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ABSTRACT
Most existing research on robust design using evolutionary
algorithms (EA) follows the paradigm of traditional robust
design, in which parameters of a design solution are tuned
to improve the robustness of the system. However, the topo-
logical structure of a system may set a limit on the possible
robustness achievable through parameter tuning. This pa-
per proposes a new robust design paradigm that exploits the
open-ended topological synthesis capability of genetic pro-
gramming to evolve more robust systems. As a case study, a
methodology for automated synthesis of dynamic systems,
based on genetic programming and bond graph modeling
(GPBG), is applied to evolve robust low-pass and high-pass
analog filters. Compared with a traditional robust design
approach based on a state-of-the-art real-parameter genetic
algorithm (GA), it is shown that open-ended topology search
by genetic programming with a fitness criterion rewarding
robustness can evolve more robust systems with respect to
parameter perturbations than what was achieved through
parameter tuning alone, for our test problems.

Categories and Subject Descriptors: G.1.6 [Global Op-
timization]; I.2.2 [Automated Programming] ; I.2.1 [Appli-
cation] ;

General Terms: Design, algorithms.

Keywords: Genetic programming, robust design, analog
filter synthesis, bond graphs, automated design.

1. INTRODUCTION
Topologically open-ended computational synthesis by ge-

netic programming (GP) has been used as an effective ap-
proach for engineering design innovation, with many suc-
cess stories in a variety of domains including analog circuits,
digital circuits, molecular design, mechatronic systems, etc.
[15][18]. These works employ GP as an open-ended search
method for functional design innovation – achieving given
behavior without pre-specifying the design topology – and
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has achieved considerable success. However, in practical en-
gineering system design, there is another criterion in addi-
tion to functional specifications that should be considered
during the design process. Robustness, as the ability of a
system to maintain function even with changes in internal
structure (including variations of parameters from nominal
values) or external environment [5],[10], is also critical to
engineering design decisions. Engineering design systems,
in reality, do not normally take into account all the types
of uncertainties or variations to which the engineered arti-
facts are subject, such as manufacturing variation, degrada-
tion or non-uniformity of material properties, environmental
changes, and changing operating conditions. There are two
types of robustness of dynamic systems that we are inter-
ested in. One is the robustness of systems with respect to
perturbation of the parameters of the system. This is the
most commonly investigated type of robustness in the tra-
ditional robust design community and also in evolutionary
robust design. Another type of system robustness is with re-
spect to topological perturbation – for example, accidental
removal or failure of components. Reliable systems, having
the least sensitivity of performance to variations in the sys-
tem components or environmental conditions, are very desir-
able. However, there are relatively few studies that explore
how GP-based open-ended topology search may contribute
to design of robust systems such that they can withstand
internal or external perturbations. In traditional robust de-
sign, optimizing robustness is usually regarded as a step in
the detailed design stage, in which the parameters of a sys-
tem with a given functional structure are tuned to achieve
better robustness.

We are interested in applying GP-based open-ended de-
sign synthesis to robust engineering design. Specifically, we
examine whether topological innovation capability of GP
can facilitate design of more robust dynamic systems with
respect to parameter variations or uncertainty of the de-
sign variables. The robustness with respect to structural
faults of the system is also being investigated, but will be
reported elsewhere. In this paper, a set of experiments is
conducted to test the following hypotheses about robust de-
sign using genetic programming: 1) that dynamic systems
with high performance evolved by GP without considering
a robustness criterion during the evolutionary process may
have unacceptably low robustness with respect to parame-
ter perturbation, 2) that the robustness of a system may be
constrained by its topological/functional structure, and the
amount of robustness improvement available through pa-
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rameter tuning is limited as well, and 3) that topologically
open-ended synthesis by GP may allow evolution of more ro-
bust solutions than the traditional robust design approaches
with parameter tuning.

To examine the role of topology search in designing ro-
bust systems, two analog filter design problems, including
low-pass and high-pass filters, are to be synthesized using
genetic programming. For each synthesis problem, three
types of experiments are conducted: a) evolutionary synthe-
sis using GP without considering a robustness criterion, b)
improving robustness of these evolved filters by tuning their
parameters using a genetic algorithm (GA), and c) evolving
robust filters (topological structure and parameters) using
GP with a robustness criterion in the fitness function. These
filter design problems are selected as they are perhaps the
most popular problems in evolutionary synthesis research by
either GA or GP [14] [16].

