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ABSTRACT 
In this paper, we describe a general-purpose, systematic 
algorithm, consisting of a genetic programming module and a k-
nearest neighbor classifier to automatically create artificial 
features—features that are computer-crafted and may not have a 
known physical meaning—directly from the reconstructed state-
space trajectories of the EEG signals that reveal patterns 
indicative of epileptic seizure onset. The algorithm was evaluated 
in three patients and validation experiments were carried out 
using 267.6 hours of EEG recordings.  The results with the 
artificial features compare favorably with previous benchmark 
work that used a handcrafted feature. 

Categories & Subject Descriptors 
I.5.2 [Computing Methodologies]: Pattern Recognition: Design 
Methodology – feature evaluation and selection, pattern analysis 

General Terms: Algorithms, Design 

Keywords: Epilepsy, seizure detection, feature extraction, 
state-space reconstruction, genetic programming 

1. INTRODUCTION 
Since the invention of the electroencephalograph, great progress 
has been made in studying many brain disorders. One of the most 
puzzling disorders is epilepsy, a neurological condition that 
makes people susceptible to brief electrical disturbances in the 
brain, thus producing a change in sensation, awareness, and/or 
behavior. Epilepsy is characterized by recurrent seizures. It 
affects up to one percent of the population of the world or sixty 
million people, and 25% cannot be fully controlled by current 
medical or surgical treatment. 

Many approaches have been proposed to extract information from 
EEG signals that can be used to develop algorithms to predict or 
detect epileptic seizures [1], [3], [4], [8], [10], [13]. In this work, 
in particular, we are interested in the problem of seizure onset 
detection. Although, easier than the prediction problem, detection 
of epileptic seizures is still far from trivial. There are many 

anomalies that occur naturally in EEG signals that cause detectors 
to fire and declare that a seizure is occurring when actually it is 
not. False starts, delta trains, and spike-and-wave discharges all 
lead to false alarms and thus medicating the patient unnecessarily. 
Nonetheless, seizures must be detected as soon as possible so the 
medication can be delivered immediately to control the seizure 
without further consequences. Therefore, there is a tradeoff 
between the number of false alarms and the number of false 
negatives (when the detector says an attack is occurring when it is 
not). 
 
Some approaches that apply digital signal processing or filter 
theory have acceptable performance. However, to extract the 
relevant information that can facilitate such prediction or 
detection, features are calculated using conventional techniques 
and methodologies that are time-consuming, trial-and-error 
processes requiring a great deal of effort from researchers. All of 
these conventional techniques rely on knowledge of a feature 
formula or algorithm that may have been obtained from intuition, 
tradition, the physics of the problem, analogies to problems in 
other fields, etc. There is no guarantee that any of these 
conventional features extracts maximally relevant information 
from the raw data. The present work seeks to develop an 
algorithm that systematically and automatically can find or 
generate artificial features or patterns starting from raw data–in 
this case, EEG signals. Artificial features are defined as features 
that are computer-designed, are learned, inductive, optimized, and 
are designed based on given data (e.g., EEG data). We will see 
that unlike most approaches, this work is not based solely on 
tuning a few parameters of fixed terms to find the “best” detector 
for a patient, but instead uses an algorithm that also changes the 
structure of the equations, giving enough flexibility to design a 
highly tuned feature that is sensitive to the characteristics or 
patterns of a given patient. 
 
In Section 2, we explain the methodology used to reconstruct the 
state-space trajectory from the EEG signal. We also explain the 
components that constitute the genetic programming artificial 
features (GPAF) algorithm. In Section 3, we present the results of 
the experiments on data from three patients. Sections 4 and 5 
present discussions and conclusions. 

2. METHODOLOGY 
We attempt to capture a “pocket” of deterministic dynamics of 
EEG signals by means of delay-embedding in a stream of sliding 
windows. First, we reconstruct the state-space trajectory of the 
EEG signals using the standard delay-embedding scheme [12]. 
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Later, this reconstructed trajectory is input into a genetic 
programming algorithm, which attempts to find the pattern(s) 
giving the best discrimination between baseline data (nonseizure, 
see Figure 1) and ictal (during seizure, see Figure 2) data in the 
sense of a minimum-error-risk objective function. A universal 
classifier then performs the categorization task. Figure 3 is a 
diagram depicting all components of the algorithm.  

