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ABSTRACT 
In this work we propose an approach of incorporating learned 
mutation strategies (LMS) in genetic programming (GP) 
employed for evolution and adaptation of locomotion gaits of 
simulated snake-like robot (Snakebot). In our approach the LMS 
are implemented via learned probabilistic context-sensitive 
grammar (LPCSG). The LPCSG is derived from the originally 
defined context-free grammar, which usually expresses the 
syntax of genetic programs in canonical GP. Applying LMS 
implies that the probabilities of applying each of particular 
production rules in LPCGS during the mutation depend on the 
context. These probabilities are learned from the aggregated 
reward values obtained from the parsed syntax of the evolved 
best-of-generation Snakebots. Empirically obtained results 
verify that LMS contributes to the improvement of 
computational effort of both (i) the evolution of the fastest 
possible locomotion gaits for various fitness conditions and (ii) 
the adaptation of these locomotion gaits to challenging 
environment and degraded mechanical abilities of Snakebot. In 
all of the cases considered in this study, the locomotion gaits, 
evolved and adapted employing GP with LMS feature higher 
velocity and are obtained faster than with canonical GP.    

Categories and Subject Descriptors 
G.1.6–Global Optimization; J.2-Physics 

General Terms: Algorithms, design 
Keywords: Mutation strategies, genetic programming, 
locomotion, Snakebot, context-sensitive grammar. 
 

1. INTRODUCTION 
Wheelless, limbless snake-like robots (Snakebots) feature 
potential robustness characteristics beyond the capabilities of 
most wheeled and legged vehicles – ability to traverse terrain 
that would pose problems for traditional wheeled or legged 

robots, and insignificant performance degradation when partial 
damage is inflicted. Some useful features of Snakebots include 
smaller size of the cross-sectional areas, stability, ability to 
operate in difficult terrain, good traction, high redundancy, and 
complete sealing of the internal mechanisms [4, 6].  

Robots with these properties open up several critical 
applications in exploration, reconnaissance, medicine and 
inspection. However, compared to the wheeled and legged 
vehicles, Snakebots feature (i) more difficult control of 
locomotion gaits and (ii) inferior speed characteristics. In this 
work we intend to address the following challenge: how to 
automatically develop control sequences of Snakebot’s 
actuators, which allow for achieving the fastest possible speed of 
locomotion.  

In principle, the task of designing the controlling code of robots 
could be formalized and the formal mathematical models 
incorporated into direct programmable control strategies [6, 15, 
17]. However, the eventual models of the Snakebot would 
feature enormous complexity and such models are not 
recognized to have a known, analytically obtained exact optimal 
solution. The complexity of the model stems from the 
considerable amount of degrees of freedom of the Snakebot, 
which cannot be treated independently of each other. The 
locomotion of the Snakebot is viewed as an emergent property at 
higher level of consideration of a complex hierarchical system, 
comprising many relatively simply defined entities 
(morphological segments).  In such systems the higher-level 
properties of the system and the lower-level properties of 
comprising entities cannot be induced from each other.  

The automated mechanisms for prompt generation of near-
optimal solutions to such complex, ill-posed problems are 
usually based on various models of learning (ontogenesis) or 
evolution (phylogenesis) of species in the Nature [7, 9, 16]. The 
proposed approach of employing genetic programming (GP) 
implies that the code, which controls the locomotion of the 
Snakebot is automatically designed by a computer system via 
simulated evolution through selection and survival of the fittest 
in a way similar to the natural evolution of species [8]. GP (and 
evolutionary algorithms in general) is considered as an efficient 
way to tackle such difficult problems due to the ability to find a 
near-optimal solution in a reasonable runtime. 

The objectives of our work are (i) to explore the feasibility of 
applying GP for efficient automatic design of the fastest possible 
locomotion of realistically simulated Snakebot and (ii) to 
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investigate the adaptation of such locomotion to challenging 
environment and degraded abilities (due to partial damage) of 
simulated Snakebot. We are especially interested in the 
implications of the proposed incorporation of learned mutation 
strategies (LMS) in GP on the efficiency of evolution and 
adaptation of Snakebot.  