The rest of the paper is organized as follows. Section 2
presents an abbreviated survey of applications of evolution-
ary algorithms in robust design. Section 3 introduces the
GPBG methodology, which exploits Genetic Programming
and Bond Graphs for automated synthesis of dynamic sys-
tems. This section introduces some new features that im-
prove standard developmental GP for bond graph synthesis.
Section 4 discusses two approaches to evolving robust dy-
namic systems – the parameter search approach (by genetic
algorithm) and the simultaneous topology and parameter
search approach by genetic programming. Section 5 com-
pares experimental results of these approaches. Finally, the
conclusions and future research are highlighted in Section 6.

2. RELATED WORK
Robust design as originally proposed by Taguchi [19] has

been intensively investigated in the engineering design com-
munity since the 1980s and remains an important topic. In
traditional robust design, a designer seeks to determine the
control parameter settings that produce desirable values of
the mean (nominal) performance, while at the same time
minimizing the variance of the performance [19]. However,
most of these robust design studies assume that there al-
ready exists a design solution for a system and the task
of robust design is to determine its robust operating pa-
rameters with respect to various kinds of variations. The
relationship of topological or functional structure of a sys-
tem to its robustness is often not treated. Especially, how
robustness criteria should be incorporated into conceptual
functional design stage is not addressed.

Application of EAs to traditional parametric robust de-
sign has been attracting increasing attention in the past
decade [20] Wiesmann:1998 [8] [11]. Tsutsui et al. [20]
proposed a GA-based Robust Solution Searching Scheme
(RS3) to evolve robust solutions. This approach works by
adding perturbation noise to the design variables before fit-
ness evaluation. In Wiesmann et al.’s approach [21], how-
ever, each individual is simulated t times to estimate its
expected loss function (fitness). Their experiments showed
that the evolved designs were substantially more robust to
parameter variations than the reference design, but usually
at the cost of reduced performance in undisturbed situa-
tions. This observation motivated the later work of using
an evolutionary multi-objective approach to figure out the
trade-off map between robustness and optimal functional
performance [8] [17] [11]. Forouraghi[8] introduced an in-

terval computation method to avoid artificial insertion of
Gaussian noise to parameter variables in order to build tol-
erance against internal or external perturbations. Ray [17]
expressed the robust design problems as a three-criterion
multi-objective problem, simultaneously optimizing an indi-
vidual’s performance without perturbation, the mean per-
formance of its neighbors resulting from perturbations, and
the standard deviation of its neighbors’ performances. Jin
et al. [11] proposed two methods for estimating the robust-
ness measures of an individual – by exploiting its neighbor
individuals in the current population or by using all evalu-
ated individuals. Jin’s robustness estimation approach can
greatly reduce the number of function evaluations, when it
is applicable. However, it is difficult to apply this method
for evolving robust designs with variable structures as in
topologically open-ended automated synthesis using GP be-
cause of the difficulty to define a neighborhood for a given
individual in the structural space.

We chose analog filter synthesis problems as our bench-
marks since they are the most widely used test problems
in electric circuit optimization using GA or GP [14] [16]
[7]. The pioneering work of Koza in automated analog cir-
cuit synthesis, including low-pass, high-pass, and asymmet-
ric band-pass filters, is described in [14] [13]. Lohn and
Colombano [16] proposed a linear representation approach
to evolve analog circuits in which several low-pass filters
were used as test problems. However, they did not specifi-
cally work on evolving robust circuits. In our previous work
[7], we applied GP to lowpass filter design problems using
bond graphs as the modeling and simulation tool.

A lot of work has been done in both evolutionary robust
design and analog circuit synthesis. However, there are few
studies that specifically address how GP-based topologically
open-ended synthesis may provide a new way for open-ended
robust design. This may enable us to move robust design
forward to the conceptual/functional design stage and thus
achieve design for robustness at the very beginning, which
will augment the current practice of design for robustness in
parametric design.

3. ANALOG FILTER SYNTHESIS USING
BOND GRAPHS AND GP

In this section, we present an improved methodology for
open-ended computational synthesis of multi-domain dy-
namic systems based on bond graphs [12] and GP–the GPBG
approach = Genetic Programming+Bond Graphs.