 
Figure 1. Illustration of a ten-minute duration baseline signal. 

 

 
Figure 2. Illustration of a two-minute ictal signal. The 
unequivocal electroencephalographic onset (UEO) is located 
at one minute (dashed line). 

2.1 EEG Data 
The anonymized EEG data used for these experiments were 
obtained from a tripartite database from Georgia Institute of 
Technology, Emory University, and University of Pennsylvania. 
The EEG data were recorded from epileptic patients undergoing a 
pre-surgical evaluation. Patients were simultaneously videotaped 
during their hospital stays, which varied in duration from 4 to 11 
days. The EEG signals were recorded at 200Hz, with 12-bit 
resolution. 
 
In this work, we deal with mesial temporal lobe epilepsy (MTLE). 
MTLE is strongly associated with complex partial seizures, the 
most common type of seizure, being present in 40% of all 
epilepsy cases reported [2]. 

 

2.2 State reconstruction via delay-embedding 
In the past, various authors have labeled the dynamics governing 
the brain as chaotic, and thus have applied nonlinear dynamic 
tools to analyze EEG data [6], [9]. Chaos theory [11] states that 
within a chaotic system, that is, one displaying apparently 
disordered random-like data, an underlying order exists. Because 
of this, one of the most relevant properties is that precise long-
term prediction is impossible; however, prediction in the short 
term and with an error allowance is possible. Such a property 
allows us to reconstruct the state-space trajectory of an attractor 
of the system (in this case, the model of the brain that generates 
the EEG signals). We can reconstruct the deterministic 
component of the state trajectory of the EEG signals by taking 
previous samples of the observable output and creating an 
artificial state vector with ne elements, which we denote λk (input 
to the program in Figure 3), the embedding vector. This process 
creates a diffeomorphism (a function that is a smoothly distorted 
copy of the original trajectory and preserves dynamic and 
geometric qualities of the trajectory of the EEG system). In other 
words, we reconstruct the set of dynamic variables that governs 
the dynamics of the system that in this work is the model of the 
brain that produces the EEG signals.  
 
 Given such state-space trajectory reconstruction, our approach is 
to input these pseudo-state vectors (i.e., λk), evolving in time, to 
the genetic programming (GP) module, and by means of the 
algorithm, to find a transformation, usually nonlinear, that 
achieves the maximum separability between baseline and ictal 
data. In other words, the GP algorithm combines the inputs 
(states) in a (non)linear way and outputs a function that is meant 
to separate the baseline and ictal classes such that the 
performance of the classifier is either better than or at least 
equivalent to categorizing the classes with no transformation or 
with a benchmark algorithm previously defined. The following 
expression mathematically describes the result: 

[ ] ( )λii ky φ= , (1) 

 

 Classifier

  Genetic Programming 

  y[k] c 

  EEG Signal 

Program 

λk 

State-Reconstruction 

Sampled EEG Signal 

Genetic Programming Artificial Feature Algorithm 

Figure 3. State-space reconstruction and the components of 
the artificial feature algorithm. 
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where φi is a transformation function (artificial feature or 
program) designed by the GP algorithm, i is the artificial feature 
index (it is equal to 1 if the GP module is designing just one 
artificial feature), and 

( ) ( ) ( ) ( )( ){ }τττλ 1 ,  ,2 ,, −−−−= ennxnxnxnx  (2) 

is the set of delayed samples (inputs) that the GP will use in any 
combination (with replacement) to construct the artificial features. 
The parameter τ is the delay time, which will be determined using 
the autocorrelation function, and ne is the embedding dimension. 
Therefore, the artificial feature is a function defined as φi: Rne → 

