
Evolving Cooperative Strategies for UAV Teams

Marc D. Richards
mdr@cs.colostate.edu

Darrell Whitley
whitley@cs.colostate.edu

J. Ross Beveridge
ross@cs.colostate.edu

Department of Computer Science
Colorado State University

Fort Collins, Colorado 80523

ABSTRACT
We present a Genetic Programming approach to evolve co-
operative controllers for teams of UAVs. Our focus is a
collaborative search mission in an uncertain and/or hostile
environment. The controllers are decision trees constructed
from a set of low-level functions. Evolved decision trees are
robust to changes in initial mission parameters and approach
the optimal bound for time-to-completion. We compare re-
sults between steady-state and generational approaches, and
examine the effects of two common selection operators.

Categories and Subject Descriptors
I.2.2 [Automatic Programming]: [Program Synthesis];
I.2.11 [Distributed Artificial Intelligence]: [Multiagent
Systems]

General Terms
Experimentation, Performance

Keywords
Autonomous control, cooperative agents, genetic program-
ming, simulated robotics

1. INTRODUCTION
Advancements in unmanned aerial vehicle (UAV) technol-

ogy have made it possible to keep human pilots out of many
dangerous aerial situations. UAVs can be used in place of
piloted planes for military missions, hazardous search and
rescue operations, and a variety of private-sector domains
(aerial photography, collection of weather data, etc). Cur-
rently, most UAVs are controlled by an individual or team
of individuals operating the craft remotely from a control
station. This can become difficult if the controller must be
stationed in a dangerous area, or when performing a task
that requires multiple cooperating UAVs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO '05 , June 25-29, 2005, Washington, D.C. USA
Copyright 2005 ACM 1-59593-010-8/05/0006 ...$5.00.

Cooperation among UAV team members is important for
a variety of reasons. Some missions may be quite danger-
ous, and it is unlikely that a single agent would survive long
enough to complete the task. Some UAV models are inex-
pensive but prone to failure, in which case it may be more
economically feasible to use a large number of cheap UAVs
rather than risk a single expensive one. Many tasks, such as
searching a particular area, can be completed more quickly
using multiple UAVs. Some types of missions may require
multiple UAVs, such as the tracking of multiple mobile tar-
gets. In all cases, cooperation among the UAVs is required
for efficient and/or successful completion of the mission. As
the number of UAVs available for missions increases, the
task of coordinating between UAVs becomes more difficult.
Autonomous computer controllers that are capable of per-
forming complex and cooperative behaviors are desired.
In this paper, we present a method for evolving coop-

erative strategies1 for teams of UAVs using Genetic Pro-
gramming (GP). Our focus is a search task, although we
believe the approach can be easily extended to a variety of
mission types. Additionally, we examine the differences in
using a steady-state approach based on the Genitor algo-
rithm compared to the traditional generational technique
more commonly used in GP. Section 2 gives a brief overview
of other approaches to cooperative UAV control. Section 3
introduces our simulator environment and the details of the
search mission. Section 4 shows how GP can be applied to
the cooperative search mission. Section 5 presents our em-
pirical results, and Section 6 concludes the paper with our
analysis and a discussion of future work.

2. RELATED WORK
Current approaches for autonomous cooperative UAV con-

trol can be separated into several groups. Behavior-based
control systems use a network of interacting high-level be-
haviors to perform a task. Cooperation is achieved through
the local interactions between UAVs performing the behav-
iors. Early behavior-based control systems are reviewed
in [11]. A sample of more recent work with cooperative
ground-based autonomous robots includes [14] and [2].

Deliberative approaches focus on developing a specific flight
path for each UAV to follow. Ablavsky et al. [1] present a
geometric approach for constructing flight paths for a single
agent and give suggestions on how it can be extended to
multi-UAV scenarios. Such flight paths are rigid and no ef-

1We use the term “strategy” to refer to the decision pro-
cess that controls the UAV. Some researchers may prefer
the terms “policy”, “behavior”, or “controller”.