3.1 Bond Graphs
The bond graph is a multi-domain modeling tool for analy-

sis and design of dynamic systems, especially hybrid multi-
domain systems, including mechanical, electrical, pneumatic,
hydraulic, etc., components. Details of notation and meth-
ods of system analysis related to the bond graph represen-
tation can be found in [12]. Fig. 1 illustrates a small bond
graph that represents the accompanying electrical system.
Fig. 2 shows the complex bond graph model of a low-pass
filter. A typical simple bond graph model is composed of in-
ductors (I), resistors (R), capacitors (C), transformers (TF),
gyrators (GY), 0-Junctions (J0), 1-junctions (J1), sources of
effort (SE), and sources of flow (SF). In this paper, we are
only concerned with linear dynamic systems and did not
include transformers and gyrators as components.
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Figure 1: A bond graph and its equivalent circuit.
The dotted boxes in the left bond graph indicate
modifiable sites at which further topological manip-
ulations can be applied (to be explained in next sec-
tion)
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Figure 2: Bond graph structure of low-pass filter
evolved in 500,000 function evaluations. Filter has
39 components beyond embryo. (Component sizes
omitted for simplicity.)

3.2 Evolving Analog Filters using Bond Graphs
and GP: the GPBG framework

Automated synthesis of bond graphs involves two basic
searches: the search for a good topology and the search for
good parameters for each topology, in order to be able to
evaluate its performance. Based on the pioneering work of
Koza [13] on automated synthesis of electronic circuits, we
created a developmental GP system for synthesizing mecha-
tronic systems represented as bond graphs[18]. This GPBG
framework enables us to do simultaneous topology and pa-
rameter search.

The GPBG framework includes the following major com-
ponents: 1) an embryo bond graph with modifiable sites at
which further topological operations can be applied to grow
the embryo into a functional system, 2) a GP function set,
composed of a set of topology manipulation and other prim-
itive instructions which will be assembled into a GP tree
by the evolutionary process (execution of this GP program
leads to topological and parametric manipulation of the de-
veloping embryo bond graph), and 3) a fitness function to
evaluate the performance of candidate solutions.

In this paper, we have improved the basic function set in
[7] and developed a hybrid function set to reduce redundancy
while retaining flexibile topological exploration:

F={ Insert J0E, Insert J1E, Add C/I/R, EndNode,

EndBond, ERC}

where the Insert J0E, Insert J1E (Fig. 3) functions insert
a new 0/1-junction into a bond while attaching at least one
and at most three elements (from among C/I/R). EndNode
and EndBond terminate the development (further topology
manipulation) at junction modifiable sites and bond modifi-
able sites, respectively; ERC represents a real number that
can be changed by Gaussian mutation. In addition, the
number and type of elements attached to such junctions
are controlled by three bits. A flag mutation operator is
used to evolve these flag bits, each representing the pres-
ence or absence of corresponding C/I/R components. This
hybrid approach does not create the many bare (and unnec-
essary) junctions generated by the basic approach. At the
same time, Add C/I/R still provide the flexibility needed
for broad topology search. For any of the three C/I/R com-
ponents attached to each junction, there is a correspond-
ing parameter to represent the component’s value, which is
evolved by a Gaussian mutation operator in the modified
GP system used here. Fig. 4 shows a GP tree that develops
an embryo bond graph into a complete bond graph solution.
The comparison experiments of [9] showed that this function
set was more effective on both an eigenvalue and an analog
filter test problem, so the new set was used in this paper.

Insert_J0E

OB: Old bond modifiable site

NJ1
NB

OB

NJ: New Junction modifiable site
NB:New bond modifiable site

OB

V1 V2 V3

Vi: ERC values for  I/R/C

1 0

OB

1 0 0

OB NJ1 NB

I R C
V1V2V3

Figure 3: The Insert J0E function inserts a new
junction into a bond along with a certain number
of attached components

As a case study, we are interested in evolving two types of
analog filters including low-pass and high-pass filters (Fig.
5). In these GPBG based filter design problems [7], a bond-
graph-represented analog filter composed of capacitors, re-
sistors, and inductors is to be evolved such that the magni-
tude of its frequency response approximates a specified filter
frequency response specifications. An embryo bond graph
and its equivalent circuit are illustrated in Fig. 1. This em-
bryo bond graph is used in all three filter design problems.
Note that the 0-junction is the modifiable site, where further
topological developments can proceed as instructed by a GP
program tree. The voltage of this 0-junction is the output
signal.