R. Here we heuristically set the embedding dimension to 6. 

 
As for any conventional feature, such as Fourier transform 
coefficients, signal energy, etc., in the genetic programming 
artificial features (GPAF) algorithm, we process the data as if 
viewed through a sliding observation window. The observation 
window is defined by two parameters: length of the window, 
denoted L, and displacement, denoted D, alternatively describable 
as the percentage of overlap of adjacent windows. The length L 
defines the number of points that will be evaluated (or analyzed) 
at any one time. D is defined as the number of new points that 
will be used in the next evaluation, or D = L – O, where O is the 
overlap with the previous window. To reduce variability in the 
feature time series, we use a summation in each window position. 
Recalling (2) and placing the summation operator, the resultant 
equation is stated in (3).  
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The yi[k] is the GP artificial feature of the EEG signal x(t), termed 
here the artificial feature time series, the subscript i denotes the 
number of the feature (i.e., we can have a single artificial feature 
or a vector of such features), n is the index that controls the 
displacement inside the sliding window, and k is the discrete time 
unit of this time-series (or the index that indicate the next sliding-
window position). The sliding window observes all L points in 
window-position k, whereas index n is delimited by 1 + (k–1)(L–
D) ≤ n ≤ k(L–D)+1 (the superscript and subscript on the 
summation symbol). In this work, we selected n to be increased 
one at a time. Figure 4 shows an illustration, which present a 
sliding window being slid through an EEG segment. 
 
In other words, equation (3) is proportional to the average of the 
GPAF-processed points observed through the sliding window, 
where the argument of the summation φ(·) (i.e., the GPAF 
function) is found by the GP algorithm. That is, at each window 
position k, L points will be reduced, by means of (3), to a single 
point at the output. Thus, if we have a signal that contains PTot 
points and we set displacement to D, the number of output points 
after the entire signal is processed by the GP artificial feature is 

1+−=
D
L

D
PTotκ , (4) 

where the term – L/D +1 is an adjustment for the beginning and 
end of the signal, where the window of length L is not complete 
and, thus, some points are not calculated. Thus, the discrete index 
of the artificial time series k goes from 1 to κ . 

2.3 Genetic programming 
Genetic programming (GP) [7], established formally by Koza, is 
closely related to genetic algorithms (GA), although it has a few 
critical differences. In GP, the length of the chromosome is 
variable and the representation is typically formulated using trees 
instead of the strings used in GA. Another important aspect of 
GP, unlike GA, in which chromosomes often directly encode the 
solution to the problem, is that the tree typically provides a 
program that is used to solve the problem, or instructions for how 
to construct a solution. In GP, there are two types of nodes: 
functions, which have some number of arguments that they 
operate on, and terminals. 
 
On the other hand, similarly to GA, GP evolves programs by 
means of the genetic operators selection, crossover, reproduction, 
and mutation. Table 1 shows the function set or building blocks 
used, which the GP algorithm will use to construct the programs 
(artificial features), in this work. The maximum tree depth was set 
to 10 and the population size to 1000. The initial population was 
generated using the ramped half-and-half method. The GP 
algorithm used a crossover operator with a rate of 0.9, fitness 
proportional selection, and a breeding operator with a rate of 0.1. 
The GP algorithm was extended to allow it to evaluate not just 
one tree per individual, but multiple trees per individual (i.e., a 
forest), allowing us to generate a prespecified number of features 
for a patient simultaneously. All the trees of the individual were 
evaluated at the same time; however, there was no crossover 
among trees (features) of the same individual— crossover was 
done only among homologous trees. 
 
 
 

 

Figure 4. The sliding window slides (solid rectangle) over an 
EEG signal. The dashed rectangle indicates the position 
where the window will be displaced. The sliding window 
position is controlled by k whereas the shifting inside the 
sliding window is controlled by the index n. L is the length of 
the window and D is displacement. 
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Table 1. Function set for the GP algorithm 

+ – ÷ × 
cos sin log2 log10 

ln  (  )2 abs 
 

2.4 Objective Function 
The error risk is the metric to be optimized [5], which assigns risk 
factors r > 0 to the errors such that their relative costs can be 
accounted for as 

FPFPFNFNE )NS()S( rPPrPPR TT +=
,
 (5) 

where PFN is the probability of false negatives (i.e., when the 
algorithm misses a seizure), PFP is the probability of false 
positives, and P(ST) and P(NST) are the prior probabilities of the 
respective classes (seizure and baseline). Additionally, rFN is a 
risk factor associated with missing seizures, and rFP is a risk factor 
associated with declaring false positives. The relative sizes of 
these risk factors should be chosen as if assuming that the priors 
are equal P(ST) = P(NST). From experience, we select rFN = 0.75 
and rFP = 0.25, yielding 

( ) ( ) FPFNE PPR 25.075.0 += . (6) 

2.5 Classifier 
Although any classifier in the GPAF algorithm may be used, in 
this work we select the classifier with one aspect in mind: to 
prescribe a general-purpose algorithm that automatically creates 
artificial features from raw data (or conventional features if those 
are the starting-point data). Therefore, we selected the k-nearest 
neighbor classifier (k-NN) as the classifier component for the 
GPAF algorithm (last stage in Figure 3). This classifier is 
nonparametric, nonlinear, and capable of producing multiple 
thresholds or complicated decision boundaries, making it suitable 
for n-dimensional, multi-modal problems. In addition, the training 
process is relatively easy, simply having the classifier store all the 
training data. 
 