Presented approach of incorporating LMS is implemented via 
learning probabilistic context-sensitive grammar (LPCSG), 
employed to express the preferable syntactical bias of mutation 
operation in GP. The proposed approach is related to the 
approach of grammatical evolution (GE) [10] in which the 
evolved genotype encodes the sequence of grammar rules, 
which should be applied during the simulated gene expression 
phase in order to generate the phenotype. Our work is also 
related to the incorporation of estimation of distribution 
algorithms (EDA) for biased mutations in evolutionary 
computations, mainly – in GA [5, 11, 12]. Motivated by the 
demonstrated advantages of both the GE and the EDA in GA, 
our work could be viewed as an attempt to fuse these two 
approaches in a way which allows for the biased mutation in GP 
(rather than GA, as in EDA) to be implemented via adjustable, 
learned preferences  (rather than “hard coded” in the 
chromosome, as in GE) in applying the corresponding 
alternative grammar rules. Although a few grammar-based 
EDAs have been recently proposed [2, 13], in neither of these 
methods the incorporation of LPCSG in GP has been explored. 
Our interest in the feasibility of such approach additionally 
motivated us in this work.  

The remainder of this document is organized as follows. Section 
2 emphasizes the main features of GP proposed for evolution of 
locomotion of the Snakebot. Section 3 introduces the proposed 
approach of incorporating LPCSG in GP and discusses the 
empirically obtained results of efficiency of evolution and 
adaptation of Snakebot to challenging environment and partial 
damage. Section 4 draws a conclusion. 

 

2. GP FOR AUTOMATIC DESIGN OF 
LOCOMOTION GAITS OF SNAKEBOT  
2.1. Representation of Snakebot 
Snakebot is simulated as a set of identical spherical 
morphological segments (“vertebrae”), linked together via 
universal joints. All joints feature identical (finite) angle limits 
and each joint has two attached actuators (“muscles”). In the 
initial, standstill position of Snakebot the rotation axes of the 
actuators are oriented vertically (vertical actuator) and 
horizontally (horizontal actuator) and perform rotation of the 
joint in the horizontal and vertical planes respectively. 
Considering the representation of Snakebot, the task of 
designing the fastest locomotion can be rephrased as developing 
temporal patterns of desired turning angles of horizontal and 
vertical actuators of each segment, that result in fastest overall 
locomotion of Snakebot. The proposed representation of 
Snakebot as a homogeneous system comprising identical 
morphological segments is intended to significantly reduce the 
size of the search space of the GP. Moreover, because the size of 
the search space does not necessarily increase with the increase 
of the complexity of Snakebot (i.e. the number of morphological 
segment), the proposed approach allows achievement of 
favorable scalability characteristics of GP.  

2.2 Algorithmic Paradigm 
2.2.1 GP 
GP [8] is a domain-independent problem-solving approach in 
which a population of computer programs (individuals’ 
genotypes) is evolved to solve problems. The simulated 
evolution in GP is based on the Darwinian principle of 
reproduction and survival of the fittest. The fitness of each 
individual is based on the quality with which the phenotype of 
the simulated individual is performing in a given environment. 

 
2.2.2 Function Set and Terminal Set 
 In applying GP to evolution of Snakebot, the genotype is 
associated with two algebraic expressions, which represent the 
temporal patterns of desired turning angles of both the 
horizontal and vertical actuators of each morphological segment. 
Because locomotion gaits, by definition, are periodical, we 
include the periodic functions sin and cos in the function set 
of GP in addition to the basic algebraic functions. Terminal 
symbols include the variables time, index of the segment of 
Snakebot, and two constants: Pi, and random constant within 
the range [0, 2]. The main parameters of the GP are shown in 
Table 1.  
 
2.2.3 Context-free Grammar for Canonical GP 
The context-free grammar (CFG) G, usually employed to define 
the allowed syntax of individuals in GP consists of  (N, Σ, P, S) 
where N is a finite set of nonterminal symbols, Σ is a finite set of 
terminal symbols that is disjoint from N, S is a symbol in N that 
is indicated as the start symbol, and P is a set of production 
rules, where a rule is of the form 

V -> w 

where V is a non-terminal symbol and w is a string consisting of 
terminals and/or non-terminals. The term "context-free" comes 
from the feature that the variable V can always be replaced by w, 
in no matter what context it occurs. The set of non-terminal 
symbols of G of GP, is employed to develop the temporal 
patterns of desired turning angles of horizontal and vertical 
actuators of segments, that result in fastest overall locomotion of 
Snakebot, is defined as follows:  