1721

fort is made to alter them in the event that new information
is received, such as the discovery of a hostile element. To
achieve some degree of flexibility, many deliberative systems
incorporate an element of adaptive replanning. In adaptive
replanning, a centralized controller generates a specific flight
path for each UAV to follow based on the information that
is currently available. The UAV follows that flight path,
sending sensor information back to the controller as it be-
comes available. As the controller receives new information,
it may generate new flight paths that are communicated to
the UAVs. The new plans may, for example, take into ac-
count the location of a previously unknown enemy or the
fact that a UAV was lost due to hostile fire or mechani-
cal failure. Parunak et al. [13] present a planner based on
a pheremonal analogy, similar to ant-colony optimization.
Rathbun et al. [17] present a method for choosing new flight
paths using an evolutionary search. Other adaptive replan-
ners are considered in [15], [18], and [20].
Adaptive replanning has a number of known drawbacks:

Every time a new set of flight plans is generated, the cen-
tralized controller must broadcast them to each UAV in the
field. A non-trivial choice must be made as to when is the
appropriate time to replan. The replanning process is not
instantaneous, and by the time the new plan is sent to the
UAVs it may be obsolete.
Our research focuses on generating reactive strategies rath-

er than a specific flight path that must be updated during
the mission. The strategy is analogous to a single deci-
sion tree that controls the UAV for the life of the mission.
The decision tree determines changes in the UAV’s heading,
based on immediate low-level information from sensors. The
challenge is finding a strategy that can effectively react to
potential hazards and dynamic elements, while still retain-
ing a level of cooperation that allows for efficient completion
of the task. Our solution uses Genetic Programming (GP)
to evolve cooperative strategies.
Past research has shown that GP can successfully evolve

cooperative behaviors in simple predator-prey domains [10]
as well as robotic soccer [8]. GP has also been used to evolve
control strategies in single-aircraft scenarios. Moore [12]
evolved effective behaviors for missile avoidance on manned
jets, while Barlow et al. [3] have evolved controllers for lo-
cating a radar source in a single-UAV domain. However,
there is a lack of research exploring the use of GP for evolv-
ing cooperative strategies in realistic multi-UAV domains.

3. ENVIRONMENT
For reasons of cost and time, virtually all uses of GP for

robot and UAV control require the use of a simulated en-
vironment. The strategies must be evaluated in this simu-
lated environment, as the evolutionary process requires po-
tentially thousands of strategy evaluations to converge on
effective solutions. In addition, GP algorithms may progress
through many failing solutions on their way to good solu-
tions. In a simulator, these failure accrue no real cost, where
repeated failures with real vehicles might.

3.1 Simulator
Our simulator environment is capable of supporting a va-

riety of different mission objectives. It approximates contin-
uous space within double-precision floating point accuracy.
Time is modeled discretely, meaning that at each update of
the environment a set number of milliseconds have passed

in the simulated world. The present research focuses only
on navigation in two dimensions: the altitude of the UAVs
remains constant throughout the mission.
UAVs have a fixed turning radius that mimics actual flight

dynamics. Movement between two points is not always a
straight line and depends on the current heading of the UAV.
Automated controllers “steer” the UAV by specifying a de-
sired heading at each update. If the new heading is beyond
the UAV’s turning capabilities, the maximum turn will be
taken in that direction.
While locations can be pinpointed with double-precision

accuracy within the simulator, real UAVs will rely on sensor
readings of lower accuracy. For this reason, all distance
and location information that the UAV receives through its
simulated sensors is rounded to the nearest meter. Jakobi et
al. [6] addressed the general “reality gap” problem of moving
specialized controllers from simulated environments to the
real-world. Future work will incorporate some of their ideas
to reduce the problems associated with such situations.