Holdout method was used in the classification phase in order to 
train and test the GPAF algorithm. The experiments were 
conducted using a point basis, where a feature point counts as one 
example. However, statistics reported on a point basis are not 
easy to interpret, therefore results for testing data will be reported 
using a block basis (where a whole signal epoch counts as one 
example). A threshold will be set for this transformation. If the 
point basis classification result is equal to or exceeds the 
threshold, the epoch will be labeled ictal; otherwise, it will be 
categorized as baseline (nonseizure). 
 
2.6 Decision Integration Window 
The experiments were conducted using a point basis, where each 
point in an artificial feature epoch counts as one example, i.e., 
each point κ is an example for the classifier. However, if, for 
instance, an implantable device (with GPAF features integrated) 
classified each t seconds over an incoming EEG signal, the device 
could not be allowed to drug the patient based on the decision that 
the classifier makes each t seconds. The device needs a longer, 

fixed-length window, so that it can observe the past evolution of 
the point-basis classification during a defined period to decide 
whether or not a patient is suffering a seizure. We denote the 
length of this window as LDIW. This parameter controls a tradeoff 
between the number of false positives and the detection delays of 
seizures (thus, it also controls the number of seizures that are 
detected; however, because most seizures are detected sooner or 
later given the sudden and large changes on the EEG signal’s 
amplitude, what is also of great interest is how early those 
seizures can be detected). This parameter can be fixed as a 
constant for all patients, that is, the same LDIW value for all the 
patients. However, this parameter gives flexibility to our 
approach; therefore, to make the system more “personal” it is 
better to tune the parameter for each patient. Here we selected 
LDIW by “educated guess” and trial-and-error, but the ability of the 
GP algorithm to automatically select the optimal parameter will 
be investigated in the future. 
 
3. RESULTS 
In the training phase of the experiments, we used baseline and 
ictal epochs of 2 minutes duration, thus containing 24,000 points 
each. For ictal epochs, we used 1 minute of data before the UEO 
and 1 minute of data after it (2 min). The training set for each 
patient was three baseline epochs and three ictal epochs. The 
length of the sliding window was set to L = 200 (1 s) and D = 50 
(0.25 s). Therefore, the number of points after an epoch is 
processed by the GP equation κ was 477 points per epoch. As 
stated before, the embedding dimension was set to ne = 6. 
Euclidean distance was selected as the metric and number of 
nearest neighbors for the k-NN classifier was set to k = 5, a value 
commonly used. In these experiments, we set the number of trees 
to 2; that is, the GPAF algorithm created two artificial features for 
each patient. 
 
3.1 Patient A 
Patient A was diagnosed as having all seizures coming from the 
right inferior temporal neocortex. This patient had 5 seizures 
during 46.19 hours of recording. The delay time τ was set to τ = 
11 (0.055 s), selected from the first zero-crossing of the 
autocorrelation plot. Thus, the terminal set (the pseudo state-space 
vector) for this patient is {x(n), x(n–11), x(n–22), x(n–33), x(n–
44), x(n–55)}. Equation (7) shows the artificial features found by 
the GPAF algorithm. Table 2 shows the results obtained from the 
validation data, where FP denotes the number of false positives, 
FPh is the rate of false positives per hour, ADEO denotes the 
average delay of the detection time with respect to the 
unequivocal electrographic onset (in seconds), FN is the number 
of false negatives, and HP is the number of hours of EEG 
recordings processed for each patient. The length of the DIW was 
set to 3.75 s. 
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3.2 Patient B 
Patient B was diagnosed with multifocal seizures. This patient 
had 10 seizures during 65.7 hours of EEG recording. The delay 
time τ was set to τ = 19 (0.095 s). Thus, the terminal set for this 
patient was {x(n), x(n–19), x(n–38), x(n–57), x(n–76), x(n–95)}. 
The length of the DIW was set to 3 s. Equation (8) shows the 
artificial feature found by the GPAF algorithm. Table 2 shows the 
results obtained from the validation runs. 
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3.3 Patient C 
Patient C was diagnosed as having all seizures coming from the 
right inferior frontal region. This patient had 11 seizures in 156.4 
hours of recording. The delay time τ was set to τ = 9 (0.045 s). 
Thus, the terminal set (the pseudo state-space vector) for this 
patient was {x(n), x(n–9), x(n–18), x(n–27), x(n–36), x(n–45)}. 
The length of the decision integration window was set to 2.75 s. 
Equation (9) shows the artificial feature found by the GPAF 
algorithm. Table 2 shows the results obtained from the validation 
run. 
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Table 2. GPAF  detection results 