N = {GP, STM, STM1, STM2, VAR, CONST_x10, 
CONST_PI, OP1, OP2} 

where STM is a generic algebraic statement, STM1 – a generic 
unary (e.g., sin, cos, nop) algebraic statement, STM2 – a 
generic binary (dyadic, e.g. +, -, *, and /) algebraic statement, 
VAR – a variable, OP1 – an unary operation, OP2 – a binary 
(dyadic) operation, CONST_x10 is a random constant within the 
range [0..20], and CONST_PI equals either 3.1416 or 1.5708. 
The set of terminal symbols is defined as: 

Σ = {sin,cos,nop,+,-, *,/,time,segment_id} 
where sin, cos, nop, +, -, * and / are terminals which 
specify the functions in the generic algebraic statements. The 
start symbol is GP, and the set of production rules expressed in 
Backus-Naur form (BNF) are as shown in Figure 1. GP uses the 
defined production rules of G to create the initial population and 
to mutate genetic programs. In the canonical GP the production 
rules with multiple alternative right-hand sides (such as rules 2, 
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4, 6, 7 and 9, shown in Figure 1) are usually chosen randomly 
during these operations. 

2.2.4 Fitness Evaluation 
The fitness function is based on the velocity of Snakebot, 
estimated from the distance, which the center of the mass of 
Snakebot travels during the trial. Fitness of 100 (the one of 
termination criteria shown in Table 1) is equivalent to a velocity, 
which displaced Snakebot a distance equal to twice its length.  

Table 1. Main parameters of GP 

Category Value 
Function set {sin, cos, nop, +, -, *, /} 
Terminal set {time, segment_ID, Pi, random constant} 
Population size 200 individuals 

Selection  Binary tournament, selection ratio 0.1, 
reproduction ratio 0.9 

Elitism Best 4 individuals 
Mutation Random subtree mutation, ratio 0.01 

Fitness Velocity of simulated Snakebot during the 
trial 

Trial interval 180 time steps, each time step account for 
50ms of “real” time  

Termination 
criterion 

(Fitness >100) or (Generations>40) 

 
(1)        GP ——► STM 
(2.1-2.5)  STM ——► STM1|STM2|VAR|CONST_x10|CONST_PI 
(3)         STM1 ——► OP1 STM  
(4.1-4.6)    OP1 ——► sin|cos|nop|–|sqr|sqrt 
(5)         STM2 ——► OP2 STM STM 
(6.1-6.4)    OP2 ——► +|-|*|/ 
(7.1-7.2)   VAR  ——► time|segment_id  
(8)         CONST_x10 ——► 0..20 
(9.1-9.2)   CONST_PI  ——► 3.1416|1.5708 

Figure 1. BNF of production rules of the context free 
grammar G of GP, employed for automatic design of 
locomotion gaits of Snakebot. The following abbreviations 
are used: STM – generic algebraic statement, STM1 – unary 
algebraic statement, STM2 – binary (dyadic) algebraic 
statement, VAR – variable, OP1 – unary operation, and OP2 
– binary operation 
 

2.2.5 Representation of Genotype 
Inspired by its flexibility, and the recently emerged widespread 
adoption of document object model (DOM) and extensible 
markup language (XML) [18], we represent the evolved 
genotypes of the Snakebot as DOM-parse trees featuring 
equivalent flat XML-text. Both (i) the calculation of the desired 
turning angles during fitness evaluation and (ii) the genetic 
operations are performed on DOM-parse trees via API of the 
off-the shelf DOM-parser. 

2.2.6 Genetic Operations 
Selection is a binary tournament. Crossover is defined in a 
strongly typed way in that only the DOM-nodes (and 
corresponding DOM-subtrees) of the same data type (i.e. labeled 
with the same tag) from parents can be swapped. The sub-tree 

mutation is allowed in strongly typed way in that a random node 
in genetic program is replaced by syntactically correct sub-tree. 
The mutation routine refers to the data type of currently altered 
node and applies the chosen rule from the set of applicable 
rewriting rules as defined in the grammar of GP. The selection 
of the grammar rule, which should be applied to the currently 
altered tree node during the mutation is random in the canonical 
implementation of GP; and biased in the proposed approach of 
applying LMS as shall be elaborated in the following Section 3. 