Rather than using a sophisticated SPICE simulator as is
often done in analog filter synthesis [14] [1], calculation of
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Figure 4: Sample GP tree evolved by applying
topology operators to embryo, generating a bond
graph after depth-first execution (numeric ERC
nodes omitted). Flag bits 010 and 001 show pres-
ence or absence of attached C/I/R components.

frequency response from a bond graph was done by automat-
ically formulating the state equations (yielding A, B, C, and
D matrices), then using MATLAB 3.0-derived C++ code to
simulate behavior.

Detailed specifications of the filter synthesis problems are:

• The low-pass filter synthesis problem is extracted from
[14], in which the frequency response performance of
a candidate filter is defined as the weighted sum of
deviations from ideal frequency response magnitude
over 101 points:

Fkoza(t) =
100X
i=0

[W (d(fi), fi) ∗ d(fi)] (1)

Where fi is the sampling frequency. d(x) is the ab-
solute deviation of candidate frequency response from
target response at frequency x. W(x,y) is the weight
function. The sampling points range from 1Hz to 100K
Hz, logarithmically distributed. If the deviation from
ideal magnitude is less than 0.03V, the weight is 1.
If the deviation is more than 0.03V, the weight is 10.
The pass band is [1,1K] Hz; the stop band is [2K,10K]
Hz. A ”don’t” care band between 1K Hz and 2K Hz
neglects any deviation from the target response.

• The high-pass problem is similar, except for the com-
plementary definitions of the pass and stop bands. The
passband is now defined as [2K,10K]Hz, while the stop-
band is [1,1K]Hz. A ”don’t care” band from 1KHz to
2KHz neglects any deviation from the target response.

To evolve an analog filter without considering robustness,
the final fitness of a candidate solution is defined as follows:

First, calculate the raw fitness of a candidate solution
defined as the average absolute deviation between the fre-
quency response magnitude of the candidate solution and
the target frequency response over all 101 sampling frequen-
cies:

fraw =
1

100
· Fkoza(t) =

1

100
·

100X
i=0

[W (d(fi), fi) ∗ d(fi)] (2)
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Figure 5: Specification of analog low-pass and high-
pass analog filter synthesis problem.

Note that this fraw definition differs from Koza’s raw fit-
ness definition in Equ.1 by a multiplier equal to the num-
ber of sampling frequencies. We use the average deviation
rather than sum of deviations to remove the influence of the
number of sampling points.

Then calculate the final fitness as:

fnorm =
NORM

NORM + fraw

(3)

where NORM adjusts fnorm into the range [0,1]. This
transforms the problem of minimizing deviation from target
frequency response into a maximization problem appropri-
ate for our GP system. Since tournament selection is used,
NORM can be an arbitrary positive number (here set to 10,
yielding fitness ranges around [0, 1]).

3.3 Modified Developmental GP
Compared to the GP systems used in [13], we use a stan-

dard strongly-typed multi-population generational GP with
the following modifications: a flag bit mutation operator is
introduced to evolve the configuration of C/I/R elements
attached to a junction; a subtree-swapping operator is used
to exchange non-overlapping subtrees of the same individual
(GP tree); an ERC mutation operator is developed to evolve
the parameter values for all C/I/R components; elitism is
used throughout the evolution process. The motivation of
these modifications is to allow more flexible topology modi-
fication and better parameter search.

4. EVOLVING ROBUST ANALOG FILTERS
USING BOND GRAPHS AND EA

There are two interesting types of system robustness. One
is robustness with respect to variation of parameter values
of the components; the other is robustness with respect to
failure of components. In this paper, only the first type
is examined, to show how topology innovation can improve
upon traditional robust design methodology. In mechanical
systems where bond graphs are widely used, actual compo-
nent dimensions are often constantly changing due to fric-
tion, wear, and damage, and thus robustness with respect
to parameter variation is highly desirable.

We used three methods to evolve robust or non-robust
lowpass and highpass filters. The first is a standard GP ap-
proach without considering robustness requirements. The
second is a hybrid GP/GA robust design method (GP-GARMS).
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This approach first uses a standard GP to evolve a high-
performance filter without incorporating any robustness cri-
terion in the fitness function. And then the state-of-art
G3PCX-GA is used to improve the robustness of the GP
solution using the multi-simulation method to evaluate the
robustness performance. The third is a standard GP with
multi-simulation (GPRMS), which uses multiple simulations
to estimate the robustness fitness of a candidate solution.