3.2 Mission
We have chosen to focus on the coordinated search prob-

lem. In this domain, a team of UAVs is tasked with exhaus-
tively covering a pre-defined search area and then returning
to a base location. The return-to-base requirement signifi-
cantly increases the complexity of the missions for the evolu-
tionary process. Rather than attempting to evolve effective
return strategies, a heuristic was employed that guides the
UAVs home at the appropriate time.
Each UAV is equipped with a sensor that can scan a

certain portion of the search area as the UAV flies over
it, “sweeping” it. The mission ends successfully when the
search area is completely swept and all surviving UAVs have
returned home.
The search area is represented internally as a discretized

grid of virtual beacons. When an agent flies sufficiently close
to a beacon, that beacon is removed from the agents’ in-
ternal maps, and that portion of the search area is consid-
ered swept. In our current implementation, agents share the
same map, so communication latency for a swept beacon is
zero. Future implementations can more accurately reflect
real UAV communication issues.
The search mission was chosen because solutions clearly

require cooperation to be efficient. While explicit formation
flying is not required for this domain, implicit cooperation
is required for the UAVs to spread out and minimize redun-
dancy in their flight paths. Similar search tasks are common
in the UAV literature already referenced, including [1], [15],
and [20].
Three variants of this mission are presented here. Each

mission takes place on an approximately 50 by 40 km map.
SweeperA, and SweeperB each contain a 12.5 by 5 km rect-
angular search area with two groups of five agents starting at
fixed locations to the northwest and southwest of the sweep
area. The base area (to which the agents must return when
the sweep is complete) is located south of the search area.
The relevant portion of the map for these missions is shown
in Figure 1.

SweeperA contains a stochastic element of danger. UAVs
are destroyed with a small but nontrivial probability as they
fly over the search area. This is to mimic possible hostile
fire or mechanical failure. (They can also be destroyed if
they collide with one another). As UAVs are inevitably lost,

1722

UAV start positions

Search area

Home

Figure 1: Initial map configuration for SweeperA and
SweeperB

UAV start positions

Home

Search areas

zone
No−fly

Figure 2: Initial map configuration for SweeperC

the remaining UAVs must continue sweeping until the entire
search area is swept.

SweeperB includes a hostile agent of fixed but initially
unknown location within the search area. When a UAV
flies within range of the hostile agent, it is destroyed and all
remaining UAVs are notified of the hostile agent’s location.
The UAVs must navigate around the hostile agent while
continuing to sweep the remaining uncompromised search
area.

SweeperC adds a no-fly zone to the map that borders the
search area. This no-fly zone may represent a politically sen-
sitive or excessively hostile region where the UAVs should
not travel. Any UAV entering the no-fly zone is immedi-
ately destroyed. Additionally, the search area in SweeperC
is irregular and non-continuous. The relevant portion of the
map for this mission is shown in Figure 2.
The first two missions are relatively easy due to the rect-

angular geometry of the search area. If the UAVs are suffi-
ciently spread out, they can cover the search area in a single
horizontal flyover. SweeperA is non-trivial because some of
the UAVs will be destroyed. However, the uniform probabil-
ity of destruction means that a general strategy is still fairly
easy to find. Strategies for SweeperB can be similar to the
strategy used for the previous mission, with a contingency
to fly around the location of known enemies. While preplan-

ning an optimal path is not possible, it is clear that efficient
strategies do not have to be extremely complicated. These
missions are nevertheless interesting for testing our system,
as it is fairly easy to determine that the resulting solution
is indeed a good one.

SweeperC is considerably more difficult due to the addi-
tion of the no-fly zone and the irregularities of the search
area. An optimal strategy is not at all obvious from looking
at the initial map configuration. Simple back-and-forth fly-
ing will not result in the fastest search times, as the agents
will have to continually fly over areas that are not part of
the search area. This is the most challenging of the three
missions.
For all missions, virtual beacons were placed at regular in-

tervals in the search area, representing a UAV sensor width
of 500m. UAVs travel at a constant velocity of 150 km/hr
with a fixed turning radius of 250m. Simulator time was
discretized to 1 second intervals. The maximum time allow-
able, tstop, varied between 25 and 40 minutes of simulator
time, depending on the mission. It is worth emphasizing
that these virtual beacons are not intended to represent any
real object on the ground, but instead are a useful construct
by which agents can communicate to each other when a lo-
cation has been swept.