2.2.7 Open Dynamics Engine 
We have chosen Open Dynamics Engine (ODE) [14] to provide 
a realistic simulation of physics in applying forces to phenotypic 
segments of the Snakebot.  ODE is a free, industrial quality 
software library for simulating articulated rigid body dynamics. 
It is fast, flexible and robust, and it has built-in collision 
detection.  
 

3. INCORPORATING LMS IN GP 
3.1 Learning Probabilistic Context-Sensitive 

Grammar 
The proposed approach is based on the idea of introducing bias 
in applying the most preferable rule from the grammar rules 
with multiple, alternative right-hand sides (RHS). We presume 
that the preferences of applying certain production rules depend 
on the surrounding grammatical context, defining which rules 
have been applied before. The initial probability distributions 
(PD) pi1, pi2,  …piN for each contexti  for each grammar 
rule with multiple is RHS is even (equal) and then learned 
(tuned) incrementally at each generation from the subset of the 
best performing Snakebots. The learned PD is then used as a 
bias to steer the mutation of Snakebots.  

In the proposed approach, the learning probabilistic context-
sensitive grammar (LPCSG) G* is proposed as a formal model 
describing such mutation. G* is introduced as a set of the same 
attributes (N*, ∑*, P*, S*) as the CFG  G defined in Section 2.2. 
The attributes N*, ∑*, and S* are identical to the corresponding 
attributes N, ∑, and S of G. The set of production rules P* of G* 
are derived from P of G as follows:  
(i) Production rules of PS (PS ⊂ P) of G which have a single 

right-hand side are defined in the same way in P* as in P, 
and 

(ii) Production rules in PM (PM ⊂ P) of G, which feature 
multiple right-hand side alternatives V → w1|w2|...|wN 
are re-defined for each instance i of the context as follows: 

contexti V → contexti w1 (pi1) 
contexti V → contexti w2 (pi2) 
... 
contexti V → contexti wN (piN) 

where pi1, pi2,  …piN (∑pin = 1,  n=1,2..N.) are 
the probabilities of applying each alternative rule with the left-
hand side non-terminal V for the given contexti.   

Applying the IF-THEN stimulus-response paradigm, which 
usually expresses the reactive behavioral strategies of intelligent 
entities in AI (e.g., software agents, robots, etc.) to such biased 
mutation operations in GP, and viewing the evolved genotype 
not only as an evolving, but also as a learning intelligent entity, 
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the above considered sample rule of G* could be modeled by the 
following behavioral IF-THEN statement: 

IF (Context_of_[V] is [contexti ])) 
THEN Apply_Rules_With_Probabilities(pi1,p

i
2,  

…piN) 

The LMS strategy in our approach comprises the dynamic set of 
IF-THEN rules created and tuned by parsing the syntax of the 
best performing Snakebots of the current generation. A sample 
of biased application of production rules of G* according to the 
learned PD and the corresponding IF-THEN rule of LMS for the 
considered leftmost non-terminal and the context are shown in 
Figure 2. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Sample of biased application of production rules of 
G*: the current leftmost non-terminal, as shown in (a) is 
STM, which requires applying one of the production rules 
2.1-2.5 (refer to Figure 2). For the considered context (a), the 
LMS of applying rules 2.1-2.5 (b) suggests a highest 
probability for applying the production rule 2.4, yielding the 
genetic program as shown in (c). 

3.2 Algorithm of GP Incorporating LMS 
The principal steps of algorithm of GP incorporating LMS via 
LPCSG are shown in Figure 3. As figure illustrates, additional 
Steps 6 and 9 are introduced in the canonical algorithm of 
GP. The LMS is updated on Step 6, and the new offspring, 
created applying the proposed biased mutation via LPCSG on 
Step 9 are inserted into already reproduced via canonical 
crossover (Step 7) and mutation (Step 8), growing new 
population of Snakebots. The parameter KLMS defines the ratio of 
the number of offspring #NLMS created via biased mutation using 
LMS and the number of offspring #NCO created via canonical 
crossover.  KLMS is dynamically tuned on Step 6 based on the 
stagnation counter CS, which maintains the number of most 
recent generations without improvement of the fitness value. In 

our implementation, KLMS is kept within the range [0, 5].  It is 
defined according to the following rule: 
  KLMS = 5 - smaller_of(5,CS) 