Patient FP FPh ADEO FN HP 

A 1 0.022 1.15 s 0 46.2 

B 0 0 1.93 s 0 65.7 

C 0 0 2.1 s 0 156.4 

Average 0.33 0.007 1.73 s 0 268.29 
 

Table 3. Line length detection results 

Patient FP FPh ADEO FN HP 

A 4 0.087 -3.44 s 0 46.2 

B 0 0.000 0.32 s 0 65.7 

C 0 0.000 2.73 s 0 156.4 

Average 1.33 0.029 -0.13 s 0 268.29 
 

4. DISCUSSION 
To evaluate how the GPAF is doing, we cite the results of work 
reported by Esteller et al. [3]. The authors used a handcrafted 
feature called line length, stated in (10).  

( ) ( ) ( )∑
+−=

−−=
k

Lkn
nxnx

K
kLL

1
11  (10) 

Using this feature, the authors processed the same data that we 
did. Table 3 shows the results obtained by using the line length 
equation. Despite the equation’s simplicity, the results produced 
by the feature were good enough to be implemented in an 
implantable detection device. Comparing Tables 2 and 3, for 
patient A, the GPAF features performed better than the line length 
feature by having just one false positive and thus a lower false 
positive rate. The detection delay was a little higher than that for 
the line length feature. 
 
With the second patient, the performances of both algorithms 
were very similar, with the line length feature doing a little better 
on the detection delay average. Finally, for the third patient, the 
GPAF equations produced a, lower average detection delay. For 
this patient, we remark that the artificial feature y1[k] in (9) is the 
conventional feature line length in (10). The better performance is 
because of the additional feature and a more flexible tuning of the 
LDIW parameter, allowing only one false positive. 
 

5. CONCLUSION 
It is noted from inspection of the artificial feature formulas for 
each patient that, although relatively simple, they are far from 
trivial and not likely to come from intuition or knowledge of the 
physics of the problem. The artificial features designed by the 
GPAF algorithm are “optimized” for each particular patient based 
only on their available raw EEG recordings. Although not by 
much, these features match or exceed in some aspects the 
performance of traditional conventional features. However, it is 
noted that further experiments are planned to further improve the 
artificial features and, it is expected, exceed the performance of 
conventional features. Nonetheless, these results make the GPAF 
algorithm a worthy subject of further research. Additionally, we 
plan to use more patients and also to design a general (cross-
patient) model for detection. 
 
We need to highlight that there is tradeoff between the number of 
false positives and how early seizures are detected. If we desire a 
minimum of false positives, we can increase the value of LDIW, but 
an increase in the average delay of detection will also result. If a 
low false positive rate and low average delay are desired, more 
training data must be fed to the GPAF algorithm in order to 
design a set of features that better detect seizures, rather than 
being sometimes triggered by artifacts or overfitting of data. 
Additionally, a term that weights more specifically the average 
delay could be also added to the cost function so the algorithm 
can seek to minimize average delay at the same time that is 
minimizing false positive and false negative rates.  
 
Additionally, this work has shown—specifically in the results for 
patient C—that the GPAF algorithm is not only able to create 
artificial features without any obvious physical meaning, but also 
is able to find features with known physical meaning. Although 

465



unintentionally, this work confirms the claim by Esteller et al. in 
the sense that the line length feature is a good and efficient feature 
for detection of epileptic seizure onsets. 
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