4. GENETIC PROGRAMMING
The basic concept of GP is closely related to genetic algo-

rithms [5]. A population of random solutions is generated,
and each solution is evaluated for fitness. New members of
the population are created by performing reproductive op-
erations on individuals with high fitness values. Some of the
reproduction operations will result in improved fitness val-
ues. Over successive generations, the population is driven
towards optimal or near-optimal solutions.
The primary difference between GP and genetic algorithms

is the representation of the individual. Instead of repre-
senting a scalar or set of numerical values, the individual
represents an algorithm. Our individuals take the form
popularized by Koza [7], where algorithms are expressed
as Lisp-like code strings. The Lisp code implies a deci-
sion tree constructed from an initial set of functions and
terminals. Reproductive operators combine or mutate the
subtrees to create new individuals. In subtree crossover, a
randomly-selected subtree of one individual is replaced by a
randomly-selected subtree of another individual. In muta-
tion, a randomly-selected subtree is replaced by a randomly-
generated subtree of similar depth.

4.1 GP for Cooperative UAV Control
In our case, the algorithm defines a decision process for

changing the heading of a UAV. Terminals represent flight
vectors and all functions accept flight vectors as arguments.
Other forms of GP allow mixed-type operators and termi-
nals, but we have found that using vectors alone meets our
current needs.
A simple example of a flight strategy that can be defined

by our system is:

(neg (closest-enemy))

This defines a strategy which states the UAV should fly in
the opposite direction of the nearest known hostile agent. A
somewhat more complex example is:

1723

sweep−width closest−friend neg turn−if−able

neg

closest−beacon

ifgteq

closest−friend closest−beacon

Figure 3: Example strategy as a decision tree

(ifgteq (sweep-width) (closest-friend)

(neg (closest-friend))

(turn-if-able

(closest-beacon)

(neg (closest-beacon))))

This is perhaps easier to understand when represented as a
decision tree, as in Figure 3. A human can interpret this
strategy as: “If the distance to the closest friendly UAV
is less than my sweep width, move away from that team-
mate. Otherwise, if my turning radius makes it possible for
me to reach my closest beacon, go towards the closest bea-
con. Otherwise, turn away from the closest beacon.” This
illustrates how strategies are capable of producing behav-
iors that allow the UAVs to spread out and avoid circling
a fixed point. A list of available functions and terminals,
many adapted from [10], is given in Table 1.
For the current research, all UAVs use the same decision

tree. Homogeneous strategies do not allow the creation of
explicit specialists [16], but because only one strategy is be-
ing evolved, fewer evaluations are required for convergence.
Also, the single decision tree is capable of specialized behav-
ior by branching on certain conditions, such as how far one
is from the search zone.

4.2 Fitness
Fitness is evaluated in two different ways, depending on if

the mission has failed or succeeded. A mission is considered
successful if the search area is completely swept when time
expires (or when all agents return to the base). Fitness of a
successful mission is computed as a weighted average of the
time each agent spent in the field and the overall time-to-
completion. Formally, this is represented as:

α

n

nX

i=1

ti + βtmax (1)

where n is the number of agents, ti is the time elapsed when
agent i returns to the base, tmax is the maximum of all
ti values, and α + β = 1. ti is set to tstop for any agent
that has not returned to the base when time expires. This
fitness function forces UAVs to work together to minimize
both the time that individuals spend in the field as well as
the finishing time for the entire team. Fitness of a failed
mission is computed as the maximum allowable time plus
the proportion of the sweep area left unswept:

tstop +
areaunswept

areatotal
(2)

Note that by using these equations, the fitness of a failed
mission is always greater than a successful mission.
Because the missions can contain stochastic elements, each

strategy must be evaluated multiple times to ensure that the
fitness value is an accurate predictor of performance. The
ultimate fitness value assigned to an individual, i.e. a strat-
egy, is averaged over several attempts at the mission.