The lower values of KLMS in stagnated population (i.e., for CS>0) 
favor the reproduction via canonical random genetic operations 
over the reproduction using biased mutation via LMS. As we 
empirically investigated, the low values of KLMS facilitate 
avoiding premature convergence by increasing the diversity of 
population and consequently, accelerating the escape from the 
(most likely) local optimal solutions, discovered by the steering 
bias of the current LMS. Conversely, replacing the usually 
random genetic operations of canonical GP with the proposed 
biased mutation when KLMS is close to its maximum value (i.e., 
for CS=0) can be viewed as a mechanism for growing and 
preserving the proven to be beneficial building blocks in 
evolved solutions rather than destroying them by usually random 
crossover and mutation.  
 
Step 0:Creating Initial Population and Clearing PDD; 
Step 1:While (true) do begin 
Step 2: Evaluating Population; 
Step 3: Ranking Population; 
Step 4: if TerminationCriteria then Go to Step 10; 
Step 5: Selecting the Mating Pool; 
Step 6: Updating LMS and KLMS; 
Step 7: Creating #NCO offspring via canonical crossover; 
Step 8: Mutating current population via canonical  
        mutation; 
Step 9: Creating #NLMS offspring via mutation  
        of mating pool using LMS; 
Step10:end; 

Figure 3. Algorithm of GP incorporating LMS. Steps 6 and 
9 are specific for the proposed approach. Steps 0, 2-5, 7 
and 8 are common principal steps of canonical GP. 
 

Updating (Figure 3, Step 6) and applying LMS during the 
biased mutation (Figure 3, Step 9) implies maintaining a 
table, which represents the set of learned IF-THEN rules. Each 
entry in the table stores the context, the left-hand side non-
terminal, the list of right-hand side symbols, the aggregated 
reward values and the calculated probability of applying the 
given production rule for the given context. A new entry is 
added or the aggregated reward value of existing entry is 
updated by extracting the syntactic features of the best 
performing genetic programs (the mating pool) of the current 
generation. The outdated entries, added 4 or more generations 
before are deleted, keeping the total number of entries in the 
table between 300 and 500. The string of characters, comprising 
the right-hand side RHS of given production rule that should be 
applied to the current leftmost non-terminal (i.e. the 
corresponding left-hand symbol in production rule, LHS) for the 
given context C is obtained by the function 
GetProduction([in] C, [in] LHS, [out] RHS) 
which operates on  LMS table as shown in Figure 4. 
 

4. EMPIRICAL RESULTS 
This section discusses empirically obtained results verifying the 
effects of incorporating LMS on the efficiency of GP applied for 
the following two tasks: (i) evolution of the fastest possible 
locomotion gaits of Snakebot for various fitness conditions and 
(ii) adaptation of these locomotion gaits to challenging 
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2.3 STM ——> VAR       0.07          [1.57, +, sqrt]        
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2.5 STM ——> CONST_PI  0.16          [1.57, +, sqrt] 
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environment and degraded mechanical abilities of Snakebot. 
These tasks, considered as relevant for successful 
accomplishment of anticipated exploration, reconnaissance, 
medicine or inspection missions, feature different fitness 
landscapes. Therefore, the experiments discussed in this section 
are intended to verify the versatility and the scope of 
applicability of the proposed approach.   

 

 

 

 
Figure 4. Obtaining the most preferable right-hand side 
(RHS) of production rule of LPCSG that should be applied 
to the left-most non-terminal (i.e. left-hand symbol, LHS), 
and the context (C) according to a sample IF-THEN rule of 
the current LMS: (1) Selecting the set of entries associated 
with the entries featuring the given LHS and C,  (2) 
Choosing an entry from the obtained result set with a 
probability, proportional to the learned PD, and (3) 
returning the RHS of the chosen production rule. The sample 
IF-THEN rule of the LMS, shown in this Figure is the same 
as in Figure 2. 
 
  

In all of the cases considered, the fitness of Snakebot reflects the 
low-level objective (i.e. what is required to be achieved) of 
Snakebot in these missions, namely, to be able to move fast 
regardless of environmental challenges or degraded abilities. 
The experiments discussed illustrate the ability of the evolving 
Snakebot to learn how (e.g. by discovering beneficial 
locomotion traits) to accomplish the required objective without 
being explicitly taught about the means to do so. Such know-
how acquired by Snakebot automatically and autonomously can 
be viewed as a demonstration of emergent intelligence [1], in 
that the task-specific knowledge of how to accomplish the task 
emerges in the Snakebot from the interaction of the problem 
solver and the fitness function. 
 