4.1 Evolving Robust Filters Against Parame-
ter Variation: the Unified Approach

The typical approach for evolving robust designs [3] is
to use multiple Monte Carlo samplings with different en-
vironmental or system configurations (e.g., perturbation of
parameter values of the system) to calculate a worst-case or
an average fitness for a given candidate solution as shown
in Equ. (3). This robust-by-multiple-simulation (RMS)
method is used in [21]. Another method is to simply add a
perturbation to the design variable before evaluation. This
perturbation, however, is not incorporated into the genome,
making it different from normal parameter mutation opera-
tor or Larmarckian style evolution algorithms. This robust-
by-perturbed-evaluation (RPE) method is used in [20] and is
suggested to be more efficient by Jin et al. [11]. Both meth-
ods are tested in this work. For RPE method, no special
fitness definition is needed. For the RMS multi-simulation
method, our raw fitness for a design solution with robustness
criterion is defined as follows:

frobustraw =

SPIX
k=1

f
k

raw (4)

where SPI is the number of Monte Carlo sampling eval-
uations for each individual, fk

raw is the raw fitness of the
kth sampled evaluation with a different Monte Carlo per-
turbation of the parameters as defined in 2. With this raw
robustness fitness, we then calculate the final fitness accord-
ing to Equ. 3.

The perturbation of the component values during evo-
lution in the experiments reported below is implemented
by adding to each component parameter Gaussian noise
N(µ, σ) with mean µ of 0 and standard deviation σ set at
10% of the parameter value. This perturbation model is
widely used by previous researchers [20] [21] and may not
be appropriate for all manufacturing processes. However, it
is good enough for our purpose as an approximation to the
real component value degradation model in some situations.
If the parameter value is ever 0, σ is set to 1.

In the evolution stage of RMS method, the number of
Monte Carlo samplings for fitness evaluation of each indi-
vidual with respect to parameter perturbation is set as SPI
=10. After the robust solutions are evolved, their robust-
ness with respect to parameter perturbation is evaluated
against a series of perturbation magnitudes: Gaussian noise
N(µ, σ) with mean µ set at 0 and standard deviation σ set
at 10% to 50% of parameter values in steps of 10%, each
tested with 10000 samplings with different configurations of
the component parameter perturbations.

4.2 Evolving Robust Analog Filters Using GA:
the Traditional Robust Design

Evolutionary algorithms have been increasingly applied
to evolve robust designs [2],[21] or for optimization in noisy

environments [3],[4]. Most such research follows the practice
of traditional robust design: given a system with a specific
functional structure, tune its parameters using evolutionary
algorithms to improve robustness.

We shall contrast the traditional approach described in
this section with the new approach. We shall first evolve
a high-performance analog filter with the improved GPBG
approach as described in Section 3.2. No requirement for
robustness is enforced during this evolution. Then we shall
apply to the result a state-of-art real parameter genetic
algorithm–the G3PCX-GA proposed by Deb [6]–to tune the
parameters of this filter to improve its robustness with re-
spect to parameter perturbation while keeping its functional
structure unchanged.

In the minimization G3PCX-GA, we used the robust raw
fitness defined in Equ. 4 as the final fitness of an individual.
We believe this fitness measure is better than the average of
normalized final fitness of each sampling evaluation for its
lower distortion of the optimization objective values.

4.3 Evolving Robust Analog Filters Using GP:
A New Robust Design Paradigm

This new approach aims at exploiting the topology search
capability of GP to evolve more robust designs. The configu-
ration of this approach is the same with standard GP-based
synthesis except that the robustness criteria is incorporated
in the fitness function. The final fitness of an individual, cal-
culated from the sampling fitnesses, is the same as defined
in (2), where fk

i is defined as Fitnessnorm in (3).

5. EXPERIMENTS AND RESULTS
For all experiments below, a fixed number of function eval-

uations is allocated to ensure fairness of comparison. For
the lowpass and highpass filter design problem, the compu-
tation budget is 1,000,000 function evaluations. Note that
for methods that use multiple simulation to estimate the
robustness fitness, each simulation is counted as one func-
tion evaluation. In addition, for the hybrid GP-GARMS
method, we allocate 500,000 for GP evolution and the re-
maining 500,000 for GA evolution for robustness.