4.3 Steady-state GP
There are two predominant types of genetic algorithms.

Canonical GAs use a generational approach, meaning that
successive generations consist entirely of new individuals cre-
ated via reproductive operations. The previous population
is discarded once the next generation has been created. A
long-acknowledged problem with this approach is that it is
possible for the individuals in a following generation to be
less fit than the generation that preceded it. As a result,
many current GA applications use a steady-state algorithm,
whereby new individuals are added one at a time to the
population if their fitness is suitable. Not only does this
keep the best individuals from generation to generation, it
also allows future selection operations immediate access to
improved individuals. Our GP system is based on Geni-
tor [22], which is a steady-state GA implementation that
has been shown to converge to optimal and near-optimal so-
lutions faster than generational approaches for a variety of
real-world problems [21].
Although steady-state algorithms are widely used in the

GA community, most current GP research uses generational
implementations (exceptions include [19] and [4]). For our
experiments, we have implemented a variant of Genitor for
GP and compare it to the canonical algorithm.

5. EXPERIMENTS
To evaluate our GP approach, strategies were evolved for

the three missions described in the previous section. The
well-known GROW algorithm [7] was used to create initial
random solutions. The tree is constructed recursively by
uniformly drawing from the set of functions and terminals
in Table 12. If a function was chosen, the arguments were
chosen by again drawing uniformly from the initial set. The
depth of the trees was arbitrarily capped at 10, so the ran-
dom drawing process was limited to terminals only if the
subtree reached depth 9.
Two selection operators were compared: rank-based and

tournament. Rank-based selection, described in Appendix
1 of [21], is commonly used in steady-state GA implemen-
tations. The bias parameter was fixed at 1.5, which gives
relatively low selective pressure. For tournament selection
the tournament size was set to 7, which has high selective
pressure and is popular in the GP literature.
Trials were performed using population sizes of 50, 100,

and 200. Each trial consisted of 16 independent GP runs
for each population size. During evolution, new individuals
were generated using a crossover rate of 0.7 and a mutation
rate of 0.3. In the fitness function, equal weight was given
to the mean individual completion time and the maximum
completion time (α = β = 0.5 for Equation 1.)
The crossover operation can lead to trees of exponentially-

increasing size, if a root node of one individual is grafted

2closest-enemy was not used for SweeperA because the hos-
tile element does not have a specific location.

1724

Table 1: GP functions and terminals
Name nArgs Description

last 0 The direction of this UAV’s previous move
closest-beacon 0 Vector from this UAV to the closet unswept patch of the

search area
closest-unique-beacon 0 Vector from this UAV to the closet unswept patch of the

search area that is not closer to any other UAV. Returns
zero vector if no such beacon exists.

closest-friend 0 Vector from this agent to the closest friendly UAV
{right, left}-friend 0 Vector from this agent to the first friendly agent in a clock-

wise (right) or counter-clockwise (left) sweep
closest-enemy 0 Vector from this agent to the closest non-friendly UAV. In

SweeperC, it is the shortest vector between the UAV and
the no-fly zone.

sweep-north 0 Vector from this UAV to the north-most extent of the cur-
rent search area.

sweep-{south, east, west} 0 See sweep-north
sweep-width 0 Vector with magnitude equal to the sweep width of the

UAV’s sensor
unit 1 Normalize the vector to unit length
neg 1 Negate the vector
rot90 1 Rotate the vector by 90 degrees
mul2 1 Double the magnitude of the vector
div2 1 Divide the magnitude of the vector by 2
add 2 Return the sum of both vectors
sub 2 Return the difference between the vectors
turn-if-able 2 If the first argument points to a location that the UAV

can fly directly to, return the first argument. Otherwise,
return the second argument.

ifzero 3 If the first argument has zero magnitude, return the second
argument. Otherwise, return the third argument.

ifgteq 4 If the magnitude of the first argument is greater than or
equal to the magnitude of the second, return the third
argument. Otherwise, return the fourth argument.

ifdot 4 If the dot product of the first two arguments is greater than
or equal to zero, return the third argument. Otherwise,
return the fourth argument.