4.1 Evolution of Fastest Locomotion Gaits 
Figure 5 shows the results of evolution of locomotion gaits for 
cases where fitness is measured as velocity in any direction.  
Despite the fact that fitness is unconstrained and measured as 
velocity in any direction, sidewinding locomotion (defined as 

locomotion predominantly perpendicular to the long axis of 
Snakebot) emerged in all 10 independent runs of GP, suggesting 
that it provides superior speed characteristics for considered 
morphology of Snakebot. As Figure 5c illustrates, incorporating 
LMS in GP is associated with computational effort (required to 
achieve probability of success 0.9) of about 20 generations, 
which is about 1.6 times faster than canonical GP with CFG. 
Sample snapshots of evolved best-of-run sidewinding 
locomotion gaits are shown in Figures 5d-5g.  

In order to verify the superiority of velocity characteristics of 
sidewinding we compared the fitness convergence 
characteristics of evolution in unconstrained environment for the 
following two cases: (i) unconstrained fitness measured as 
velocity in any direction (as discussed above and illustrated in 
Figure 5), and (ii) fitness, measured as velocity in forward 
direction only. The results of evolution of forward (rectilinear) 
locomotion, shown in Figure 6 indicate that non-sidewinding 
motion, compared to sidewinding, features much inferior 
velocity characteristics. The results also demonstrate that GP 
with LMS in average converges almost 4 times faster and to 
higher values than canonical GP. Snapshots taken during the 
motion of a sample evolved best-of-run sidewinding Snakebot 
are shown in Figures 6c and 6d.  
 

 

 

 

 
 
 
 
 
 
Figure 5. Evolution of locomotion gaits for cases where 
fitness is measured as velocity in any direction: fitness 
convergence characteristics of 10 independent runs of GP 
with LMS (a), canonical GP (b), probability of success (c), 
and snapshots of sample evolved via GP with LMS best-of-
run sidewinding Snakebots (d), (e), (f) and (g). The dark 
trailing circles in (d), (e), (f) and (g) depict the trajectory of 
the center of the mass of Snakebot. 
 
The results of evolution of rectilinear locomotion of simulated 
Snakebot confined in narrow “tunnel” are shown in Figure 7. As 
the fitness convergence characteristics of 10 independent runs 
(Figure 7a and Figure 7b) illustrate, GP with LMS is almost 
twice faster than canonical GP. Compared to forward 
locomotion in unconstrained environment (Figure 6), the 
velocity in this experiment is superior, and even comparable to 
the velocity of sidewinding (Figure 5). This, seemingly 
anomalous phenomenon demonstrates a case of emergent 
intelligence – i.e. an ability of evolution to discover a way to 
utilize the walls of “tunnel” as (i) a source of extra grip and as 
(ii) an additional mechanical support for fast yet unbalanced 
locomotion gaits (e.g., vertical undulation) in an eventual 
unconstrained environment. 
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Figure 7. Evolution of locomotion gaits of Snakebot confined 
in narrow “tunnel”: fitness convergence characteristics of 10 
independent runs of GP with LMS (a), canonical GP (b), and 
snapshots of sample evolved best-of-run gaits at the 
intermediate (c) and final stages of the trial (d) 

 
 

4.2 Adaptation of Sidewinding to 
Challenging Environment. Generality of 
Adapted Gaits  

Adaptation in Nature is viewed as an ability of species to 
discover the best phenotypic (i.e. pertaining to biochemistry, 
morphology, physiology, and behavior) traits for survival in 
continuously changing fitness landscape. The adaptive 
phenotypic traits are result of beneficial genetic changes 
occurred during the course of evolution (phylogenesis) and/or 
phenotypic plasticity (ontogenesis – learning, polymorphism, 
polyphenism, immune response, adaptive metabolism, etc.) 
occurring during the lifetime of the individuals. In our approach 
we employ GP with LMS for adaptation of Snakebot to changes 
in the fitness landscape caused by (i) challenging environment 
and (ii) partial damage to 1, 2, 4 and 8 (out of 15) morphological 
segments. In all of the cases of adaptation, GP is initialized with 
a population comprising 20 best-of-run genetic programs, 
obtained from 10 independent runs of evolution of Snakebot in 
unconstrained environment, plus additional 180 randomly 
created individuals. 