All experiments described below used the same embryo
bond graph shown in Fig. 1. The component values of
source resistor Rs and load resistor Rload are both 1 Ω for
lowpass and highpass filter synthesis. Our GPBG based sys-
tem is implemented with C++. The GP code is based on
modified Open Beagle. The bond graph simulator was devel-
oped in our lab. All experiments were run on a single Linux
machine with a 3.0GHz CPU and 1GB memory. On average,
for an experiment run with 1,000,000 fitness evaluations, it
took about 10-20 hours depending on the complexity of the
GP trees. To make our results to be practical, we intention-
ally used a single set of parameters as much as possible to
run all experiments with little tuning effort.

To assess the statistical significance of the performance
differences, for each target filter type and each synthesis
method, 10 runs were conducted. This size of experiments
is determined by the computing resources available. How-
ever, since the results are quite stable across runs, it is suf-
ficient for the purposes of this paper. In addition, due to
the page limitation of this paper, only intuitive results with
brief statistical tests are reported.
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5.1 Evolving Analog Filters using GP Without
Considering Robustness

In this experiment, ten analog lowpass and highpass filters
were evolved using standard GP without incorporating a
robustness criterion in the fitness function (3). The following
common running parameters were used throughout all GP
experiments in this paper Table 1:

We select the evolved filter with the highest performance
to test its noise tolerance over the degradation or variation of
the component parameters with different perturbation mag-
nitudes. As described above, the evaluation of robustness
with respect to parameter perturbation is conducted by run-
ning 10000 simulations of the configurations of the Gaussian
parameter perturbations.

Fig. 2 and Fig. 6 show the topologies of the evolved
lowpass and highpass filters with highest performance out
of ten runs. The evolved best lowpass and highpass filters
have 39 and 27 components, respectively. The lowpass and
highpass filters approximate the ideal frequency response
closely, with the sum of deviation over 101 points being only
6.43 and 0.32, respectively.
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Figure 6: Topology of best highpass analog filters
evolved with standard GP with 500,000 function
evaluations without considering robustness require-
ment.This filter has 27 C/I/R components beyond
original embryo. The best evolved lowpass filter is
shown in Fig. 2. This topology is generated by a
simplification procedure which removes redundancy
in the original evolved bond graphs while maintain-
ing their functional behaviors.

5.2 Evolving Robust Analog Filters Using GA:
the Classical Robust Design

In this experiment, the G3PCX-GA is used to improve the
robustness of the best analog filter evolved in the previous
section through parameter tuning while keeping functional
structure unchanged. As we can see from Fig. 2 and Fig.
6, these two filter models are very complex, with 39 and 27
parameters to search. As the objective function of this opti-
mization is highly multi-modal, this is a hard optimization
even for G3PCX-GA, as the experiment demonstrates. The
running parameters for this experiment are summarized in
Table II.

Fig. 7(c) and Fig. 8(c) show the twenty frequency re-
sponse curves of these robust lowpass and highpass filters
with parameter perturbations of 30% of nominal values.
Compared with the result in Fig. 7(b) and Fig. 8(b) without
considering robustness, the G3PCX GA indeed improves the
robustness. However, one needs to be cautious when inter-

preting these frequency response figures. As specified in our
synthesis problems, we have a shallow ”don’t care” region for
both lowpass and highpass target frequency responses. The
robust filters evolved by G3PCX have better performance in
the two-end regions, while they have large variation in the
”don’t care” region.

5.3 Evolving Robust Filters Using GP: Open-
Ended Topology Search for Robust Design

In this section, we try to evolve robust analog filters that
have higher tolerance of the variation of component values
and have graceful performance degradation. The configura-
tion of this experiment is the same as those used in Section
5.1.

The topology of the evolved robust lowpass and highpass
filters are shown in Fig. 7(a) and Fig. 8(a). It is very
interesting to compare the complexity of these two filters
to those evolved with standard GP without considering ro-
bustness (Fig. 2 and Fig. 6). The robustness requirement
drives the GP to evolve much simpler structures since large
structures expose more components to perturbation noise.
Of course, this depends on the perturbation model. In our
model, we applied the perturbation to ALL components, so
large filters with more components tend to suffer from more
perturbation.