1725

0 200 400 600 800 1000 1200 1400 1600 1800 2000
14

15

16

17

18

19

20

evaluations

fit
ne

ss
 (

m
in

ut
es

)
CAN rank−based
CAN tournament
SS rank−based
SS tournament
Optimal

Figure 4: Mean best fitness for SweeperA (P=200)

onto the leaf of another. To prevent this so-called “code
bloat”, any newly-created individual whose tree depth was
greater than 10 was replaced with a randomly-generated in-
dividual. While this is a somewhat simplistic approach to
dealing with code bloat, it has the desirable property of
maintaining diversity by occasionally introducing new indi-
viduals into the population. A detailed examination of code
bloat can be found in [9].

5.1 Steady-state vs. the Canonical Algorithm
Experiments for SweeperA were run for 2,000 evaluations

each. For population sizes of 50, 100, and 200, this trans-
lates to 40, 20, and 10 generations, respectively. While 10
generations may seem unfairly short, it is the same number
of new individual evaluations as the steady-state implemen-
tation, so similar running times are expected. Independent
pairwise t-tests (p = 0.05) were used to compare the means
of the best individual after evaluation 2,000. Differences due
to population size were not found to be significant.
Figure 4 shows results for population size of 200. There

was no significant difference between the top three perform-
ers. The canonical algorithm using rank-based selection was
significantly worse than both steady-state algorithms and
the canonical implementation using tournament selection.
This was also true for populations of size 100 and 50.
Due to the stochastic adversarial component, it is not pos-

sible to determine the best possible fitness score that can
be achieved. However, the dotted line in Figure 4 shows
the theoretical optimum fitness score if no UAVs are de-
stroyed. That value is based on the minimum distance that
the UAVs must fly from their starting position to cover the
sweep area and return to base. The fitness values for the
evolved strategies approach this theoretical optimum under
ideal conditions, even though UAVs have been lost. This
shows that it is possible to evolve strategies that will per-
form very close to optimal, even in uncertain conditions.
Figure 5 shows similar results for SweeperB. A total of

5,000 evaluations were allowed, as this mission is more diffi-
cult. The canonical algorithm using rank-based selection is
again significantly worse than the other three implementa-
tions. The two algorithms using tournament tournament
selection appear to initially outperform the other imple-

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
16

18

20

22

24

26

28

30

evaluations

fit
ne

ss

CAN rank−based
CAN tournament
SS rank−based
SS tournament
Optimal

Figure 5: Mean best fitness for SweeperB (P=200)

0 1000 2000 3000 4000 5000 6000 7000 8000
26

28

30

32

34

36

38

40

evaluations

fit
ne

ss
 (

m
in

ut
es

)

CAN rank−based
CAN tournament
SS rank−based
SS tournament

Figure 6: Mean best fitness for SweeperC (P=200)

mentations, although the results after 5,000 evaluations are
not significantly better than the steady-state algorithm with
rank-based selection. As with SweeperA, the best results are
close to the optimal fitness value under ideal circumstances.
Figure 6 shows the results for SweeperC for 8,000 eval-

uations. Again we find that the canonical algorithm using
rank-based selection has been outperformed by the other
implementations, this time dramatically so. The theoretical
optimal fitness is not shown for Figure 6 because the irregu-
lar geometry of the search area makes calculating the opti-
mal fitness a significant challenge unto itself. The minimum
amount of time required to complete the mission is about 20
(simulated) minutes, although the final fitness score could
be somewhat lower than this. The best fitness variance was
relatively high compared to the previous two missions, with
values ranging from 21.16 to 29.08 minutes for population
size 200.