The challenging environment is modeled by the 
introduction of immobile obstacles comprising 40 small, 
randomly scattered boxes, a wall with height equal to the 0.5 
diameters of the cross-section of Snakebot, and a flight of 3 
stairs, each with height equal to the 0.33 diameters of the cross-
section of Snakebot. The results of adaptation of Snakebot, 
shown in Figure 8 demonstrate that the computational effort 
(required to reach fitness values of 100 with probability of 
success 0.9) of GP with LMS is about 20 generations. 
Conversely, only half of all runs of canonical GP achieve the 
targeted fitness value, implying that the corresponding 

probability of success converges to the value of 0.5. Snapshots 
illustrating the performance of Snakebot initially evolved in 
unconstrained environment, before and after the adaptation (via 
GP with LMS) to challenging environment are shown in Figure 
9. The additional elevation of the body, required to faster 
negotiate the obstacles represents the emergent know-how in the 
adapting Snakebot. As Figure 10 illustrates, the trajectory of the 
central segment around the center of the mass of sample adapted 
Snakebot (Figure 10b) is twice higher than before the adaptation 
(Figure 10a).  

 
 
 
 
 
 
 
 
 

Figure 8. Adaptation of sidewinding locomotion to 
challenging environment: fitness convergence characteristics 
of 10 independent runs of GP with LMS (a), canonical GP  
(b), and probability of success (c). 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Snapshots illustrating the sidewinding Snakebot, 
initially evolved in unconstrained environment, before the 
adaptation – initial (a), intermediate (b and c) and final 
stages of the trial (d), and after the adaptation to challenging 
environment via GP with LMS - initial (e), intermediate (f) 
and final stages of the trial (g). 

 

 

 

 

 

 

 

 

The generality of the evolved via GP with LMS robust 
sidewinding gaits is demonstrated by the ease with which 
Snakebot, evolved in known challenging terrain overcomes 
various types of unanticipated obstacles such as a pile of boxes, 
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Figure 10. Trajectory of the central segment (cs) around the 
center of mass (cm) of Snakebot for sample best-of-run 
sidewinding locomotion before (a) and after the adaptation 
(b) to challenging environment. 

Figure 6. Evolution of locomotion gaits for cases where
fitness is measured as velocity in forward direction only.
Fitness convergence characteristics of 10 independent runs 
of GP with LMS (a), canonical GP (b), and snapshots of
sample evolved via GP with LMS best-of-run forward
locomotion (c and d). 
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a burial under boxes, and small walls, as illustrated in Figures 
11, 12, and 13. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Adaptation to Partial Damage 
The adaptation of sidewinding Snakebot to partial damage to 1, 
2, 4 and 8 (out of 15) segments by gradually improving its 
velocity is shown in Figure 14. Demonstrated results are 
averaged over 10 independent runs for each case of partial 
damage to 1, 2, 4 and 8 segments. The damaged segments are 
evenly distributed along the body of Snakebot. Damage inflicted 
to a particular segment implies a complete loss of functionality 
of both horizontal and vertical actuators of the corresponding 
joint.  
 
 
 
 

 

 

 
 
 
 
 
 
 
 
As Figure 14 depicts, Snakebot recovers completely from the 
damage to single segment attaining its previous velocity in 25 
generations with canonical GP, and only in 7 generations with 
GP with LMS, resulting in a mean real-time of adaptation of a 