We can also compare the frequency responses of the ro-
bust filters with that of filters evolved by standard GP and
GA with robustness. It appears that GP with robustness
beats the other two results by allowing more variation in the
”don’t care” region while keeping tight control in the two
boundary regions where stringent functional requirements
are imposed.

5.4 Statistical Comparison of Three Methods
For the highpass filter problem, we did a t-test to the com-

pare the robustness of the evolved solutions by GPGARMS
and standard GP in terms of fitness variation at 0.2 pertur-
bation level. A significance level of P =< 0.001 is achieved
strongly indicating GPGARMS improved the robustness of
the evolved filters by standard GP. However, we found that
this improvement is at the cost of degraded performance. A
t-test was also applied to compare GPGARMS and GPRMS.
The 95 percent confidence interval for difference of means of
robustness fitness is -51.617 to -39.841, showing that GP-
GARMS degraded robustness. The difference in the mean
values of the two groups is greater than would be expected
by chance (P =< 0.001).

6. CONCLUSIONS AND FUTURE WORK
This paper applies GP and bond-graph-based modeling –

the GPBG approach – to topologically open-ended synthesis
of robust dynamic systems. It is shown that the traditional
approach of robust design, in which the functional concep-
tual design is conducted without considering a robustness
requirement, may put severe limits on the possible robust-
ness achievable through parameter-tuning-based robust de-
sign during the detailed design stage. It thus proposes that
robust design in engineering should start from the concep-
tual stage, and that the open-ended topology search capa-
bility of GP can be exploited for this purpose. We find that
our GP system enables us to find more robust analog filters
with respect to the variations in their parameters compared
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Table 1: Experimental parameters for analog filter synthesis without robustness criterion
Total population size: 2000(400/400/400/400/400) Number of subpopulations: 5
migration interval: 5 generation Migration size: 30 individuals
Max tree depth: 8 Crossover probability: 0.7
InitTreeDepth: 3-5 Standard mutation probability: 0.1
flag bit mutation rate: 0.1 swapping-tree mutation rate: 0.1
Tournament size: 7 Parametric mutation probability: 0.5
Max evaluations: 1,000,000 Flag mutation probability: 0.3
Pool size of elite individuals: 20 Elite pool update frequency: 5 generations

Table 2: Experimental parameters for robust design by G3PCX-GA
Total population size: 200 Max evaluations: 500,000
Number of parents in crossover: 3 family size: 2
sigmazeta: 0.1 sigmaeta: 0.1
SPI: 10 Perturbation noise percentage: 20%

to existing parameter-tuning-type evolutionary algorithms
for robust design of fixed functional structures.

Evolving robustness is a rich research theme and there
are several interesting topics to be further investigated. For
example, another dimension of system robustness which is
not discussed in this paper is the robustness with respect to
topology perturbation or component failures, which may be
important in many environments, especially on space mis-
sions. Our ongoing work shows that selection pressures for
robustness with respect to parameter perturbation versus
with respect to component faults lead to different topolog-
ical patterns. It would be interesting to investigate how si-
multaneous requirements for both types of robustness would
affect topological structures. In this paper, only simple ro-
bustness estimation method based on multiple sampling is
used. However, in the simultaneous topology and parame-
ter search process, more effective approach can be devised to
reduce the computational effort for estimating robustness.
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Figure 7: Structure of the robust lowpass filter
evolved using GP with robustness requirements and
its frequency responses in face of 30% Gaussian per-
turbation of their nominal parameters. (a) Robust
lowpass filter evolved using GP with robustness (b)
Frequency responses of the lowpass filter evolved us-
ing normal GP without robustness requirements (c)
Frequency responses of the lowpass filter evolved
first using normal GP without robustness require-
ments and then fine-tuned using GA with robust-
ness requirements. (d) Frequency responses of the
lowpass filter evolved using normal GP with robust-
ness requirements
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Figure 8: Structure of robust highpass filter evolved
using GP with robustness requirements and its fre-
quency responses in face of 30% Gaussian perturba-
tion of their nominal parameters. (a) Robust high-
pass filter evolved using GP with robustness (b) Fre-
quency responses of the highpass filter evolved us-
ing normal GP without robustness requirements (c)
Frequency responses of the highpass filter evolved
first using normal GP without robustness require-
ments and then fine-tuned using GA with robustness
requirements. (d) Frequency responses of the high-
pass filter evolved using normal GP with robustness
requirements
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