5.2 Observations
The evolved strategies resulted in behaviors that appear

cooperative. UAVs spread out to minimize redundant flight

1726

over previously-swept areas. Collisions between UAVs are
non-existent in the final evolved behaviors. When UAVs are
lost due to the adversaries in the field, the remaining UAVs
effectively fill the resulting gaps in the search space.
In SweeperB, flight patterns will change when the hostile

agent is discovered. UAVs will fly as close as possible to the
hostile agent without entering its firing range. The UAVs
have evolved an avoidance instinct that successfully keeps
them out harm’s way once the threat is located.
The strategies that evolved were found to be fairly robust

to changes in the starting parameters of the mission. For
example, changing the initial positions of the UAVs had no
noticeable negative impact on their cooperation and sweep-
ing ability. Even though the UAVs were following a strategy
evolved for different initial conditions, they were still able to
complete the mission effectively. This can be explained by
the fact that the primitives deal entirely with relative posi-
tions and spacial information that is local to each individual
UAV, which allows the strategy to be flexible in the face of
global changes to the mission parameters. Similar results
were observed when changing the initial number of UAVs
and making small changes in the size of the search area.
This flexibility can also be used to speed up the evolu-

tionary process. For example, SweeperB is simply a harder
version of SweeperA. Instead of starting the evolutionary
process for SweeperB from scratch, we can seed the popula-
tion with some of the best individuals found for SweeperA.
So rather than having an initial population of completely
random individuals, the population is bootstrapped with a
few decent (although probably not great) individuals. Pre-
liminary results indicate that this will help reduce the time
required for evolution. Exactly how beneficial this can be
remains to be seen.

6. CONCLUSIONS AND FUTURE WORK
Our results indicate that GP can be an effective technique

for generating efficient strategies for cooperative UAV con-
trol in simulation. The best evolved strategies approach the
theoretical optimum fitness bound, and will therefore per-
form competitively against other approaches. Although the
experiments presented were specific to a coordinated search
task with constant probability threats and fixed location
threats only, we believe the concepts can be easily extended
to work with a broad variety of multi-UAV missions.
Empirical evidence indicates that there is not a significant

difference between generational and steady-state algorithms
for GP in this domain, provided an appropriate selection op-
erator is used. It is clear, however, that rank-based selection
(bias = 1.5) does not work well with the generational algo-
rithm. It is likely that the best individuals are not being
selected often enough to effectively drive the evolutionary
process. In contrast, the steady-state GP quickly removes
poor solutions from the population, so evolution is success-
ful even with relatively low selective pressure. Further study
is required to determine how these findings apply to GP in
general.
Further exploration of the GP parameter space could re-

veal more information about the optimal settings for this
type of problem. Due to the significant run-time require-
ments of the simulator, we had to fix many parameter set-
tings (such as mutation rate, use of elitism, tournament size,
etc). In future work, we would like to be able to examine
the effects of these decisions more closely.

7. ACKNOWLEDGMENTS
This work was supported by a grant from Raytheon. D.

Whitley was also supported by the National Science Foun-
dation under Grant No. 0117209.

8. ADDITIONAL AUTHORS
Additional authors: Todd Mytkowicz (Department of Com-

puter Science, University of Colorado); Duong Nguyen and
David Rome (Raytheon/IIS/Space Systems, 16800 E. Cen-
treTech Parkway, DN, Bldg 77 M/S 3026, Aurora, Colorado
80011-9046).

9. REFERENCES
[1] V. Ablavsky, D. Stouch, and M. Snorrason. Search

path optimization for UAVs using stochastic sampling
with abstract pattern descriptors. In Proceedings of
the AIAA Guidance Navigation and Control
Conference, Austin, TX, August 2003.

[2] T. Balch and R. C. Arkin. Behavior-based formation
control for multi-robot teams. In IEEE Transactions
on Robotics and Automation, 1999.

[3] G. J. Barlow, C. K. Oh, and E. Grant. Incremental
evolution of autonomous controllers for unmanned
aerial vehicles using multi-objective genetic
programming. In Proceedings of the 2004 IEEE
Conference on Cybernetics and Intelligent Systems
(CIS), Singapore, December 2004.

[4] C. Clack and T. Yu. Performance-enhanced genetic
programming. In Proceedings of the 6th International
Conference on Evolutionary Programming VI, pages
87–100. Springer-Verlag, 1997.

[5] J. H. Holland. Adaption in Natural and Artificial
Systems. University of Michigan Press, 1975.

