cambridge,
MA, 1992.

[14] W. Langdon and R. Poli. Why ants are hard. In Proceedings of
Genetic Programming, 1998.

[15] P. Lanzi. An analysis of the memory mechanism of XCSM. In
Genetic Programming 98, pages 643–651. Morgan Kauffman,
1998.

[16] P. Lanzi. Adaptive agents with reinforcement learning and
internal memory. In From Animals to Animats 6: Proc. of
Conf. on Simulation of Adaptive Behaviour, pages 333–342.
MIT Press, 2000.

[17] W.-P. Lee. Applying Genetic Programming to Evolve
Behavior Primitives and Arbitrators for Mobile Robots. Ph.
D. dissertation, University of Edinburgh, 1998.

[18] L. Lin and T. M. Mitchell. Reinforcement learning with hidden
states. In From Animals to Animats 2: Proc. of Conf. on
Simulation of Adaptive Behaviour, pages 271–280. MIT Press,
1992.

[19] A. McCallum. Reinforcemnet Learning with Selective
Perception and Hidden State. Ph. D. dissertation, University
of Rochester, 1996.

[20] N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling.
Learning finite-state controllers for partially observable
environments. In Proc. of the Conf. on UAI, pages 427–436,
1999.

[21] S. Nolfi and D. Floreano. Evolutionary Robotics. MIT Press,
Cambridge, MA, 2000.

[22] L. Peshkin and N. M. ad L. P. Kaebling. Learning policies with
external memory. In Proc. of Int Conf. on Machine Learning,
pages 307–314, 1999.

[23] A. Silva, A. Neves, and E. Costa. Genetically programming
networks to evolve memory mechanism. In Proceedings of
Genetic and Evolutionary Computation Conference, 1999.

[24] A. Teller. The evolution of mental models. In Advances in
Genetic Programming. MIT Press, 1994.

[25] S. W. Wilson. ZCS: A zeroth level classifier system.
Evolutionary Computation, 2(1):1–18, 1994.

158

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