few hours of runtime on PC featuring Intel® 3GHz Pentium® 4 
microprocessor and 2GB RAM under Microsoft Windows NT 
OS.  Snakebots recovers to average of 94% (Canonical GP) and 
100% (GP with LMS) of its previous velocity in the case where 
2 segments are damaged. With 4 and 8 damaged segments the 
degree of recovery is 77% (Canonical GP) and 92% (GP with 
LMS), and 68% (Canonical GP) and 72% (GP with LMS) 
respectively. In all of the cases considered incorporating LMS 
contributes to faster adaptation of Snakebot, and in all cases the 
Snakebot recovers to higher values of velocity of locomotion. 
The snapshots of sidewinding Snakebot immediately after 
damage, and after having recovered from the damage of 1, 2 , 4 
and 8 segments are shown in Figure 15. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. CONCLUSION 
In this work we propose an approach of incorporating LMS 
implemented via LPCSG in GP and verified it on the efficiency 
of evolution and adaptation of locomotion gaits of simulated 
Snakebot. We introduced a biased mutation in which the 
probabilities of applying each of particular production rules with 
multiple right-hand side alternatives in the LPCSG depend on 
the context, and these probabilities are “learned” from the 
aggregated reward values obtained from the evolved best-of-
generation Snakebots. Empirically obtained results verify that 
employing LMS contributes to the improvement of 
computational effort of both (i) the evolution of the fastest 
possible locomotion gaits for various fitness conditions and (ii) 
adaptation of these locomotion gaits to challenging environment 
and degraded mechanical abilities of Snakebot.  
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Figure 14. Adaptation of Snakebot to damage of 1 (a), 2 (b), 4 
(c) and 8 (d) segments. Fd is the best fitness in evolving 
population of damaged snakebots, and Fh is the best fitness 
of 20 best-of-run healthy sidewinding Snakebots. 

Figure 13. Snapshots illustrating the generality of 
sidewinding Snakebot adapted to the known challenging 
environment as depicted in Figure 9. Before the adaptation 
to the known challenging environment the Snakebot clears 
an unanticipated walls forming pen slower  (a, b, c and d) 
than after the adaptation (e, f, and g). The walls are twice 
higher than in the know challenging terrain, and  their 
height is equal to the diameter of the cross-section of 
Snakebot.
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Figure 11. Snapshots illustrating the generality of
sidewinding Snakebot adapted to the known challenging
environment as depicted in Figure 9. Before the adaptation
to the known challenging environment the Snakebot
overcomes an unanticipated pile of boxes slower  (a, b and c)
than after the adaptation (d, e, and f) via GP with LMS. 

Figure 12. Snapshots illustrating the generality of
sidewinding Snakebot adapted to the known challenging
environment as depicted in Figure 9. Before the adaptation
to the known challenging environment the Snakebot
emerges from an unanticipated burial under pile of boxes
slower  (a, b and c) than after the adaptation (d, e, and f)
via GP with LMS. 
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The recent discoveries in molecular biology and genetics 
suggest that mutations do not happen randomly in the Nature. 
Instead, some fragments of DNA tend to repel the mutations 
away, while other fragments seem to attract it [3]. It is assumed 
that the former fragments are related to the very basics of life, 
(and therefore, any mutation within them can be potentially fatal 
to the species), while the latter fragments are relevant for the 
adaptability (and consequently, for the survival) of the 
organisms.  The proposed approach of LMS incorporated in GP 
implies focusing the mutation operation toward the proven 
beneficial mutation points (i.e. the points with even distribution 
of the learned probabilities for the right-hand side alternatives of 
rules in LPCSG). In addition, the approach of LMS facilitates 
keeping the mutation away from the genotypic points which do 
not have a proven beneficial effect on the performance of 
genetic programs by always choosing the same right-hand side 
alternative (in case of highly uneven distribution of learned 
probabilities) and thus following with fidelity the syntactical 
trends which prevail in the best performing individuals. Within 
the context considered, the proposed incorporation of LMS in 
GP can be viewed as a biologically plausible attempt (i) to 
mimic the Natural mechanisms of genomic control over the 
mutation operations and (ii) to investigate the computational 
implication of these mechanisms on the efficiency of the 
simulated evolution and adaptation of engineering artifacts.  
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Figure 15. Snapshots of the sidewinding Snakebot,
immediately after damage to 1 (a), 2 (c), 4 (e), and 8 (g)
segments, and after having recovered from the damage (b, d, 
f, and h) by adaptation via GP with LMS. 

After adaptation

After adaptation

Before adaptation 

Before adaptation 

After adaptation 

After adaptation 

Before adaptation 

Before adaptation 

98% of original 
velocity

d)

70% of original 
velocity

h)

64% of original 
velocity 

c) 

40% of original 
velocity 

g) 

107% of original 
velocity 

b) 

90% of original 
velocity 

f) 

72% of original 
velocity 

a) 

55% of original 
velocity 

e) 

694