[6] N. Jakobi, P. Husbands, and I. Harvey. Noise and the
reality gap: The use of simulation in evolutionary
robotics. In Proc. of the Third European Conference
on Artificial Life (ECAL’95), pages 704–720,
Granada, Spain, 1995.

[7] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. The MIT Press, Cambridge, MA, 1992.

[8] S. Luke. Genetic programming produced competitive
soccer softbot teams for RoboCup97. In J. R. Koza,
W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B.
Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and
R. Riolo, editors, Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages
214–222, University of Wisconsin, Madison,
Wisconsin, USA, 22-25 1998. Morgan Kaufmann.

[9] S. Luke. Issues in Scaling Genetic Programming:
Breeding Strategies, Tree Generation, and Code Bloat.
PhD thesis, Department of Computer Science,
University of Maryland, 2000.

[10] S. Luke and L. Spector. Evolving teamwork and
coordination with genetic programming. In J. R.
Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo,
editors, Genetic Programming 1996: Proceedings of
the First Annual Conference, pages 150–156, Stanford
University, CA, USA, 28–31 1996. MIT Press.

[11] M. Mataric. Issues and approaches in the design of
collective autonomous agents. Robotics and
Autonomous Systems, 16:321–331, December 1995.

1727

[12] F. W. Moore. A methodology for missile
countermeasures optimization under uncertainty. Evol.
Comput., 10(2):129–149, 2002.

[13] H. V. D. Parunak, M. Purcell, and R. O’Connell.
Digital pheromones for autonomous coordination of
swarming UAVs. In In Proceedings of First AIAA
Unmanned Aerospace Vehicles, Systems, Technologies,
and Operations Conference, 2002.

[14] P. Pirjanian and M. J. Mataric. Multi-robot target
acquisition using multiple objective behavior
coordination. In International Conference on Robotics
and Automation (ICRA 2000), San Francisco, CA,
April 2000.

[15] M. M. Polycarpou, Y. Yang, and K. M. Passino. A
cooperative search framework for distributed agents.
In Proceedings of the 2001 IEEE International
Symposium on Intelligent Control, Mexico City,
Mexico, 2001.

[16] M. A. Potter, L. Meeden, and A. C. Schultz.
Heterogeneity in the coevolved behaviors of mobile
robots: The emergence of specialists. In Proceedings of
the Seventeenth International Joint Conference on
Artificial Intelligence, IJCAI 2001, pages 1337–1343,
Seattle, Washington, August 2001.

[17] D. Rathbun, S. Kragelund, A. Pongpunwattana, and
B. Capozzi. An evolution based path planning
algorithm for autonomous motion of a UAV through
uncertain environments. In AIAA 21st Digital

Avionics Systems Conference, Irvine, CA, October
2003.

[18] S. Rathinam, M. Zennaro, T. Mak, and R. Sengupta.
An architecture for UAV team control. In IAV2004:
Fifth IFAC symposium on intelligent autonomous
vehicles, Lisbon, Portugal, 2004.

[19] L. Spector, H. Barnum, H. J. Bernstein, and
N. Swami. Finding a better-than-classical quantum
AND/OR algorithm using genetic programming. In
P. J. Angeline, Z. Michalewicz, M. Schoenauer,
X. Yao, and A. Zalzala, editors, Proceedings of the
Congress on Evolutionary Computation, volume 3,
pages 2239–2246, Mayflower Hotel, Washington D.C.,
USA, 6-9 1999. IEEE Press.

[20] P. Vincent and I. Rubin. A framework and analysis for
cooperative search using UAV swarms. In Proceedings
of the 2004 ACM symposium on Applied computing,
pages 79–86. ACM Press, 2004.

[21] D. Whitley. The genitor algorithm and selective
pressure: Why rank-based allocation of reproductive
trials is best. In Proceedings of the 3rd International
Conference on Genetic Algorithms, pages 116–121,
1989.

[22] D. Whitley and J. Kauth. Genitor: a different genetic
algorithm. In Proceedings of the Rocky Mountain
Conference on Artificial Intelligence, pages 118–130,
Denver, CO, 1988.

1728

